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QUASISIMILARITY AND HYPONORMAL OPERATORS

L. R. WILLIAMS

S. Clary proved in [8] that quasisimilar hyponormal operators have equal
spectra and he asked whether quasisimilar hyponormal operators have equal essential
spectra. The present author studied this question in [26] and proved in {27] that
quasisimilar quasinormal operators have equal essential spectra. The purpose of
this note is to study further the above mentioned question of Clary and to present
some other results that relate to quasisimilarity and hyponormal operators.

If o is a Hilbert space, let #(#) denote the algebra of all bounded linear
operators on #. (In this note, we shall use the term operator to mean an element
of L(HA) for some complex Hilbert space S#°.) If T is an operator and TT* < T*T,
then T is said to be iyponormal. If ', and 5, are Hilbert spaces and X: 56, —» #,
is a bounded linear transformation having trivial kernel and dense range, then X
is called a quasiaffinity. If T, € £ () and T, € #(H#,) and there exist quasiaffinities
X:# - Hyand Y:H#, — H, satisfying XT;, = T,X and T,Y = YT,, then T; and
T, are said to be quasisimilar. If T is an operator, let ¢(T') denote the spectrum of 7,
S (T) the kernel of T, and #(T) the range of 7. If T € Z(5#°) and S is an infinite
dimensional Hilbert space, let 6. (7) denote the essential spectrum of 7, i.e., the
spectrum -of T, where T — T is the natural quotient map of £ () onto the Calkin
algebra L(#)/€. (€ denotes the norm-closed ideal of all compact operators in £ (5#).)

As stated earlier, our primary interest is in the class of hyponormal operators.
However, many of the results in this note are valid for the more general class of
dominant operators. (Recall that an operator T is said to be dominant if Z(T — 1) <
S AT — A)*) for each A in o(T). The study of dominant operators was introduced
by Stampfli and Wadhwa in {25]. It follows easily from Theorem 1 of [11] that
every hyponormal operator is dominant.) Some of the properties of hyponormal
operators extend to the class of dominant operators. For example, it is easy to verify
that a dominant operator on a finite dimensional Hilbert space is normal. On the
other hand there exist dominant operators which behave quite differently from hypo-
normal operators. For instance, it is known that a compact hyponormal operator
is normal [1], [3]. It is also known that a quasinilpotent hyponormal operator is
necessarily zero. However, there exist nonnormal compact quasinilpotent dominant
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operators [25]. It also appears that the question of whether quasisimilar dominant
operators have equal spectra is open. Thus we will concentrate here on the class of
hyponormal operators. However, we will state and prove the results for the more
general case of dominant operators whenever appropriate.

1. NORMAL AND PURE PARTS OF QUASISIMILAR
HYPONORMAL OPERATORS

Suppose that T is an operator. Then T'= T, @ T, where T; is normal and
T, is pure, i.e., if . is a reducing subspace of T, and T,|.# is normal, then .# = (0).
The operator T is called the normal part of T and T, the pure part of T. (Note that
either of the operators T, or T, may be the zero operator on the zero Hilbert space.)
J. Conway proved in [9] that the normal parts of quasisimilar subnormal operators
are unitarily equivalent. The following theorem generalizes this result to the class
of dominant operators. We remark that if 7' is a dominant operator, .4 is an invariant
subspace for T, and T'|.# is normal, then .# reduces T'[25]. Thus if T'is a pure domi-
nant operator, then the point spectrum of T is empty. We shall use this fact freely.

THEOREM 1.1. Suppose that T, and T, are two quasisimilar dominant operators.
Let T; = N, ® V; on the Hilbert space 5€; @ 5", where N,and V; are the norma
part and pure part, respectively, of T;,i = 1, 2. Then N, and N, are unitarily equivalent
and there exist bounded linear transformations Xy %y — Ay and Yo:H 'y — A,
having dense ranges such that XoV, = VX and VY = Y,V,.

In order to prove Theorem 1.1 we shall need the following theorem and lemma.

The reader should compare Theorem 1.2 with Theorem 3 of [25], Theorem 6 of
[26], and Theorem 2 of [27].

THEOREM 1.2. Suppose that 3¢, and 3¢, are Hilbert spaces, Ty is a norma
operator in L(3#,), T, is a dominant operator in L(#H3), X:H#, = # s is a bounded
linear transformation, and XTy = T, X. If T, is pure, then X = 0.

Proof. Let # = R(X)~ . The subspace .# is invariant under T,. Let Ty = T, .#
and let X,:3, —» # be defined by X,z = Xz for each z in ;. Observe that T, is
dominant, X, has dense range, and X,T; = T,X,. Hence, by Theorem 1 of [25],
T, is normal. Thus Lemma 2 of [25] implies that .# reduces T,. Therefore, since T,
is pure, we have . = (0); thus X = 0.

Lemma 1.1. Suppose that #, and #, are Hilbert spaces, N; is a norma
operatorin L(H)), i = 1,2, X:#, > Hyand Y .36, — H, are bounded linear trans-
formations having trivial kernels, and XN, = No,X and N,Y = YN,. Then N, and N,
are unitarily equivalent.

Proof. Let 4 = #(X) and 4" = #(Y). Lemma 4.1 of [12] implies that .#
reduces N, A" reduces N, N, is unitarily equivalent to N,|.#, and N, is unitarily
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equivalent to N,|.4". Thus, according to Theorem 1.3 of [15]) or Lemma 2.2 of [9],
N, and N, are unitarily equivalent.

Proof of Theorem 1.1. There exist quasiaffinities X:°, @ Ay — #, @ A,
and Y, @ Ay - H, @ A, such that XT, = T,X and T, Y = YT;. Let

[Xl Xz]and[yl Y2]
X; X, Y, ¥,

be the matrices of X and Y, respectively, with respect to S, @ ¥’y and #, @ X 5.
A matrix calculation shows that X3V, = V,X; and Y,N, = V,¥,. Thus Theorem 1.2
implies that X; = Y, = 0. It follows that X; and X, have trivial kernels and a matrix
calculation shows that X;N, = N,X; and N,Y; = Y;N,. Hence, by Lemma 1.1,
N, and N, are unitarily equivalent. Observe that X, and Y, have dense ranges and
X,V = VX, and V,Y, = Y,V,. Thus the proof is complete.

Suppose that T, and T, are quasisimilar hyponormal operators. Theorem 1.1
1mplies that if T is normal, then T, is also normal and if T, is pure, then T, is pure.
Moreover, in view of Theorem 1.1, in order to answer the question of whether
(1)) = 0.(T,), it suffices to answer the question of whether ¢ (V) = 0(V,), where
V, and V, are the pure parts of T, and T, respectively. We know that ¥; and V,
are related by the equations XV, = V,X and V,Y = YV, where X and Y are bounded
linear transformations having dense ranges. (We remark that it is known that the
pure parts of quasisimilar hyponormal operatois need not be quasisimilar [9],[27].)
The fact that X and Y are not necessarily quasiaffinities appears to be of little conse-
quence. For instance, we know that the above stated conditions imply at least that
a(Vy) = a(Vy) [8]. Also, if V; and V, are quasinormal, then o (V1) = a (V) [27].
Moreover, the above stated conditions on ¥, and ¥, imply that dimx ((V; — A)*¥) =
= dimA ((V, — A)*) for each complex number 1. (We know that since ¥, and V7,
are pure dim %' (V, — 1) == dimA"(V, — 1) = 0 for each complex number 1.) These
observations are important in view of the fact that if T is an operator, then
o (T)={/ € C: T—2 is not Fredholm}. (Recall that an operator T'is Fredholmif both
S (T)and A (T*) are finite dimensional and #(T") is closed.) Nevertheless, the question
of whether o (V) = ¢ (V,) seems difficult to answer even if ¥, and V, are subnormal.

2. HYPONORMALS COMMUTING WITH COMPACTS

The following theorem appears in [26]:

THEOREM A. Suppose that T, and T, are hyponormal operators and there exist
quasicffinities X and Y such that XTy = T,X and T\Y = YT,. If either X or Y is
compact, then o (T}) = o (Ty).

9 — 2682
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The following question also appears in [26]: If T, and T, satisfy the hypotheses
of Theorem A, then are T, and T, unitarily equivalent or similar? We shall answer
this question later in this section. Observe that if T, and T, satisfy the hypotheses
of Theorem A, then T, commutes with the compact quasiaffinity YX. Likewise 7.
commutes with the compact quasiaffinity XY. Moreover, Theorem 1.1 and its proof
imply that the pure parts of 7; and T, commute with compact operators having
dense ranges. These observations inspire the following theorems.

THEOREM 2.1. Suppose that T is a pure dominant operator, K is a compact
operator having dense range, and KT = TK. Then ¢ (T) = o(T).

Proof. Consider the equation T*K* = K*T*. Note that ' (K*) = (0). So by
following the proof of Theorem 5.1 of [16] we can conclude that if T7* — 1 is Fred-
holm, then A#(T* — A) = (0). We know that, since T is a pure dominant operator,
A (T — 1) = (0) for each complex number A. Thus if ¢ o (T), then 1¢ a(T).
Therefore ¢ (T) = o(T).

THEOREM 2.2. Suppose that T is a pure dominaat operator, K is a compact
operator, and KT = TK. Then K is quasinilpotent and 4 (K) is either the zero or an
infinite dimensional subspace.

Proof. Suppose that 4 is a complex number. Then, since (K — )T == T(K — 4),
A (K — A) is an invariant subspace for 7. Let T, = T|o# (K — ). The operator T,
is dominant and Lemma 2 of [25] implies that T, is pure. Since the point spectrum
of T, is empty, it follows that 2 (K — 1) is infinite or zero dimensional. Hence
the compact operator K has no nonzero eigenvalues, i.e., 6(K) = {0}. Also, if A =0
is an eigenvalue, then #°(K) is infinite dimensional.

Let K be as in Theorem 2.2. We remark that both the cases, #(K) is trivial
and 2°(K) is infinite dimensional, can occur. In the following example K is constructed
so that ' (K) is infinite dimensional. In Example 2.2, K is constructed so that #(K)
is trivial.

ExaMpLE 2.1. Let o = C? and let

1 0 0 1
— and K=
? [0 2] ° [o 0]

. 1
with respect to some orthonormal basis for 5. Note that P (Eko) =

= ( ! KO)P,n=0,l,2, ... . Let %: Y @, and IA’ =V @2, where
2n+1 n=1 ne=l

FaN
for each n, #, = # and P, = P. Let Vx denote the unilateral shift on 2, ie.,
sy
Vie(X1y Xoy -+ -) = (0, Xy, Xa, . ..) for each (xy, X, ...) in 5. Observe that the dilated
A oo 1 e
shift T = VP is a pure quasinormal operator [5] and if K=Y} @& > Ky on S,

n=1

then KT = TK. The operator Kis compact and nilpotent and 2#'(K) is infinite
dimensional.
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The following theorem shows that the answer to the question mentioned at
the beginning of this section is affirmative if one of the two quasisimilar hyponormal
operators is an isometry.

THEOREM 2.3. Suppose that T, is an isometry, T, is a dominant operator,
and there exist quasiaffinities X and Y such that XT, = T,X and T\Y = YT,. If
either X or Y is compact, then T, and T, are unitarily equivalent unitary operators.

Proof. We have (YX)T, = Ty(YX) where YX is a compact quasiaffinity.
Corollary 6.4 of [12] implies that 77 is unitary. Hence, since T} is normal, Theorem 1.1
implies that T, is also normal and unitarily equivalent to Ty. Thus T, is also unitary.

In spite of the above theorem, the following example shows that the answer
to the above mentioned question is negative.

ExampLE 2.2. Let {e,}5 _. be an orthonormal basis for a Hilbert space #
and let {¢,}i2 o and {d,}2 _,, be bounded sequences of positive numbers such
that for each integer n, ¢, _, < d, < ¢,. Let P, and P, be operators in £ (s#) defined

A A

by Pye, = c,e, and Pye, = d,e, for eachinteger n. Let T}, = VP, and T, = VP,
N

on #. (Here we are using the notation of Example 2.1.) The operators T; and T, are

pure quasinormal operators. For each positive integer i define X; and Y; in £ (#°) by

1 d.\¢
A,‘-C,, =-— (S
2ing ( c, ) "

and
Ylen = “‘I-— (&:1 n-1»
2’11{ d"
n=...—2,—1,0,1,2, ... . Observe that X, and Y, are compact quasiaffinities,
i=1,2,..., that | X;|| - Oand ||¥;l - 0, and that X,P, = P,X; , and Y,P, =
(o] oo AN
=PY, 1, i=2,3....Let X = Yy, @X;,and ¥ = 2 @ Y; on s#. Thus X and

: i=1 i=1
Y are compact quasiaffinities, X7, = T.X, and T,Y == YT,. Hence T, and T, are
quasisimilar pure quasinormal operators with the implementing quasiaffinities

oo
both compact. The operators 7, and T, are unitarily equivalent to Yy, @®c,S and

H=—00

Yy, & d,S, respectively, where S denotes the unilateral shift of multiplicity one.
= —0C0
Hence T, — d, has closed range and T, — d, does not have closed range. Thus

T, and T, are not similar.

It is possible to extend Theorem A to a class of dominant operators. We
shall need some additional terminology. Suppose that T € £(s#) and x € #, where
x # 0. Then f(4) = (T — )" *x is a vector valued analytic function on C\a(T),
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the resolvent set of 7. If f is an analytic function whose domain is an open set con-
taining C\\o(7T') and which satisfies (T— 1) f(4) = x for all 1 in the domain of f, then
f is said to be an analytic extension of £. If any two analytic extensions of f agree
on the intersection of their domains, then 7 is said to have the single valued extension
property. (We note that dominant operators have the single valued extension pro-
perty since their normal parts clearly do and their pure parts have empty point
spectra.) If T has the single valued extension property, let X(1) denote the maximal
analytic extension of (T — 1) %x, let p,(x) denote the domain of X, and let
o 1(x)=C\pr(x). The set pr(x)is the local resolvent of x and o (x) is the local spectrum
of x. The set o4(x) is a nonempty compact subset of the plane and or(x) & o(T).
(For convenience, let o(x) = @ if x =0.)

An operator T is said to satisfy Dunford’s Condition C if T has the single
valued extension property and for each closed subset F of C, the linear manifold
{xe#:0(x) & F} is closed. It is known that hyponormal operators satisfy Dun-
ford’s Condition C (cf. [21], [23]). Thus the following theorem extends Theorem A.

THEOREM 2.4. Suppose that Ty and T, are dominant operators satisfying Dun-
Jord's Condition C and there exist quasiaffinities X and Y such that XTy = T,X and
T,Y = YT,. If either X or Y is compact, then ¢ (1)) = 0.(Ts) (and o(T) = o(T:)).

For the proof of Theorem 2.4, we shall need the following lemma and theorem.
Lemma 2.1 is easy to verify.

Lemma 2.1, Suppose that T, € L(3#,) and Ty L(H,), where S, and 5.
are Hilbert spaces. Then Ty, @ T. satisfies Dunford’s Condition C if and only if both
T, and T, do.

J. G. Stampfli proves in [24] that if 7 and T, are quasisimilar operators
that satisfy Dunford’s Condition C, then o(T}) = o(T%). Close scrutiny of his proof
reveals that the fact that the intertwining quasiaffinities are injective is not used to
establish the above result. Hence we have the following theorem.

THEOREM 2.5 (Stampfli). Suppose that Ty € L(#)) and T. e L(3,), where
Hy and 5 are Hilbert spaces, and suppose that both Ty and T, satisfy Dunford’s
Condition C. If there exist bounded linear transformations X -, — # o and Y- H 3 =3,
having dense ranges such that XTy = ToX and 1,Y = YT,, then o(Ty) = a(Ts).

Proof of Theorem 2.4. We know from Theorem 2.5 that o(73) = o(T,). Let
T,= N, ® V;beasin Theorem 1.1,7 = 1,2. Since N, and N, are unitarily equivalent,
the proof is complete if we show that ¢.(Vy) = 6.(V,). Theorem 1.1 implies that
there exist bounded linear transformations X, and ¥, having dense ranges such that
XV, = VoX, and V Y, = Y, ¥,. So, by Theorem 2.5, o(¥y) = a(V}). Clearly X,
or Y, is compact (see the proof of Theorem 1.1), ¥; commutes with Y, X,, and V;
commutes with X, Y,. Thus; by Theorem 2.1, 6. (V) = o(¥)), i = 1, 2, and the proof
is complete.
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We remark that there exist dominant operators satisfying Dunford’s Condition
C that are not hyponormal. (A nonzero quasinilpotent dominant operator is an
example.) However, it appears to be unknown whether every dominant operator
satisfies Dunford’s Condition C (cf. [20]).

3. BIQUASITRIANGULARITY AND HYPONORMAL OPERATOR &

In this section all Hilbert spaces are separable. Also, unless stated otherwise,
all Hilbert spaces are infinite dimensional. We shall need the following notation and
terminology. If T is an operator, let 6,.(T)[o,.] denote the left [right] essential spec-
trum of 7, i.e., the left [right] spectrum of T. Let o,p(T) denote the approximate
point spectrum of T. Recall that ¢,,(T) = {4 € C:T — A is not bounded below}.
Recall also that a fwle in ¢ (T') is bounded component of C\o (T) and a pseudohole
ino(T) is a component of (inte (7)) \o(T) or (inte (7)) \0,.(T). Hence a hole or a
pscudohole in 6 (T) is an open subset of the camplex plane. An operator T is semi-
Fredholm if cither #'(T) or A (T'*) is finite dimensional and #(T) is closed. If T is
semi-Fredholm, let i(T) = dim#(T)—dim# (T'*) denote the index of T. If Tis an
operator and H is a hole or pseudohole in ¢,(T), then, for A in H, T — 1 is semi-
Fredholm and (T — A) is constant on H. (See, for example, [18] for a discussion
of the above.)

It is known that an operator 7 is quasitriangular if and only if for each com-
plex number A such that T — 1 is semi-Fredholm, (T — A) > 0 [2],[13],[14]. It
follows that an operator T is biquasitriangular if and only if for each complex
number A such that 7 — 2 is semi-Fredholm, i(7 — A) = 0. Hence the adjoint of a
dominant operator is quasitriangular. Thus a dominant operator is quasitriangular
it and only if it is biquasitriangular.

A normal operator T is biquasitriangular and satisfies o(T) = 0,,(T). The
following theorem shows that this latter condition characterizes those hyponormal
(and more generally dominant) operators that are biquasitriangular.

THEOREM 3.1. Suppose that T is a dewinant operator. Then T is biquasi-
triangular if and only if o(T) = o, (T).

Proof. Suppose that T is biquasitriangular. Let L € C\o,(T). Then T — 4
is injective and R(T — A) is closed, i.e., T — 1 is semi-Fredholm. Since T is biquasi-
triangular, we have i(T'— 1) = 0. Thus T — 1 is invertible, and hence 1 € C\a(T’).
Therefore, o(T) = 0,,(T).

Now suppose that o(T) = g,,(T'). There exist Hilbert spaces #, and #,
satisfying dimaf’; << Ny, dima#’, = 0 or dims#, == &, and dima’; @ H#, = N, such
that T = T, ® T, on #; @® ., where T, is a normal operator in Z(#,) and T,
is a pure dominant operator in #(#;). Suppose that T — 1 is semi-Fredholm.
Then A belongs to a hole or pseudohole H in o (7). Obscrve that if dims#; = N,
then A ¢ o (T and, since T, is normal, o(T,)\o (T}) consists of at most isolated
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points. If 1 <dims#, <Ny, then, of course, a(7}) consists of isolated points. It follows
that there exists A, in H such that T; — /A, is injective. Note that T, — 4, is injective.
Hence T -- 4, is injective and (T — 4,) is closed. Thus, A, € C\a,(T) = C\o(T).
So T — 2, is invertible and i(T -- ;) = 0. It follows that i(7 — A) == 0; thus T
is biquasitriangular.

COROLLARY 3.1. Suppose that T is a pure dominant operator. Then T is bi-
quasitriangular if and only if 6(T) = 6,,(T) = ¢ (T) = 01(T).

Proof. Since the point spectrum of T is empty, we have o,,(T) = o1(T).
The proof is now immediate since o (T) S 6.(T) < o(T).

There are several examples of nonnormal biquasitriangular hyponormal
operators in the literature (see, for example, [23] and [26]). The following theorem
shows that such operators are easy to construct. (We shall use the convention that
if # is the zero Hilbert space and T € £ (#), then o(T) = &.)

THEOREM 3.2. Suppose that #, and # 5 are Hilbert spaces satisfying dima#’; <No,
dimsf, < Ny, and dimsf, @ Ho==y. If Ty is a normal operator in L (H#,),
Ty e L(H#s), and a(Ty) € o(Ty), then T, @ T, is biquasitriangular.

Proof. We may assume that both 5#; and #, are nonzero Hilbert spaces.
Suppose that (7, @ T,) — A is semi-Fredholm. Then A belongs to a hole or pseudo-
hole H in o (T}, ® T3). Since T} is normal and H is an open subset of the complex
plane, there exists a point A, in H such that T, — /, is invertible. (We have used
the fact that if dims#; = Ny, then 2 ¢ ¢.(T}) and, since T, is normal, ¢(7T,)\o.(T})
consists of isolated points.) Since o(Ty) < o(Ty), To — A, is invertible. Hence
(T, ® T,) — 4, is invertible and i((T; @ T=) — 4) = 0;thusi(T, @ To) — 2) = 0
It follows that T, @ T is biquasitriangular.

It follows from the above theorem that if ¥ is a pure hyponormal operator
and N is a normal operator satisfying a(¥V) = o(N), then N @ V is a nonnormal
hyponormal operator that is biquasitriangular. The following is an example of a
pure quasinormal operator that is biquasitriangular.

oo

ExampLE 3.1. We use the notation of Example 2.1. Let {¢,}2°.; be an ortho-
normal basis for a Hilbert space 5 and let {c,}22.; be a dense sequence in the interval
(0, 1). Define P in Z(s#) by Pe, == c,e,, n = 1,2, ... . The operator P is positive
definite. Let T'= V;;};. The operator T on Qr,\” is a pure quasinormal. Let A = {1 e C:
1Al < 1}. Corollary 2 of [27] implies o(T) == ¢,(T) = A. Since T is unitarily equi-

(=)

valent to Y ®@¢,S, where S denotes the unilateral shift of multiplicity one,
n-:1

U {2eCilii = c,} = a(T). Hence ASo(T). It follows that o(T) = o,(T) =

n.:l

=: 0(T) = 6 (T) = A. Thus Corollary 3.1 implies that T" is biquasitriangular.
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Suppose that T, and T, satisfy the hypotheses of Theorem A (which appears
at the beginning of Section 2). Then T} commutes with the compact quasiaffinity
YX. Theorem 5.1 of [16] implies that if 7} — A is semi-Fredholm, then i(Ty — A) =0
or i(Ty — A) = —oco. In view of the above observations and the already mentioned
spectral characterization of the biquasitriangular operators, the following question
comes to mind: If T, and T, satisfy the hypotheses of Theorem A, then are 7}
and T, necessarily biquasitriangular? The answer is negative. Indeed, neither of

- the two operators Ty and T, constructed in Example 2.2 is biquasitriangular (be-
cause o(T}) # 0,,(T), i = 1,2). It was proved in [26] that if T} and T, are quasi-
similar biquasitriangular hyponormal operators, then o.(7}) = ¢,(T5). This sug-
gests the following question: If T, and T, are quasisimilar hyponormal operators
and T, is biquasitriangular, then must 7% be biquasitriangular also? The following
example shows that the answer is negative.

ExAMPLE 3.2. Again we use the notation of Example 2.1. Let {c,}52, and
{d,}.; be (one-to-one) sequences of all the rational numbers in the sets (0,1) and

1 2 . 1 2 1
0,--}u >, 1], respectively. Let«:(0,1) »{0,— U | —, 1 }Jand 8:{0,— } U
(3)[%)" ¢ ()(3)[3)ﬁ(3)

U [i:?;— , 1 ) — {0,1) be the one-to-one and onto functions defined as follows:

4 if xe(o,i)

9 4
a(x) =

—L-l—x—AL if xe[}-,l)

3 3 4

and

—3—x if xe(O,—l—

4 3
Bx) =

gx—i if xe[i,l .
4 4 3

Observe that a(x) < x foreach xin (0, 1) and f(x) < x for each x in (0, ;—) U ['—i, 1 ) .

For each positive integer n there exist positive integers j, and k, such that d;, = a(c,)
and ¢;, = f(d,). The maps n — j, and n — k, of the set of positive integers into itself
is one-to-one and onto and for each positive integer n, d;, < ¢, and ¢, < d,. Let
{e,}2.1 be a orthonormal basis for a Hilbert space 5. Define P; Aand P;in L(H)

by Pie,=ce, and P, =de,, n=1,2,... . Let T;=VpP,, i=1,2. The
operators T), and T, in £ () are pure quasinormals. Define X; and Y; in L(#)
SN 1 \d
by X, = —1—(f’L ¢; and Y,-e,,z——( Chn )e,m, n=1,2...,i=12....
2\ ¢, 2\ d, .
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The operators X; and Y; are quasiaffinities, X;,,P, = P,X;, and Y, Ps = P,Y,,
i=1,2,.... Let X= Y @X and Y = Y, @Y. The operators X and
i=1 i=1
A
Y are quasiaffinities in #(#) and an ecasy calculation shows that XT) = ToX
and T,Y = YT,. So T, and T, are quasisimilar. As in Example 3.1, T}
is biquasitriangular. On the other hand, since T is unitarily equivalent to ¥, @ d,S,

n=1

T, — 2 1is semi-Fredholm and i(T — 1) = —oo for each complex number 2 satisfying

! < Al < -2~. Hence T, is not biquasitriangular. (Note that the operators X and ¥

are also compact.)

Suppose that T is a pure hyponormal operator. Let m, denote planar Lebesgue
measure. Putnam proved in [19] that if H is an open subset of the complex plane
and Hno(T) # 9, then my(Hno(T)) > 0. In particular, my(o(T)) > 0. There
are many examples of a pure hyponormal operator T such that my(o.(T)) = 0.
The unilateral shift of multiplicity one is an example. However, as the following
theorem shows, the situation is different if T'is biquasitriangular.

THEOREM 3.3. Suppose that 3, is a Hilbert space satisfying dima#; < Ny, #'2
is an infinite dimensional Hilbert space, T, is a normal operator in L(#y), T,
is a pure hyponormal operator in L(# ), and Ty @ T, is biguasitriangular. If H is
an open subset of the complex plane such that Hno (T,) # O, then
my(H N o (T, ® Ty)) > 0.

Proof. If my(Hno(T,)) >0, then we are done. So let us suppose that
mo(H N 0 (T,)) = 0. Putnam proved that m,(H n o(T,)) > 0 [19]. Thus there exists
a point Aq in H n o(T,) such that Ay ¢ H n o (T,). There exists a hole K in o (7T%)
such that A, € K. Since the point spectrum of T}, is empty and since A;€ 6(T2)\o (T%),
we have T, — A, is semi-Fredholm and i(T, — 4;) < 0. Hence i(T, — 2) < 0 for
each A in K. Note that 5, is infinite dimensional and 1, € ¢ .(T3). (If the above state-
ment is not true, then (7, @ T,) — 4, is semi-Fredholm and i((T; @ Ty) — 4g) ==
= i(T, — 4p) < 0; thus T, ® T, is not biquasitriangular.) Likewise K < ¢ (Ty).
Hence HNK =« Hno (Ty) < HNn o (T, ® T). Therefore, mo(H N o (Ty @ T2))>0.

We remark that Theorem 3.3 is not true if we assume only that H n ¢ .(T}, @
@ T,) # . For example, let T; be a normal operator satisfying o(T) = o (7)) =
={leC: A <1}u{leC:1 €£2<2}, and let T, be the unilateral shift (of
multiplicity one). Theorem 3.2 implies that T, @ T, is Dbiquasitriangular.
Let H= {AeC: |A — 2| < 1}. Then Hno (T, & T, # @. However,
my(Hno (T, ® Ty)) =0.
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Suppose that T'is a hyponormal operator on a Hilbert space 2. Putnam proved
in [19] that #n||T*T — TT*|| < my(o(T)). Thus if my(e(T)) = 0, then T is normal.

Since the Calkin algebra £(#)/¥ is a x-algebra isometrically isomorphic to a C*-
subalgebra of 3(7[ ) for some Hilbert space ", it follows from Putnam’s result

that nHT*T TT*,! mz(a(T)) = (o (T)) (Where 7 denotes the image of T
in the Calkin algebra under the natural quotient map). Hence if my(c.(T)) = 0,
then the self-commutator T*T — TT* is compact, i.e., T is essentially normal.
The converse of the above statement is not true. Indeed there exist normal operators
whose essential spectra have positive measure. Also Clancey and Morrell constructed
in [7] an example of a pure hyponormal operator whose self~commutator has rank
one and whose essential spectrum is the closed unit disk. Moreover, there exists a
pure subnormal operator T such that T*T — T'T* is compact and m.(c(T)) # 0.
For example, take T to be a certain Bergman operatoror let T = i @A, where A4, is

=1

defined in {22]. (The author is grateful to R. G. Douglas for pointing out the former
example and to J. G. Stampfli for pointing out the latter.) However, if T is a pure
quasinormal operator, then T*T — TT* is compact if and only if mu(6,(T)) =0
(cf. [27]). The above discussion suggests the following question.

QuEsTION 3.1. Suppose that 7 is a pure subnormal operator and F*T — TT*
has finite rank. Then is my(c.(T)) = 0?

Observe that if T is a pure subnormal operator and T*T — TT* is a rank one
operator, then T = oS -+ B [17]), where « and 3 are complex numbers and S is
the unilateral shift of multiplicity one; thus my(¢.(T)) = 0. Hence Question 3.1 is
settled for the case that 7" has a rank one self-commutator. The following question
was asked by J. Conway in [10].

QUESTION 3.2. Suppose that T is a pure subnormal operator such that T*7T —
— TT* has finite rank and suppose that  is the minimal normal extension of 7.
Then is my(e(N)) = 0?

The following theorem shows that Questioris 3.1 and 3.2 are related.

THEOREM 3.4. Suppose that T is a subnormal operator on a Hilbert space H#
such that T*T — TT* is compact and suppose that N is the minimal nor mal extension
of T. Then oT) < o(N).

Proof. The operator N is unitarily equivalent to the matrix operator

.

on @ A . A matrix calculation shows that RR* = T*T — TT*. Thus Ris compact.
It follows that o (V) = 6.(T) U 6.(S). In particular, 6 (T) < o(N).
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If the answer to Question 3.2 is affirmative and T is a pure subnormal operator
such that T#T — TT¥* has finite rank, then Theorem 3.4 implies that m,(c(T)) = 0.
Thus Questions 3.1 and 3.2 are related.

Acknowledgement. The author wishes to express thanks to Professor S. K.
Berberian for some helpful discussions and for suggesting many useful references.
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