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TOPOLOGICAL DIRECT INTEGRALS
OF LEFT HILBERT ALGEBRAS. II

NORBERT RIEDEL

1. INTRODUCTION

This paper is a continuation of [7]. For some continuous field of left Hilbert
algebras ({W.}:e 0, 4) (see [7], 1.1) we assume the following condition to be satisfied

(C) For any x, y € 4 the function (¢, 1) ~> (4% x(&), y(&)) is continuous on Q X R.

By {71, 1.3 condition (C) is stronger than condition (L8) in [7], 1.1. We do not know
whether (C) follows from the other properties of A or not. However condition (C) is
satisfied in the case of the central decomposition of a KMS-state which was consi-
dered in [7], Section 3. Pursuing the investigations of Section 2 in [7] we mainly intend
to prove the following theorem.

1.1. THEOREM. Let ({U}se o, A) be a continuous field of 1. H.a.’s which is defined
on the locally compact space Q such that condition (C) is satisfied. Suppose that U,
contains a unit e; for any &€ Q and the vector field & > e, is contained in A. Let
A be the direct integral of ({W.}scq, A) with respect to some Radon measure p on
Q (see [7], 1.5). If & (E(&)) is the maximal central projection in L(U) (L(U,))
such that the von Neumann algebra L(W)s(LWgw) is of type I (e )
then the following identity holds

C]
8 ———S E() du(®)

(see [5], p. 199).

In order to prove Theorem 1.1 we need some tools which will be developed
in Section 2 and Section 3. First, in Section 2 we gather some fundamental proper-
ties of crossed products of von Neumann algebras with cyclic an separating vectors.
Next, in Section 3 we introduce the covariant continuous field of 1. H. a.’s ({8} ;e 0. I')
which is associated with ({¥}:c o, 4). Now the theory of M. Takesaki in[12], [13]
and the results of H. Halpern in [3] allow to reduce our problem to a corresponding
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problem in the *‘separable” case. This will be done in Section 4. Finally we achieve
the proof by an application of the results of C. Lance in [4].

2. SOME FACTS ABOUT CROSSED PRODUCTS

Let A be al.H.a. with unit ¢, and let 3 be the completion of . Furthermore
let {o,}:cr be the modular automorphism group associated with 2 and let 4 be the
modular operator. Next we want to describe the construction how to get a .H.a.
which generates the crossed product #() ®, R. For the proofs we refer to [13],
[14], and [8].

Let C,(R, #) be the vector space of all s#-valued continuous functions
on R whose support is compact and let Li(R, #) be the Hilbert space whose
elements are classes of equivalent square integrable functions from R into s with
respect to the Lebesgue measure. Since the support of the Lebesgue measure is R
every x in L? (R, #) can contain at most one function fin C(R, #). If such a f
exists we will identify x with this function. C,(R, #) is a module over the ring
C.(R) and we write fx instead of ¢ — f(£)x(t) if x € C(R,5#), fe C(R). We also
write fx instead of ¢ — f($)x if xe#, fe C.(R). There is a unique isomorphism
U from ## ® L%(R) onto L*R,s#) such that

Ux®f)=fx holds for xes#, fec C(R).

By this isomorphism we may identify s# ® L2 (R) and L¥(R, 52).

Let # be the linear space of all s*-continuous functions ¢+ Z(t) from R
into #(A) whose support is compact (i.e. the functions ¢+ Z(t) and t > Z()*
are strongly continuous). On & is given a multiplication and an involution as follows

(Z,-Z,) (t):= Sas(zl(er ) Zy (—s5) ds for Z,,Z,e B

2.1)
Z¥ (t):=oc(Z(— )* for Ze 4.

We define a mapping p from & into C (R, ) as follows. For any Z < & let p(Z)
be the function 7 = Z(t) e. p is linear and injective. Let B.be the image of # with
respect to p. We may transfer the operations from & to B with respect to p. Thus
B becomes a 1.H.a. and L*R, 5) is the completion of B. Furthermore Z(B) is
isomorphic to £ () ®, R and we have for any Zc #

2.2) (p(Z)) = S A0y (Z(2)) de
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where A(?) is that unitary operator on L*R, #) whose restriction to C(R, #) is
given by (A()x)(s) = x(s — ¢) and =, is that s-isomorphism from Z(A) into
B(LHR, #)) which is given by (n,(Z2)x) (s) = 657 (Z)x(s) (x € C,(R, #), Z e L(W)).
The canonical conjugation JO associated to B is given by

(2.3) (Jox) (f) = 4= Jx(— £) for x € C(R, )

where J is the canonical conjugation associated to U,

2.1. LEMMA. Let B, be the linear subspace of B which is generated by
all elements of the form fa, where f€ C.(R) and a <. Then By is dense in B with
respect to the -norm (see [11], (3.8)).

Proof. Let Z € & be given and let 0 < r < oo be chosen such that the support
K of Z is contained in the open interval I:=1— r, r[ . Furthermore let fe C,(R)
be chosen such that 0 <f <1, f/, =1 and f/;c =0. Since Z is s*-continuous
and n(A) is s*-dense in L(A), for any & > 0 and ¢ € K there is an open neighbourhood
%, of t and an element g, € U such that the following holds for any s€ %,

In(ade — Z(s) ell + ln(a)*e — Z(s)*ell < e/} Br.

Since K is compact there is a finite set of neighbourhoods, say %,,,. .., U,,, which
cover K. Let Z;:= n(a,) for j = 1,...,n. Let {h,..., h,} be a partition of unity

on K subordinate to the cover {#,,..., %, }andlet Z,: t = f(t) ¥ h(H)Z; as well
1 nS J J
j=1

as x,:t = Z(t)e, x:t+> Z(t)e. Then we obtain

I, — x] = ( Jixo) — x(r)llzdr)”z < (S

12

§2/8r dt) = g/2;
1

12
1 = wol= ((loizi— e~z oyeirar) =

. ) 12
B (S 144Z(— 1) — Z(— )")4= ¥ e]? d’) B

1/2

= /2.

172
= (S”(ze(— O* — Z(— 1)%) e]|2dt) < (S 82/8rdt)

I
Hence we have shown that |x, — x|, = ||lx, — x| + [x¥ — x*|| < e.
Qur assertion follows from this.
2.2. LeMMA. Let {f,},en be a sequence of positive functions in C,(R) such
that S flt)dt =1 and fy(t)=0 if {t|> n holds for any neN. Let xp:= fie.
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Then the sequence {n(x,)},en converges strongly to the identical operator Id on
L¥R, #).

Proof. Let fe C(R) and x:=fe. By (2.2) we have n(x) :Sf(t)/l(t) dr. Let
g€ C(R), acH and y:=ga. Then we obtain for any ze C (R, #)

() 3, 2) = S [y, 2) dt =

= ‘ifa: g(s)a, z(s))ds = ((f+g)a, z).
Hence n(x)y = (f % g) a holds. Thus we obtain
Iy — nlxyll = lga — (fuxg) al = llg — (fy % g)l:lal.

By our assumptions we have lim ||y — n(x,) vl = 0. For any », z€ C(R, #) and

H—>00

i1 € N the following is true

i
(eG) 1, 2) = 'Sf,,(t)(AO) ya <
< Sf,,(t‘)f(i(t) 7 D)l de < Iyl gﬁ,mnzmndr =

= Iyt /0 dr = Iy,

This implies that |n(x,)| < ! holds for any ne N. Since the set {fa| fe C.(R),
acx} is total in L3R, ) (see 2.1) we conclude that the sequence {n(x,)},en
converges strongly to Id.

3. THE COVARIANT CONTINUQUS FIELD OF LEFT HILBERT ALGEBRAS

Concerning the general theory of topological direct integrals of Hilbert spaces
we use the following notation. Let ({#:}seq, ) be a continuous field of Hilbert
spaces which is defined on the locally compact space Q (see [2],[5]) and let u be
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L@
a positive Radon measure on €. Let Jf::S A Adu(é) be the direct integral of

({# :}eeqn, P) with respect to p. For any square integrable vector field ¢+ x(¢)

®
we denote bys x(E)dp(€) or ¥ the corresponding element in #. As in [5], for

any strongly measurable and essentially bounded operator field & — Z(&) we

@ . .
denote byS Z(€)du(€) that operator in A(H’) which has the property that & — Z(&)
is a decomposition of it. For any vector field x we define the support of x to be
the set of all ¢ € Q such that x(&) is not zero. Similarly we define the support of
an operator field.

Next we want to prove two Fubini-like theorems for direct integrals. lLet
@, 2, be locally compact spaces. Furthermore let ({1 nenxa, @) bea
continuous field of Hilbert spaces and let i; be a positive Radon measure on Q;
for i==1,2. For any £€ 0, (1€ Q,) let

b= (> x(E Mxed} (P,:={¢ > x(E, nixe b))

It is clear that ({# ., }ren, (.D&)(("ge%‘”@_ nicea, D) is a continuous field of Hilbert
spaces. Let

v @ ~ - @ i
‘}f(g):: S '}(ﬂ(;“, n)du:.’.(']) (L;/{/(’” ::S ﬂ(ﬁ» ,,)dﬁll(é'))-

Let &, be the linear space which is generated by all vector fields of the form
(C, 1) = f1E, Mx(E, n), where x € D, f'e C.(Q, XQ,).
Let

P @ “
2= {em e ndniee o)
and _
( ~®
b, = 1;1 - \ x(&, mdp(&)x e b,

|
i

For convenience we note the following simple lemma which will be used in the sequel.
The proof is left to the reader.

3.1. LeMMA. Let Q be a topological space, let K be a compact space and
let u be a positive Radon measure on K. Moreover let f:QXKwC be a

continuous function. Then the function Q3¢ — Sf(if, ) du(n) is also continuous.,
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3.2. PROPOSITION. The following assertions are true. _
@) (HP}een, Py) and ({(HM},eq, D) are continuous fields of Hilbert
spaces and, modulo canonical isomorphisms the following identities hold

@ @ ®
\ @@ = A ndux e, m = .

o

(b) If (&, ) = x(&, ) is a continuous vector field whose support is compact
then the vector fields

@ @
011 € (3 ) et and s e (e i)
are also continuous, their supports are compact and the following identity holds .

® e
(0@ @ = indum.

Proof. Clearly @, is a linear space. Let x < @, be given. Then we have for
4
any e,

o -
1§76 i | =1t e .

Since the function (¢, #) = |x(¢, 7|2 belongs to C.(Q;XQ,) we infer from 3.1

) @®
that the function & — HS x(&, m)dus(n)| belongs to C.(2,).

We want to show that the set {x(¢)|x e @,} is dense in #'© for any &€ Q,.
Let ¢ € Q, be given. For any x € &, and fe C,(Q,) the vector field (&, ) — f(1)x(&, n)
belongs also to @.. Hence any vector field # — »(y) which is continuous with respect
to @, can be uniformly approximated on compact subsets of €, by vector fields
in @, (see [2], p. 81, Proposition 6). It follows from this that the set {¥|¥ € s}
is dense in #®). Thus we have shown that &, is a fundamental family of vector
fields (in the sense of [2], chap. III, §!). Similarly one can show that &, is a
fundamental family of vector fields. Still we have to verify the second part of asser-

tion (a). For any xe &, we have
|

i! S@ ( S® x(&, ﬂ)duz(,,))d i 5);'2:

® 2
e it anco =

= ICe, mlitdGu <) (e, ) =

1y 2

- S ”S x(&, »;)d,ﬁ@” duns() =
)

®[r® 2
(S x(¢, '7)dﬂ1(f))dﬂ2(7l){’ .
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Hence there exists a unique isomorphism U,(U,) from

® ) ® ®
Sf & md( X 1)(&, 1) onto S FAN () (S Jf('”duz(n))

-

such that
®

@ &)
U(S (& DA X 1)(E n))—:—s (S x(@n)duzon)dul(é)

® ®(r®
(U(S (& MG X ) (E, 'I)):S (ﬂ X, n)dul(é))duz(n))

-

holds for any xe @,.

- ®
(b) By 3.1 the function é»}ig x(E, mMdu(n) ” belongs to C,(£2;). Also by 3.1

the function

@ @
s (S x(¢, mdps(n), S (&, n)duz(n))

( =S (x(&, ), y(&, n) d,ug(u)) belongs to C(Q,) if y € &.. By [2], p. 81 this implies
®
that g“»—»S x(&, mdus(n) is continuous. Furthermore it is clear that the support

® ®
of & »——>S x(&, Mdps(n) is compact. Similarly one can see that n »——>S x(&, mdu (&)
is continuous and its support is compact. Let U,, U, be defined. as in the proof
@ @
of (a). Then we obtain that U,U;*! mapsS x,(&)du, (&) ontog xo(mdu,(n) and

thus our assertion follows from this.

Now let us consider some special situation. Let ({4} ¢cq,, 4;) bea continuous
field of Hilbert spaces. For any (¢, n)eQ,xXQ, let #(, , = H#, and let

s

.= {(&, ) = x(O)| x€ A}. Clearly ({# (¢, }c memxa,» P) is a continuous field
of Hilbert spaces.

3.3. PROPOSITION. Let (&, 1) => Z(E, ) be an operator field which is continuous
with respect to & and whose support is compact. Then n +—>SZ(£, n)dus(n) is conti-
nuous with respect to A (the integral which occurs is to be understood in the sense of
vector valued integration) and n — S®Z(£, mdp(&) is strongly continuous. Moreover

the following holds

® , ®
S SZ(f, ndiy(mdi (&) = SS Z(&, i)y (&)dus(n).
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Proof. Since Z is bounded the function n +> Z(&,n) is strongly continuous
forany £e€ Q). Let xe 4, &€ Q, and let ¢ > 0 be given. Since Z is continuous and
the support of Z is compact we can find some 1y,..., 3, €4 and £;,. .., f, € CA2,)
such that the following holds

1

| n ‘
ey <o whereh@i= 20 5O — § ronn©) dion.

n
By 3.1, & is a continuous function. Tet 1:= Y SA/’i(’71)d/.13(;],)yi. By a well known
ju=1

inequality in vector valued integration theory we obtain

e _ . . ol . .
!& Z(©S, mdps(x(C) — p(&) < h(E)  for any e Q.

o

Since n(&y) < ¢ holds and /i is continuous there is an open neighbourhood % of &,
such that

|

f‘ :
!:SZ(E, Mdu,iNx(é) — v < e holds for any Je .
i J

Since Z is bounded we infer from this that & — g Z(&, mdus(n) is continuous in &,
(see {2], p. 84, Proposition 9).

From 3.2(b) we obtain immediately that » »—>S®Z(é, md (&) is strongly
continuous.

Finally for any continuous vector fields ¢ = x(&), &+ (&) with compact
support we have )

@
(Q 26 e, 7») -
- SS (Z(&, )x(&), WOy (E)d () =

(O]
— (gg 2 @iz, 7) .

Thus our last assertion follows from this.

Now let ({2} e 0, 4) be a continuous field of left Hilbert algebras which
satisfies the condition (C) in 1.1.

Furthermore we assume that [, contains a unit ¢, for any ¢ €  and the vector
field ¢ > e, is contained in 4. By [7], 1.1 (L6) this implies that Q is compact. As
in [7], for any £ € Q let #°, be the completion of A, let {0%},er be the modular
automorphism group associated with 2, and let 4, be the corresponding modular
operator.
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@ .
Let u be a positive Radon measure on Q, ]et%f::g H dp(&) be the direct

: @ .
integral of ({#:}:eq, ) with respect to y and let U :S A, du(&) be the direct

integral of ({We}eeqo, A) with respect to p (sce [7], 1.6). For any ne N we set
H G ety =H ¢ if e and (1.,....,t)eR". Moreover we set A,
=& L) e (O xe Al Clearly (¢ 1,09} (& 1 o tyenxRy Ay 1S 2
continuous field of Hilbert spaces.

The following lemma is an immediate consequence of the validity of condition
(C) (see also [2], p. 81 and [5], 1.4).

3.4. Lemma. The operator field (¢, ) — A‘g is continuous with respect to A,

Next we want to define the covariant continuous field of 1. H. a.’s associated
with ({Ag}en, 4). Let B, (B,) be the |.H.a. which is associated with 2 () as in
Section 2 and let & (£) be the completion of B (B, £ € Q). For any &€ Q let J¢
be the canonical conjugation associated with B,. Let % be the smallest linear subspace

of I #(#, ) which satisfies the following conditions.
€ HeERXR

(3.1) Forany x € A and f'e C,(R) the operator field (£, 1) = f(1)n(x(£)) belongs to Z.

(3.2) If the operator fields (&, 1) — Z,(&, 1) and (&, 1) — Zy(&, 1) belong to # then
the same is true for the operator fields

€0 \of(Z s + )2 — 9 ds
and
& O oi(ZE — 0y (see 2.1).
By the results in Section2 # is well defined. Finally let

J’ @
r— 5»8 Z(&, Nedt|Z € @}.

l

3.5. THEOREM. (a) ({B:}eeq, I) is a continuous field of 1.H.a.'s.
(b) There is a sequence {x,},ex in I such that for any &€ Q the set
1Zx,(O)|Z e L(B,)', neN} is total in L.

®
(c) For QS::S B.du(&) we have B = By and B"” = By’ (i.e. B and B, are

equivalent in the sense of [11], Definition 5.1).

Proof. (a) We have to show that I' satisfies the conditions (L1) up to (L8)
in [7], 1.1. Obviously (L1) is fulfilled, i.e. I' is a linear space. From (3.1) and (3.2)
we infer that any Z € # is bounded and Z has a compact support. Next we want
to show that for any Z ¢ 2 the following is true

() (D= Z(E 1) and (& 1) = Z(E, 1)* are continuous with respect to A,.
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Clearly any operator field Z of the form (¢, ¢) — f(r) m(x(&)) satisfies the condition
(D). Now let Z, and Z, be operator fields in # such that (i) is satisfied. Then the
operator fields

E s, ) ZyE s+ 1) and (&, s, 1) > Z,(E, —8)

are continuous with tespect to A,. Hence by 3.4 the operator field
(5: S, t) = Jg(zl(fs &) 4‘ t))Zfl(éa - S)

is also continuous with respect to A, and its support is compact. By 3.3 we obtain
from this (we set Q;:=0 xR and Q,:= R) that the operator field

& 00> \of@e, s + 0)Z4e — 9)is
is continuous with respect to A,. Since

(S GH(Zu(E, s + DZA(E, -s)ds)*:

=\ 2, —9rei(zie.s +0)M)s
holds one can see in the same manner that the operator field
P
& 0 (Sasf(zl(c, A —s)ds)

is continuous with respect to 4,. Thus we have shown that this operator field
satisfies (i). From 3.4 we infer that the operator fields

& D af(Zy(& — 1) and (¢, 1) = oH(Z)(&, — O)*
are continuous with respect to A,. Hence (&, 1) —~ 6f(Z,(¢, —1)) satisfies also the
condition (i). By the definition of # we conclude now that any Z € & satisfies (i).
Finally from 3.2 (b) we obtain that for any x € I" the function & > [[x(€)]| belongs to
C.(), i.e. (L2) is satisfied.

The validity of (L3) and (L4) is an immediate consequence of the definition
of I'. (LS) follows from the fact that (L5) is satisfied for A. (L6) is an immediate
consequence of 2.1.

In order to verify (L7) it is sufficient to show that for any x € I' which has

the form & > S@f(t)y(é) dt, where y € 4 and fe C.(R), the operator field &—>n(x(£))

is bounded (see (3.1) and (3.2)). Hence let x€ 4 and fe C,(R) be given. By (2.2)
we have for any {€ Q

o § @) = srom. e =

- Sf(t)l(f)dt”ag(ﬂé(x(é)))'
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Hence we obtain for any a, b € #,

j(ﬂc(s®.f(t)«\‘(é)dt)a, b)[ -

= ij(t)(l(t) Mo (me(x(£))) @, b) dt | <

C Sl el 181 1) 1 dr =

= llr(x@)] Jal ngnng- £y | dr.

From this we infer

’ (S S @“’)[i H ”:(x(é))llg /() | dt.

Since A satisfies (L7) the operator field &+ 7,(x(£)) is bounded. Hence the operator
®
field &> (g f(t)x(é)dt) is also bounded.
. Finally let us prove that (L8) holds. By 3.4 the operator field (¢, ) — 4¥J, is

continuous with respect to 4;. Hence for any vector field x: (&, 1) = f(£))(£), where
yed, fe C(R), the vector field (&, 1) > Ag“Jﬁx(é, —t) is also continuous. By

@ .
(2.3) and (3.2) this implies that £ > J2 (S x(é,r)dt) is continuous. From {7], 1.2 (a)

we conclude that £ — J{ is continuous (see also the remark (2) to [7], 1.1).
(b) Let the sequence {f,},en in C(R) be chosen as in 2.2. For any neN let
®
Xpt ér——>S Ja(edt. By 2.2 the sequence {né(x,,(é))},,eN converges strongly to the

identical operator on %,. Therefore the set {me(x,(&)y | yeB;, neN} <
€ {Zx, (&)1 Z€ L(B;)', neN} is total in &, for any £ € Q.
"(c) By 3.2 (b) we have for any x € 4, fe C(R)

{“riozar - S®S® £t du(d).

Thus our assertion follows immediately from the definition of B, and B as well
as from 2.1 and [11], Lemma 5.2.

3.7 DEerFINITION. We call ({B;}:eq, F) the covariant continuous field of 1. H.a.’s
associated with ({W,}sen, A4).

By 3.5 (b) the set I' satisfies the condition (L9) in [7). Thus the results of [7],
Section 2 are available for the field ({8;}:eq, I).
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Let us recall that the dual action {6,},er of {6,},er on Z(B) is given by
6,(Z) = v(NZv()* for Ze (W), ieR
where v(¢) is determined by
v(Ox(s) = e~ ¥x(s) if ve C.(R, #), s R.

Similarly let {a¢},er be the dual action of {o%},er on L(B,), and let v¥(1) be the
unitary which is determined by v&(1)x(s) = e~"'x(s) for x € C,(R, #’;), s€ R.

3.8. PROPOSITION. & > v&(1) is a continuous operator field for any 1€ R and

, @ o
we have v(1) =S V() dp(E).

Proof. The operator field (£,¢) — e~ *1d; is continuous with respect to A,
(Td. = identical operator on L¥R, 5#,)). Thus our assertion follows from 3.2(b).

3.9. PROPOSITION. There is a positive semifinite normal and faithful trace T (t:)
on L(BYT (L (By)*) which is relatively invariant, i.e. 106 ,= ¢t (1,00t = e~'1;) holds

@
for any t€R, such that for any Z=S Z() du(€) e L(B)* the function & — 1Z(&))
is measurable and the following identity holds
(2) = { 2.
Proof. For any n €N let

o
1) = (2n>-lg ettty ds, teR
— 00

and
vi=fre; vii=fe. if {eQ.

Moreover for any n € N we define a positive functional 7, on £(B) as follows
(Z) == (Zv,,v,) if ZecL(B).

In the same manner we define a positive functional 7§ on £(B;) for any neN.
By [14], 3.5 of part 2, the sequence {7,},en ({t3},en) is monotonely increasing and

7= supr, on Z(B)* (t:=supt; on L(By)H)
neN neN

is a positive semifinite normal and faithful trace on L(B)" (L(B,)") which is

@
relatively invariant. Since &+~ v§ is continuous and v, :S vidp(&) holds (see 3.2(b))



TOPOLOGICAL DIRECT INTEGRALS. 11 228

®
for any positive Z :S Z(Edu(&) the function &~ t5(Z(£)) Is measurable and
,(Z) :S T Z(E))du(E) holds. Hence the function & > 18 Z(£)) is measurable and

from Lebesgue’s monotone convergence theorem we obtain (Z) ::% T Z(ENAu(E).

o

4. PROOF OF THEOREM 1.1

We keep the notation which has been introduced in the last part of Section 3.
Let & be the maximal central projection in Z(20) such that £ (W), is of type Iil.
Let F = E®!1. Then L(V)s is isomorphic to the crossed product ff(?[)y@)o/f(ng
(see [14], 4.1 of part 2). For convenience we want to denote the restriction of the
dual action 6 to .Z(B)s by & again. By the proof of [3], Proposition 14 there
is a countably generated von Neumann subalgebra .47, of L (B)s such that the
following conditions are satisfied ’
(4.1) ¥ is invariant under the dual action {G,},cr.
(4.2) N, is properly infinite.
(4.3) The restriction of t to A7 1s semifinite.
(4.4)  The center of A", is contained in the center of #(B)s.
(4.5)  The crossed product A7 ®»R which may be considered to be canonically
embedded into Z(B)s ®$R is of type II1.
Let Z be the algebra of all diagonalisable operators in £ (B) and let 4" be the von
Neumann algebra generated by 4", and #Z. Tt is evident that 4" also satisfies the
conditions (4.1), (4.2), (4.3), (4.4). By the same argument which was used in [3],
Proposition 14 to verify (4.5) for A"y one can see that 4" satisfies (4.5) too. -
Next let us look how the situation reduces to the components. :

. : @
4.1 LemMa. For any Z :S Z(E)du@) € L) we have

@ .
Z®1 :S Z(8) @ 1du(®).

Proof. Let x,ye A and f,ge C,(R). Then the following identities ﬁ‘old
(Z(E) ® 1 fx(8), gy(€)) = (f, 8) (Z(E)x(E), (&),
1Z(S) @ 1/~ = I f1NZOxDI  ((eQ)

and -
(Z®1f%,¢y)=(f, g (Z%, §).

6~ 2843
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Hence the functions ¢ (Z(E) @ 1 X&), g¥() and & Z(O) ®@ 1 (O
are continuous on some compact subset K< Q if the functions & > (Z(€)x(£), y(£))
and &+ | Z(E)x(&)|| are continuous on K and we have

(Z ® 1/%, 27) =§ (Z(E) @ 1 fx(&), gy(&)du(?).

Since & > Z({) is strongly measurable and the set { fx(¢) | fe C.(R), x € A} is total
in &, for any { € Q it follows that { — Z(£) ® 1 is strongly measurable (see [2],
p. 81 and (7], 1.2(a)). Furthermore, since {fX | fe C.(R), x € A} is total in & the
operator field £+ Z(£) ® 1 is a decomposition of Z @ 1. Thus our assertion fol-
lows from this.
@ @
Let & =S E@E)duE) and &F =S F(&dp(E). From 4.1 we infer that

F(&) = E()®1 holds a.e. . Let Z;, Z,, ... be a generating sequence for .47, and let

@
z, :S Z(&) du(§) for any neN.

For any £ €Q let 4, be the weakly closed involutive algebra generated by the
sequence {Z,(&)},en. H¢ is a von Neumann algebra on the Hilbert space
F(&)Z; a.c.. One can show that the family {#";}s¢q is essentially independent of the
selection of the generating sequence {Z, },en, i.e. if

v @ v v @ v
2, :S Z.(5du(), Z, =S Zy(&Hdu(®), . ..

is another generating sequence for A7, and N ¢ is the weakly closed involutive
algebra generated by {Z,({)},en then A7, = 4 holds a.e. .

4.2, LEMMA. A is invariant under the dual action {65}ier a-e. .

Proof. Let o () be the involutive algebra generated by {Z,},en ({(Z.(6)},eN;
&e). By [1], p. 31, Corollary, for any neN there is a sequence {Z{} N in & which

®
converges strongly to 6.Z,). For any i,neN let Z¥ -—-S ZEEYdu(€) such that
ZW(&) e o, for every ¢ e Q. From 3.8 it follows that
A @ A
5.2 =\ BHZ.)u@).
From [7], 2.2 we infer that some subsequence of {Z¥(£)};en converges strongly

to 65(Z,(&)) a-e. . In particular 5§(Z,(&)) belongs to A", for any n € N a.e. . Hence we
conclude that 68(4";) € A holdsa.e. .
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4.3. LEMMA. The trace T. is semifinite on /' a.e. .

Proof. Since 7 is semifinite on A"¢" there is a monotonely increasing sequence

{P.}nen of projections in Ay such that sup P, = Id and 7 (P,)<oo holds for any
neN

@
neN. Let P, —:—S P, (&) du(é) for any n e N. By the same argument we used in

the proof of 4.2 we can see that P,(£) € & ¢ holds a.e.. Hence by 3.9 there is a
subset M < @ such that Q\M has measure zero and for any & e M the follow-
ing hold:

P.(&) is a projection in the von Neumann algebra A ; < L (B )re S ZL(B,)

satisfying 7.(P,(£)) < o0;

the sequence {P,(¢)},en is monotonely increasing;

sup P,(&) = Id, holds.

neN

Let Ye &} for some & e M. Then the sequence {¥Y2P,({)Y2}, en is monotonely
increasing and we have Y = sup YI2P(&)YY2 as well as 7,(Y12P,(£)Y1?) < co.

This shows that 7, is sem]ﬁmle on NF for e M.

Let Q, be the set of all ¢ €2 such that the von Neumann algebra A" ,= L (B )p(s) S
< Z(B,) is invariant under the action {Gf),er and 7, is semifinite on A" Z.By4d.2
and 4.3 the set 2\Q, has measure zero. For any £€Q, let of be the restriction of 6¢
to A";. The crossed product A", ® ¢ R is canonically embedded into £(B;)p) @4 R
as a von Neumann subalgebra. From [13], 5.19 it can be seen that the dual weight
"\cg of 7, is semifinite on (A", ®,6R)*. From [13], 5.15 it follows that H:® 5
is invariant under the modular automorphism group associated with ‘c,: Hence we
infer from the theorem in [12], Section 3 that there is a o-weakly continuous faithful
projection of norm one from L(By)p ®tR onto N @ R I N @ R
is of type III then by [9], 2.6.5, L(By)p( ®az R is also of type IIT and by [13], 4.5,
L(Bo)py®az R is isomorphic to L(Ay)g ., in particular L(Wy)g,, is of type IIL.
Therefore Theorem 1.1 would be proved if we can show that A7, ® R is of
type III a.e. on Q,.

Let the sequence {f,},en in C.(R) be chosen as in 2.2. By 2.2 the sequence
@
{fu€lnen (e =S egdy(é)) is cyclic for £(B). Hence the sequence {J°(f,€)},en is

separating for £ (). Similarly the sequence {JZ(f,e;)}.en is separating for L(B,).
For any n € N we denote by y, the vector field &~ J2( Jes)-

Let uo be the restriction of the measure u to Q,. Henceforth we work exclusively
with the reduced measure space (€, ito). Let Z be the set of all vector fields which
are rational linear combinations of vector fields of the form &> F(E)Z(E)y, (&),
ne N, where &~ Z(&) is an operator field which is a finite product of operator
fields of the form &+ Z,(&) or & Z,(O* Let #°(#%) be the Hilbert
space which is generated by the set {#Zy,| Ze 4", n € N} ({x(¢) | xe £}). Chosing
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some enumeration for the set X this set becomes a fundamental sequence of vector
fields in the sense of [1], p . 142, Definition 1. Moreover we obtain

&
a0 =

in the sense of [1], p. 147, Definition 3, i.e. #°° is the direct integral of the Hilbert
spaces %
By the definition of the Hilbert space #° (#2) the mapping
QN 2Z > Zf, (Dt N:2Z > Z[HD)

isanisomorphism from 4" (4";) onto some von Neumann algebra .#(.4;) on #°
(Y EeQy).

The operator field & — ®,(Z,(¢)) is measurable for any # € N (in the sense of [1],
p. 156, Definition 1) and the sequence {P(Z,(£))},en generates .#; for any £ Q.
Hence {+> .#; is a measurable field of von Neumann algebras in the sense of [1],
p. 173, Definition 1, and we have

=@
&(Z,) = g BAZ,(2) duol8),  neN

(in the sense of [1], p. 159, Definition 2). Since .# is generated by the sequence
{#(Z,)},en and by the diagonalisable operators on #° we obtain

@
N :S M (8

(in the sense of [1], p. 174, Definition 2).
For any teRlet f,:= Poa, 0 ™1 (ff:= Pyoaf o $z). It follows from [13]
3.4 that /" @,R (S'; ® R) is isomorphic to A @R (4 ®ﬁ¢R). Hence .# ®,R
is of type Il and we are done if we can show that .#,; ® ¢Ris of type Illa.e. on Q.
By the definition of the dual action {6{},er it follows that for any Z =

®
:=g Z(EYAuy(8) = and for any measurable vector field & > x(¢), &> y(¢) the
function
(S, 1) = (BLZENXE), ¥(D)
is measurable on @, X R. Using this one can show that the following is true (see
[10], 1.4)

@D
M @R :S A ® R dug(0).

Since .# @R is of type III it follows from [4], 4.2 that ./ ® péR isof type Il a.e..
Thus our proof is complete.

Concluding remark. The situation considered in Theorem 1.1 applies to the central
decomposition of a KMS-state on a C*-algebra with unit which we investigated in
{71, Section 3.
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