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THE DUAL OF A SUBNORMAL OPERATOR

JOHN B. CONWAY

Let S be a pure subnormal operator on a Hilbert space # (that is, S is
a subnormal operator with no normal direct summand). If N is the minimal normal
extension of S on the Hilbert space 2" containing 5, then the dual of S is the
restriction of N* to # © #. This paper studies some of the properties of this
dual, as well as those subnormal operators that are unitarily equivalent to their dual.

The reader can consult [3] as well as the material and bibliography of [6]
for the properties of subnormal operators.

The theory of subnormal operators is receiving increased attention, especially
since it has been proved that they have nontrivial invariant subspaces [5] and, indeed,
are reflexive [12]. One of the difficulties with the study of subnormality is the lack
of symmetry. The usual symmetry for operator theory (involving the adjoint of
the operator) is completely absent. In fact, if both § and S* are subnormal, then S
is a normal operator. It is hoped that the concept of the dual of a subnormal operator
will help to fill this void of symmetry.

If G is an open subset of the plane and f: G — C, then the analogue, for f,
of the adjoint of an operator is given by complex conjugation. That is, the adjoint
of the function f is the function f: G — C defined by f@) = f(z—) If fis analytic,
then f is analytic iff f is constant on each component of G. Thus, for spaces of
analytic functions complex conjugation is an inappropriate form of symmetry.
The appropriate form of symmetry for analytic functions is to deﬁne ff2y= 1 (z)
on the open set G* = {z: 7 € G}.

The dual of a subnormal operator is analogous to the function f* associated
with an analytic function f. Indeed, there are results that relate the dual of a sub-
normal operator and the functions f*. (See below.)

In Section 1 some of the elementary properties of the dual are established.
Specifically, if T is the dual of the pure subnormal operator S, then S is the dual
of T, o(T) = {l‘ﬁea(S)} S is irreducible iff T is irreducible, and if fis an
“appropriate’ function such that f(S) is defined and a pure subnormal, then the
dualof f(S) is f*(T"), where f*(z) = f(z)
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Section 2 studies self-dual subnormal operators; that is, subnormal operators
that are unitarily equivalent to their duals. In particular, it is shown that if §
is a self-dual, finitely multicyclic, subnormal operator, then S can by written as
the direct sum of a trivially self-dual operator and a countable number of irreducible
self-dual operators. Thus, in the finitely multicyclic case the study of self-dual
subnormal operators is equivalent to the study of those that are irreducible.

Section 3 presents some examples of self-dual subnormal operators. In
particular, the self-dual, subnormal, weighted shifts (unilateral or bilateral) are
characterized.

In the last section, some open questions are posed.

1. SOME BASIC PROPERTIES OF THE DUAL

If S is a subnormal operator on a Hilbert space 4, let N be its minimal
normal extension on a Hilbert space ¢ containing 5#. Relative to the decompo-
sition o = # @ H#L, N can be written as a two-by-two matrix with operator
entries,

S X
(L.1) N= [0 T*]-

If the decomposition S = #1 @ ## is considered, then

T X
1.2 £ = .
(1.2) N [ 0 S]

From here it is clear that T is subnormal and N* is a normal extension of 7.
Olin ([11], Lemma 5.3) has observed that S is pure iff N* is the minimal normal
extension of 7. It is for this reason that only pure subnormal operators will be
considered in this paper.

If S is pure and N, the minimal normal extension of S, has the represen-
tation (1.1), then the operator T in (1.1) is called the dual of S. Note that since
the minimal normal extension of S is unique up to unitary equivalence, the dual
of S is unique up to unitary equivalence.

An examination of the matrix representation (1.2) yields the following as
an immediate consequence.

'1.3. PROPOSITION. If S is a pure subnormal operator and T is the dual of S,
then S is the dual of T.

1.4. PrROPOSITION. If' S is a pure subnormal operator and T is the dual of S,
then

a(S) = {A: e o(T)}.
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Proof. If A ¢o(S), then A ¢ o(N). Moreover, (N — 1) leaves s# invariant
and (S — )= (N— ) #. If N has the representation (l.1) and, relative
to the same decomposition of 4,

.y _[4 B

an easy matrix calculation implies that 7* — 2 is invertible and C = (T* — )™
Hence 4 ¢ o(T*), and so 4 ¢ o(T). This shows that ¢(S) 2 {I: A€ o(T)}. The other
inclusion follows by using Proposition 1.3 and the preceding argument.

If u is a scalar-valued spectral measure for N, then there is a measure py <
and a bounded open set G such that yy L (1 — p,) and P (u), the weak star closure
of the polynomials in L%(x), is given by the formula P®(u) = L®(u — o) ®
@® H™(G, up), where H*(G, u,) is the image of H®(G) in L®(yy) under a natural
isometric embedding [13]. (H®(G) is the algebra of bounded analytic functions
on G.) The set G~ is sometimes called the Sarason hull of u and has several addi-

tional properties, as does the measure z,. (See [13].)
For any Borel subset 4 of the plane, let u*(4) = u(4%). (A* = {A:1e4})

Then u* is a regular Borel measure. If y is a scalar-valued spectral measure for
the normal operator N, u* is the scalar-valued spectral measure for N*. It follows
that P®(u*) = LP(u* — u¥) @ H®(G*, uf). Also, if ¢*(z) = ¢(2), then ¢ — @*
defines a real-linear isometry of P®(x) onto P®(u*) that is a weak-* homeomorphism.

If, as in the situation under consideration in this paper, N is the minimal
normal extension of a pure subnormal operator S, then p = yg. So P®(u) =
= H*(G, 1) and P=(u*) = H*(G*, u*). Also, if ¢ € H®(G) and ¢ is not constant
on any component of G, then ¢(S) is a pure subnormal operator and @(N) is the
minimal normal extension of ¢(S) ([16], Theorem 6.1 and Corollary 6.4). Similarly,
if Tisthe dual of S, ¢*(T")is a pure subnormal operator and @*(N¥) is its minimal
normal extension.

1.5. PROPOSITION. With the notation of the preceding paragraphs, if T is
the dual of the pure subnormal operator S and @ € H®(G), then ¢*(T) is the
dual of (S).

Proof. Note that if p is any polynomial, then p(T*) = p*(T)*. Using the
matrix representation (1.1), for any polynomial p

p(N‘):[”(S’ o ]:

[p(S) X, ]’
0 p(T%

L0 p¥D)*

where X, is some operator from #’L into . Let {p;} be a net of polynomials that
converges to ¢ in the weak-+ topology of L=(u). It follows by elementary arguments
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that p,(N) = @(N) and p(S) - ¢(S) weakly. But p - @* weak x in L®(u*), so
PE(TY* - @*(T)* weakly. It follows that

e($) X, ]

P = [ 0 o¥T)

for some X,: H#L - H. B

Let S be the unilateral shift of multiplicity one, represented as multiplication
by z on H?2 The minimal normal extension N of S is the operator defined by
multiplication by z on L*A) = L2, where A is normalized Lebesgue measure on
the unit circle dD. The dual of S, T, is the operator defined on K = L? © H? by
If = Zf. For fin L? define ¥ in L2 by

[*@) = f(2).

Note that f — f#is a unitary map on L2 Define W: L2 —» L2by Wf=Zf* W is
a unitary transformation and W? = 1. Hence W is a symmetry (a hermitian unitary
operator). Moreover WNWf = WN(zf*) = W(f*) = z(f*)* =z f = N*¥f. Also,
for n> 0, Wz" = z"™D; hence WH? = K2 Tt follows that if U= W/| H?, then
U:H? —» K% is an isomorphism and USU™* = T. So S is unitarily equivalent to
its dual. If ¢ € H*( = H*(D)), it follows that U@(S) U™ = (7). Combining
this fact with the preceding proposition yields the following.

1.6. CorOLLARY. If ¢ € H® and T, is the corresponding analytic Toeplitz
operator, then the dual of T, is unitarily equivalent to T.

For any operator 4, let % *(4) denote the von Neumann algebra generated
by A and let#™*(4)" be its commutant. The next result appears as Theorem § in [3].

v 1.6. PROPOSITION. Let S be a subnormal operator on A with minimal
normal extension N on A, and let P be the projection of A onto . If of =
=W*N) n {P} and p: & —W*(S) is defined by p(A) == A\, then p is a
x-isomorphism.

Maintaining the notation introduced in the preceding proposition, if T is
the dual of S, then #*(T) is isomorphic to # *(N*)' n {l — P}’ = . This proves
the following result.

1.7. PROPOSITION. If S is a pure subnormal operator with dual T, then
WH(SY and WH(T) are w-isomorphic von Neumann algebras.

1.8. CorOLLARY. If S is a pure subnormal operator with dual T, then S is
irreducible iff T is irreducible.

Proof. The reducing subspaces for any operator 4 are precisely the ranges
of projections in W*(4)'. To say that 4 is irreducible is to say that W*(4) = C.
By the preceding proposition, W*(S) = C iff W*(T)' = C.
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Let A be planar Lebesgue measure restricted to the open unit disk, let
N= multiplication by z on L3*(4), and let S be the restriction of N to LZ(D), the
space of analytic functions in Z2(1). The operator S is also called the Bergman shift
because of its action on the normalization of the basis {1, z, z2,...} for LZ(D). It
is not difficult to show that S$*S — SS* is a trace class operator, though this is
a consequence of a more general theorem [2].

Now, if the matrix representation (1.1) for N is substituted in the equation
N*N — NN* =0, it is seen that XX* == §*§ — S§* Thus, for the Bergman shift
S, X is compact. If ¢, denotes the essential spectrum, then D™ = ¢ (N) = ¢,(S) U
U 0,(T%). But 6,(S) = 0D, so ¢ (T) == D". Also S is irreducible, so, by Corollary
1.8, T is irreducible. Therefore the dual of the Bergman shift is an irreducible
subnormal operator with essential spectrum equal to that of its minimal

normal extension.
It is worth remarking that the dual of muitiplication by z on LX(G), for any

bounded open subset G of C, can be represented as multiplication by Z on the
Sobolev space W§*(G).

We end this section by remarking that the dual of a cyclic subnormal o perator
is seldom cyclic. For example, if S is a subnormal unilateral weighted shift, then
there is a strongly continuous unitary representation o — U, of the circle group
such that U,SU% = w8 for all w. (If {e,, e,,. .} is the shifted orthonormal basis,
let U,e, = w"e,.) Gellar [7] has shown that this property characterizes the subnormal
unilateral weighted shifts among all cyclic subnormal operators.

If N is the minimal normal extension of S, then it is easy to see that there
is a unitary representation o—W,, of the circle group on 4 such that W NW*=wN
and W, lo#=U, If V,=W, A ©H, then V,TV¥ = wT. By Gellar’s
Theorem, if T is cyclic, T must be a unilateral weighted shift. If |.S| = 1, then
IT] =1 and, because T is a weighted shift, ¢ (T) == 0. Since X in (1.1) is com-
pact when S is a weighted shift, ¢, (V)= 0¢,(S) U 0 (T*) = JD. Hence o(N)
differs from 9D by at most a countable number of points in I that accumulate
on the unit circle. By the circular symmetry of &, the only possible point in ¢(N)\ e (V)
is the origin. Hence o(N) == 0D or ¢(N) = 0D U {0}. By various representation
theorems for subnormal weighted shifts (see {14], for example), this means that §
is the shift with weight sequence {1, 1,...} or {a, 1,1,...} for some o, 0 < & < 1.
Since these weighted shifts have cyclic duals, we have shown that these are the
only weighted unilateral shifts with cyclic duals.

2. SELF-DUAL SUBNORMAL OPERATORS

A subnormal operator is said to be self-dual if it is unitarily equivalent to
its dual. As we saw in the preceding section, the unilateral shift of muitiplicity
one is self-dual. If S, S,,. .. are self-dual, then it is easy to sec that $; @ S, @ ...
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is self-dual. Hence, any pure isometry is self-dual. A quasinormal operator [9] is
subnormal, and it follows from the structure theory of such operators [4] that every
pure quasinormal operator is self-dual. Other examples of self-dual subnormal
operators will be given later.

The first result is immediate from Proposition [.4.

2.1. ProrosITION.  If' S is a self-dual subnormal operator, o(S8) is symmetric
with respect to the real axis.

Let § be a pure subnorma! operator with minimal normal extension N
given by (1.1). If U:s# > A © # is an isomorphism such that USU™' =T,
then, because N* is the minimal normal extension of T, there is a unitary operator
W: — o such that WNW™ = N* and W|# == U([3] or [9], Solution 155).
Because W and U are isometries, W(# O #) = . Define V = W|H © #;
so ViA © H# — A is an isomorphism.

Relative to the decomposition A" = # @ #1L,

2.2) W:[(()J I;]

Substituting this matrix and the matrix (1.1) into the equation WNW ™1 = N*,
we obtain the equations

VIVt =8,

UXy1 = X*

2.3. Lemma. If N is normal and W is a unitary operator such that
WNW™L = N*, then there is a unitary operator W, in #*(W?%) and a symmetry W,
such that W =W, W, = W, W, and W,NW, = N*.

Proof. Because WNW ™ = N* WN*Wt=N. Hence N =WN*W1=
=WWNWH W =WNWH™. So W2e (N} =#*(NY (Fuglede’s Theorem).
Let W, be a unitary in ¥ *(W?) such that Wi = W2 So W, is a function of W?
and must be in {N}. Since W2eW™*W), W, eW*(W). Hence W W = WW,.

Let W, = WW?¥. Then W, is unitary and W3 = W2W#® = 1. Hence W, is a
symmetry.

Clearly W\ W, = W, = W. Finally, N* = WNW ' = W,W NW"W;?! ==
= W,NW3?! since W e {N}'. t4

2.4. PROPOSITION. If S is a pure subnormal operator on 3 with minimal
normal extension N on A", the following statements are logically equivalent:

(a) S is self-dual.

(b) There is a unitary operator W on X such that WNW™ = N* and
W =+
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&

(¢) There is a symmetry W on A such that WNW = N* and WH = #L.

Proof. That (a) and (b) are equivalent was shown prior to the statement
of Lemma 2.3, Clearly (c) implies (b), so it remains to prove that (b) implies (c).

Let W be as in the statement of (b) and let W, and W, be as in Lemma 2.3.
If U=W|s# and V = W|#1L, then using (2.2) we sec that

e [ VU 0
0o uy

Thus # reduces W2. Since W, is a function of W3 # also reduces W,. Hence
W H = and W Hr = AL Therefore W == WWH = WH = #L. So W,
is the symmetry required to establish part (). #

Using the preceding proposition, the next result can be proved in the same
manner as Corollary 1.6, Indeed, it generalizes that corollary.

2.5. PROPOSITION. If' S is a self-dual subnormal operctor with minimal
normal extension N, wp is a scalar-valued spectral measure for N, and P®(u) =
= H®(G, 1), then for any ¢ in H™(G), the dual of ©(S) is unitarily equivalent
fo @*(S).

Note that because N and N* are unitarily equivalent, G = G*, So ¢* € H*(G)
whenever ¢ € H*(G).

2.6. CorOLLARY. If S is a self-dual subnormal operator and ¢ € H%(G) such

that ¢(z) = @(z), then @(S) is a self-dual subnormal operator.

If S is any pure subnormal operator with dual T, then § @ T is a self-dual
subnormal operator. Indeed, the dual of S @ T is T @ S and its minimal normal
extension is N @ N¥. Any self-dual subnormal operator that is unitarily equivalent
to a subnormal operator of the form S @ T, where T is the dual of S, will be
called a trivially self-dual subnormal operator. The existence of trivially self-dual
operators would seem to be a hindrance to the study of duality, since every
subnormal operator appears as part of a trivially self-dual operator. However, in
the case of a large class of subnormal operators trivially self-dual operators present
no difficulty at all.

An operator A is essentially normal ff A¥4 — AA4* is compact. That is,
A is essentially normal if its image in the Calkin algebra under the natural map is
normal, According to [2], any finitely multicyclic hyponormal is essentially normal.
In fact for such a hyponormal operator A, A*4 — AA* is in the trace class.

The next result can be found in [1], and a generalization can be found in [8].

2.7. PROPOSITION. If" A is an essentially normal operator on # and Zy, Z,,. . .
are the minimal central projections in W*(A), then:

@Z, L Z fori#jand Zy + 2, + ... =L

(b) A| ZyH# is normal.
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©) If nz= 1, WHA| Z2,5) is a type 1 factor and A Z,H is unitarily equi-
valent to the direct sum of an irreducible essentially normal operator with itself
a finite number of times.

For any integer k and any Hilbert space .97, let #% be the direct sum of
£ with itself & times. If Be #(¥), B*® is the operator defined on Z%' by
BE(fy, o f) = (Bfy,....,Bf). T = B(F), o% .= {B*): Be of}.

If 4 and Z, are as in the preceding proposition, put 4, = A! Z,#. Part (c)
states that for each n> 1, there is a Hilbert space &, an irreducible operator B,
on %,, and an integer k, such that A, is unitarily equivalent to B on Q’f,k").
Thus, #*(A4,) is spatially isomorphic to Z(% ),

The next result is an immediate consequence of the preceding proposition.

2.8. COROLLARY. If S is an essentially normal operator, then S = S, @ S; ®
@ S, @ ..., where Sy is normal and S,, Ss,. .. are irreducible.

As stated, some of the operators S,(n = 1) in Corollary 2.8 could be operators
on one-dimensional spaces, and hence normal. If it is assumed that no S, (n> 1)
acts on a one-dimensional space (all such summands can be grouped together with
Sy), then the decomposition is unique up to unitary equivalence and the ordering
of the summands. This can be proved by first proving a unigueness statement for
Proposition 2.7 and using some standard results in the theory of von Neumanun
algebras [15]. This uniqueness will be used in the next result.

2.9. THEOREM. If S is a self-dual, essentially normal, subnormal operator,
then S= S, @ S, @® S;® ..., where Sy is a trivially self-dual subnormal operator
and Sy, S,,. .. are irreducible, self-dual, subnormal operators.

Proof. Let N = the minimal normal extension of S and suppose it has the
representation (1.1).

Because S is self-dual, it must be pure. By the preceding corollary,
H =H @ Hy P ..., where each 5, is an infinite dimensional reducing subspace
for § and S, = S|, is irreducible. Note that each s, is a minimal reducing
subspace for S.

Let A, be the smallest reducing subspace for N that contains 2#,; so

J— 7 4
n 4 n n-

span of {(N**f: fet,, k=>0}. If n # m, f, € H,, and f,, €A, then for k and j > 0
<N*Icf”3 A/\/*j_f‘"l> = <Nj‘f"7 Nk./{‘lﬂ> =

= <Sj.fns S]\fm> = 07

since A, 1 A ,. Thus 2, 1L x4, for n = m. It follows froim the fact that N is the

me

minimal normal extension of S that A =4, @ ¥y @ ...
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Because ", = A'Lforn#m, #, | A, form+#n. Hence M, = A ,OH,< A+,

It is easy to see that .#, reduces T and T|.#, is the dual of S,. Because S, is
irreducible, so is T|.#, (Corollary 1.8). Therefore .#, is a minimal reducing
subspace for 7. Moreover

W= DM D ... .

By Proposition 2.4, there is a symmetry W on % such that WNW = N*
and W == L. Let &, = War,. It follows that #,, . %,,... are pairwise ortho-
gonal, minimal, reducing subspaces for T, and ¥, @ ¥, ® ... =H#L Also
W, =, since W is a symmetry.

Therefore,

T={T.2)®(T).7)® ...

and
T=T|Z)@ (T L) D -..
are two decompositions of 7 into the direct sum of irreducible operators. Because

of the uniqueness part of Corollary 2.8 (see the discussion following that corollary),
there is a permutation 7: N — N such that for each n in N,

(2.10) dual(S,) = T} #, = T|.& .

On the other hand, Wi#, == .Z,, and so the isomorphism between #, and %,
defined by restricting W to #°,, shows that S, = T} .%,. Combining this with (2.10)
gives

(2.1D) S, = TN #, &= T .4 -y = dual(S;—1m).
But i1y =T} £ -1y, and unitarily equivalent operators have unitarily equivalent
duals. Thus
S" = dual(T] g.[el(”)) = dllﬂl(TJ -,//1—2(”)) = Sr—z(,,).
That is,
(2.12) S, = & 20 = Sr—z(,,), n=1.
Decompose N into the orbits of 7. That is, decompose N into pairwise disjoint

sets {N,: k> 1} such that for each k, N, = {t/(n): j € Z) for some (any) n in N,.
Define

Ry = @ {H,neNJ .

Note that the spaces #, reduce S, are pairwise orthogonal, and 3 = %, ® Z,® ... .
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Now no set N, is infinite. Indeed, if N, were infinite, then for any nin
Ny 1, 13(n), (i), . . . are all distinct integers. By (2.12), S, & Sem & Sum= ... .
Thus

(S| )3(S| R — (S (SIB)* = (S*S — S5%) Ay

cannot be compact, a contradiction. Hence N, is finite for each k.
Suppose that N, has an even number of elements; say Ny=={n,t(n),.. ., %7 ()},
p=0, Ti(n) # t/(n) for 0 < i <j < 2p + 1. Define operators by

A = Sn ('B St:(”) @ s @ Sr-’!'(n)a
B = Sr(n) ® Sr"‘(n) ®... 8 Sr2p+1(’1)-

But (2.11) implies that the dual of Som 18 unitarily equivalent to S,sy Hence
dual (4)= B. Since S| Z, =APB, S| #,is atrivially self-dual subnormal operator.

If N, has an odd number of elements, let N, = {n, t(n),..., t**(n)}, p > 0,
©i(n) # v/(n) for 0 < i < j < 2p. Relation (2.12) implies that S, = Sppy & ... =
& Seergy. But ©(Ny) = {t(n),. .., 127"(n)} = N,. Hence 12’ *}(n) = n. Thus Szpqn =

Sim = ... 2 Spe-ym. S0 S, = S, forall nand min N, and, hence,
(2.13) S =25,®S5,®... S, (2p + 1 times).

By (2.11), dual(S,) = T|.#, = S, = S,; so S, is self-dual.
Since the direct sum of any number of trivially self-dual subnormal operators
is a trivially self-dual operator, the theorem is proved. 7

This section concludes with a characterization of the symmetries W such
that WNW = N*, when N is a cyclic normal operator. If & is cyclic, then N is
unitarily equivalent to multiplication by z on L*(u) for some compactly supported
measure u on the plane. If u*(4) = u(4) for every Borel subset 4 of C, then u*
is a regular Borel measure and, because N = N*, u and p* are mutually absolutely
continuous. Thus g and u + p* are mutually absolutely continuous. Moreover,
(1t + p*) (4) = (1 + u*) (4) for any Borel set 4. Thus we may assume that N =
== multiplication by z on L2(x) and u(4) = u(4) for every Borel set 4.

2.14. PROPOSITION. Let N be multiplication by z on L(u) where u(4) = u(4)
Jor every Borel subset 4 of the plane. Define V: L¥u) -> LA(1) by (Vf) (2) =1*(2) =
= f(z). If Wi L) - L) is a symmetry such that WNW == N*, then there is
a function w in L®(w) such that |w| =1 a.e. [u], w(z) = w*(2) (= w_(E—)), and
W[ = V(wf). Conversely, if w has these properties and Wf = V(wf) for all [ in L2(u),
then W is a symmetry such that WNW == N¥,

Proof. It is easy to check that V is a symmetry and VNV = N*. Hence
(VW) NVW)* = VIWNW) V = VN*V = N. So VW € {N}'. Because N is cyclic,
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there is a function w in L®(u) such that VW = M, (multiplication by w). Because
VW is unitary, |w| =1 a.e. [u]. Thus, W == VM,,.

Now W is a symmetry, so W = (VM )* = MzV == VM. Hence, M, =
= VM5V. Applying this operator equation to the function 1 gives that w =
= (VM;V) (1) = VMz(1) = V(i#) = w*. The converse is an easy computation. Z

If, in the preceding proposition, it is not assumed that u(4) = u(4) for each
Borel set 4, then W can be characterized ; but the formula involves du/du*.

3. SOME EXAMPLES OF THE DUAL OF A SUBNORMAL OPERATOR

It was pointed out in the preceding section that every pure quasinormal ope-
rator is self-dual, and if S is self-dual and ¢ is an “‘appropriate’ analytic func-
tion such that ¢ = ¢*, then ¢(S) is self-dual. In this section a few more examples
are presented. The first of these is a weighted shift.

Let S be an irreducible subnormal, weighted shift on #. So there is an
orthonormal basis {ey, e;,...} for # such that Se, = a,¢,.,, for some positive
scalars oy, oty,... Suppose that 1 = [S|| (= sup {a,:n> 0}). Because § is sub-
normal, there is a unique probability measure v on [0, 1] such that for n> 1

3.1) (o oy - . oty q)? == Srz"dv(r).

(See [10], pp. 895—896.) Define a measure ; on C by

(3.2) g fdu — 3—1« SZ” Sl F(re)dv(r) d

2T 0

for every continuous function f on C with compact support. It is not difficult
to see that S is unitarily equivalent to multiplication by z on H3*(u), the completion
of the polynomials in L2(y). In fact, the appropriate unitary is the one that sends
the basic vector e, into

2722 = (Q pin dv(r))mf z",

Conversely, if v is a probability measure on [0, 1] and o, oy,. .. are defined
to be the positive numbers satistying (3.1), then Se, = a,e,., is an irreducible,
subnormal, weighted shift.

Using the above notation, let v = fd, - ad,, where o, >0, a + =1,
and &, and §; are the unit point masses at 0 and 1. The “rotated” measure g
is 8y + a4, where A is normalized arc length on the unit circle dD. Let e, = 1
and let ¥ be the characteristic function of 8D. Clearly |e,)=1. For ne Z\{0},
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1
lete,=~o 2 z"Z. It is easy to see that {e,:neZ} is an orthonormal sequence.

1
If ey = («f)" 2 (— aX, + fX), where %, is the characteristic function of {0}, then
{€o} U {e,: ne Z} is an orthonormal basis for L-().

An easy computation shows that Ne,=e¢, , for n> 1 and n € — 2;
1 1 1 1
Ne_y = B2 ¢, +a? e,; Ney=0?e;; Né, = B2 e;. Similarly, N*e, = e, , for n> 2
1 1 1 1
or n < — 1; N*e; = B2é,+u?ey; N¥ey=02e,; N¥, = fZe,.
If § = N| H2(y), then S is the subnormal weighted shift with weight sequence
1
{a®, 1, 1,...}. The dual of S is T = N*|H*(w?'. Since {€, e, e,,...} is
an orthonormal basis for H2%*(u)Y, it follows that 7 is a subnormal weighted
1
shift with weight sequence {82 ,1, 1,...}. Hence Sis a self-dual iff « = f = %
3.3. PrROPOSITION. Let S be a subnormal weighted shift with weight sequence
{og, oq,. ..}, IS = 1, and let v be the unique probability measure on [0, 1] satisfying

(3.1). The subnormal operator S is self-dual iff v =3, or v = %~ (8¢ + 8.

Proof. Let N be the minimal normal extension of S and let i1 be the rotated
measure defined by (3.2). Then N = multiplication by z on L2%(i) and 6(N) = the
support of u. Suppose N satisfies (1.1). Because S is cyclic, X is compact. So
o (N) = a (S) U 6 (T%). Now a (S) = D ([14], pp. 66—72). Soif § = T, 6, (N) =
= 0D. But o(N) differs from ¢ ,(N) by at most a countable number of points that
must accumulate on ¢, (V). It is clear from (3.2) that ¢(N) = support of p is the
union of circles and, possibly, the origin. Hence if S = T, o(N) = 0D or o(N) =
= 0D y {0}. Thus, either v = §, or v = B, + a5, where o, f > Oand o + f = 1.
If the latter is the case, then the argument preceding this proposition implies that

a:ﬁ:_;_.

The converse was established before the statement of the proposition.

Now suppose that S is an irreducible, bilateral, subnormal, weighted shift
with weight sequence {o,:#n € Z}, and assume that || S| = 1. Once more, there is

a unique probability measure v on [0, 1] such that g mdv(r) < oo forallnm < — 1,

o

(3.1) is satisfied for n> 1, and for n> 1
(3.4 (10t ... 0 )%= S Frdv(r).

Notice that these conditions imply that
(3.5) v({0}) = 0.



THE DUAL OF A SUBNORMAL OPLERATOR 207

Once again define ;¢ by (3.2) and let R*(u) be the closed linear span of {z":ne Z}
in L2(u). If e, is mapped into ||z"|7%z", then this extends to a unitary of # onto
R*u) that shows that S is unitarily equivalent to multiplication by z on R2().

Let 0 <r <1 and put v=o0d, + fJ,, where o, >0 and a 4 p = 1.
So u = al, + B2,, where A, is normalized arclength on the circle |z] = r. For n
in Z, let .4, be the closed linear span of {z"|z}k: k e Z}. Tt is easy to see that .7/,
is two-dimensional and

/e {(IZ" + bz"z|*: ,bECJ.
Moreover, A, 1 .#, for n % m. Put

1
e, = (Pr¥" + )2 2z,
If
1

f,. - ,.~n(] . r21)~-1(a/3)"‘§' (/)’1'2” + a*)‘é [anziz —_ (ﬁ].zn»rz -+ oc) (ﬁ’.Zn + o:)‘lz"],

then Jle,j = [ full =1, f, L e, and M,, is the linear span of e, and f,.
It is easy to sece that

1
(3.6) Ne, = [(Br#*2 + o)/ (Bre + a)]? e,y
If o = R%(p), then {e,:ne Z} is an orthonormal basis for # and S = N|# is
the bilateral shift under consideration.

It is not difficult to see that N.#/, = .#,. (in fact, N, = M.
Hence N*.4, < ., _,. Since N*#+ < s+, it must be that for every integer n
there is a scalar y, such that N*f, = v,f, 1. Since N*f,=Zf,, v, = {Z fo fu-1)-
A calculation reveals that

(3.7 N* [y = rl(Br2=2 Ho)[(Bre" + Ot)] e

Put i, = f_,. Thus N*h, = N*f_, = v_,.f .1 = V_hn.1- So N¥|#L is a bilateral
shift. S is self-dual iff there is an integer k such that

1 1
B B

(3 8) I: Br2n~l-2k+2 + o :I —y . [ /3,.~2n—2 —}:i:l
o Breatek Lo —n Bran 4o

for all n ([14], p. 53). Elementary algebraic manipulation demonstrates that (3.8)
holds iff f22% = «2. However 1 = o - 8 = Br*¥ -+ B = p(r¥ - 1). Hence

B =@k 1YY, o= rk@k & D™
So for each integer k there is a normal operator N, and a bilateral shift
S, = N,| #. Substituting the above values of « and f in equation (3.6) gives

1

See, = [(1 + rzn—k+2)/(1 + ,.2n—k)]? €y
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1
S:}ken = [(I "}' ’.2(11"k)+2)/(| 'JF ’,2(n~k))]2 €n+h

1
S‘_)‘k—f len = [(l + rz(an)ML])/( 1 WL' "2("4\‘) 1)] 2 Pn L1

By translating these weights, it can be seen that Sy, = S, and S, = S, for all .

However, S, and S, are not unitarily equivalent, In fact, if they were it would
follow that there is an integer ¢ such that

(] + 1.2"*2‘)/(] "I‘ ren) — (1 “i“ rﬂ(” H])-!].)/U _{__ I'E("“’)—l).

Again, algebraic manipulations show that this equation implies that r*! =1,
which is impossible since ¢ is an integer.

3.9. PROPOSITION. If' S is an irreducible, bilateral, subnormal, weighted shift
with | S| = 1 and v is the unique probability measure on [0,1] associated with S by
(3.1) and (3.4), then the following statements are logically equivalent:

(@) S is self-dual.

(b) There is a number r, 0 < r < 1, such that S is unitarily equivalent to the

: . 1. <
shift corresponding to the measure v == Y (6, =0 or v= (1 -+ (S + ).

(c) There is a number r, 0 < r < 1, such that the weight sequence of S is a
1 1

translate of either
1 -+ p2nt2 2 (oo 1 A+ ’.2"'?'1 o
—_— or — .
{[ 1 A2 } {n—_——oo {': I+ "2"_1] }n:—oo

Proof. The fact that (b) and (c) are equivalent is a result of a direct computa-
tion. Since it was shown prior to the statement of this proposition that (b) implies
(a), it remains to show that (a) implies (b).

Assume S is self-dual, let N be its minimal normal extension, and let N have
the matrix representation (1.1). A computation proves that XX* = S*S — §5*
is trace class. As in the proof of Proposition 3.3, this implies ¢,(S) = 0,(¥). Using
the circular symmetry of ¢(S) and ¢(N) and (3.5), o(N) = 6, (N) = ¢,(S). Since
6.(S) is the boundary of an annulus [14] and |S]| =1, v = p6, + ad;, o, >0
anda +p=1.%4

4. CONCLUDING REMARKS AND OPEN QUESTIONS

It was proved in Proposition 1.7 that if S and 7 are dual subnormal opera-
tors, then W*(S)" and W#*(T)" are s-isomorphic.

4.1. QUESTION. If S and T are dual subnormal operators, are W *(S) and
WHT) x-isomorphic?
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If S is essentially normal and its minimal normal extension is given by (1.1),
then XX* = S*S — SS*, and hence is compact. Because X*X = T*T — TT*,
it follows that 7T is essentially normal.

Apply Proposition 2.7 to the operator 4 = S, and let Z,, Z,, ... be the
central projections in # *(S) obtained there. 1t follows that if &, = Z,5#, then

WHES)Y=H S| Z)DH*S|Z) D ...,
WHESY =HHS|ZY) @ W*(S|Z) @ ...
Because %"#(S) and W*(T') are x-isomorphic, there are central projections
Y, Yy, ... in W¥(T) such that if &, = Y, (1),
WHTY = WHT U @ W HT | ) D ...,
and for each k,

4.2) WL\ W) ~ HHS|Z).
(The symbol = stands for “s-isomorphic”, while =~ represents “spatially isomor-
phic)

Now Proposition 2.7 also implies that there is an infinte dimensional Hilbert
space & such that for each k, there is an integer n, and an irreducible subnormal
operator S, on % such that S| %, SU® (= the direct sum of S, with itself
ny times). Thus #*(S | &) is =-isomorphic to the n, x n, matrices, and

WHS| Z)) = BLY™.
By (4.2), w*(T | %) is =-isomorphic to the ;X n, matrices. Because 7" | #, is pure,
it must be that %™ (T'| %) is spatially isomorphic to the n, X n, matrices acting
on F), Therefore
WHT | Y, = B(L)m,
Hence Question 4.1 can be answered affirmatively when § is essentially normal.
4.3. QUISTION. Can the self-dual subnormal operators be characterized?

This question seems intractable at this point, but there are several specializa-
tions of it. For example, Theorem 2.9 seems to hold out some hope for characteriz-
ing the essentially normal, self-dual, subnormal operators. Since cyclic subnormal
operators are essentially normal, a good place to start such an investigaton is by
answering the following.

4.4, QUESTION. Can the self-dual, cyclic, irreducible, subnormal operators be
characterized ?

It is known that if S is a cyclic subnormal operator, then there is a compactly
supported measure y on the plane such that .Sis unitarily equivalent to multiplication
by z on H*(u), the closure of the polynomials in L2(y) [3]. Let W: L2(u) — L2(u)
be a symmetry such that WANW == = N* and WH2(u) = L2(u)© H*(w). Let v(4) =
= p(4) for every Borel subset 4 of the plane. If u = v, then the form of W is given
by Proposition 2.14, -

52843
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However, although p and v are mutually absolutely continuous, it cannot
be assumed that x and v are equal since p was chosen and fixed when S was
represented on H2(u). Nevertheless, a formula for W can be obtained that is
similar to the one obtained in Proposition 2.14, but where the formula contains
the Radon-Nikodym derivative du/dv.

Let K be a compact subset of the plane. To say that K is thin is, for many
authors, a precise statement. In this paper the word “‘thin” will be used as a non-
technical descriptive term. For us, the statement that K is thin could mean that K
has no interior, K has planar Lebesgue measure zero, or R(K) = C(K) (where
R(K) is the uniform closure in C(K) of the rational functions with poles off K).

After a small amount of investigation, the reader will realize that it seems
likely that if S is a cyclic, irreducible, self-dual, subnormal operator with minimal
normal extension N, then 6(N) should be thin. Indeed, it would seem that o(N) is
thin if it is only assumed that S and its dual, T, are both cyclic. Let S be multipli-
cation by z on H2(w). If T is also cyclic, then there is a function fin L%(u) such that
{p + fq:p and g are polynomials} is dense in L*(u). This suggests an affirmative
answer to the following.

4.5. QUESTION. If S is a cyclic subnormal operator with cyclic dual, is the spec-
trum of the minimal normal extension thin?

Proposition 2.4 implies that if S is self-dual and N is its minimal normal ex-
tension, then N = N*. The next question is concerned with a converse to this
result.

Let i be a scalar-valued spectral measure for N, and let G be the bounded open
set, and y, the measure such that p, | (u—pu,) and Pe(u)=L*(u— i) © H*(G, po).
(See the material following Proposition 1.4.) If u # p,, then N cannot be the
minimal normal extension of any pure subnormal operator. Call a normal operator
N completely nonreductive if p == u,; that is, if P®(y) is isomorphic to the algebra of
bounded analytic functions on some bounded open set.

4.6. QUESTION. If N is completely nonreductive and N = N*, is N the minimal
normal extension of a self-dual subnormal operator?

Since self-dual subnormal operators are pure, an affirmative answer. to
Question 4.6 would shed light on the as yet open question of which completely
nonreductive normal operators are the minimal normal extensions of a pure subnormal
operators. Until this latter question is answered, it seems unlikely that Question 4.6
will be answered. However, it is known that every completely nonreductive cyclic
normal operator is the minimal normal extension of a pure subnormal operator ({61,
p- 50). Question 4.6 is open and interesting for cyclic normal operators.

This research was partially supported by a grant from the National Science
Foundation of the United States.
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