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POSITIVE MATRICES AND DIMENSION GROUPS
AFFILIATED TO C*-ALGEBRAS AND TOPOLOGICAL
MARKOV CHAINS

DAVID HANDELMAN

1. INTRODUCTION

In the very recent past, the study of C*-algebras by means of partially ordered
abelian groups has been carried out. For AF-C*-algebras, ‘“dimension groups”
arise; these are direct limits (as ordered groups) of free finitely generated abelian
groups equipped with the pointwise ordering. The maps between the free groups
are determined by rectangular matrices with nonnegative integer entries.

Given a dimension group, it is of interest to know how to construct it expli-
citly, with the rectangular matrices given algorithmically (especially since dimen-
sion groups can be characterized abstractly). A convincing application of this is
the recent embedding result of Pimsner and Voiculescu [13], which asserts that the
irrational rotation algebra with angle 2ra, 4,, may be embedded in an AF-algebra C
whose dimension group is G, = Z + aZ ordered as a subgroup of the reals. This
depends on an explicit algorithm for obtaining G, as an order limit of free groups
of rank two, due to Effros and Shen [5]. This embedding has greatly increased
the knowledge of the structure of 4, (see [14] for a discussion).

A major result of this article is to characterize those totally ordered (and
somewhat more generally, simple) free abelian groups arising as the limit group
with the same map repeated over and over. These admit an elementary algebraic
characterization. The ordered groups that occur in an invariant (due to Krieger,
[11], [12)) for irreducible subshifts of finite type (in the theory of topological
Markov chains) are precisely these limit groups.

Up to order-isomorphism, these limits of stationary systems are classified
by a triple, (4, [6: 4 — R}, [I]), where A is an integral order in a number field, [s]
represents an equivalence class of real embeddings, and [I] represents an ideal
class.

If A is a matrix with strictly positive entries, then one of its eigenvalues is
positive, real, and exceeds the absolute value of all other eigenvalues. Further, the
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corresponding eigenvectors (right and left) have strictly positive entries (up to
multiplication by —1), and are the only eigenvectors with non-negative entries. This
summarizes a portion of the standard Perron-Frobenius theory, and motivates
to some extent our Theorem I, which is a partial (and in a sense the best possible)
converse.

However, the immediate motivation lies in the theory of ordered abelian groups
of a special kind (see [3], [4], [5)}[6], [7], for example). If G is a partially ordered
(and always abelian) group that is order-isomorphic to Z* (with the coordinate-wise
ordering), then G is called simplicial. If the partially ordered group G can be written
as an order-direct limit of simplicial groups,

n(1) n(2) n(3)
) y/ e y/ yid Z e

© where A; are n(i + 1) X n(i) matrices with integer entries, and Z"9 are thought
of as groups of columns, then G isla countable dimension group cf. [3, Theorem 2.2].
If n(i) = n and A;=A4 for all i, then the system in (1) is called ja stationary system.
~ An element u of a partially ordered group G is! called an order unit for G,
if it belongs to G* and for all g in G, there exists nin N so that g < nu. A partially
ordered group is simple (sometimes, o-simple) if every positive element other
than zero, is an order unit.
A (normalized) state of a pair (G, ), u an order unit for G, is a group homo-
morphism,

f:(G, G*, u) > (R, R™, 1).

We shall use unnormalized states (referring to them only as states, in contrast
to other work in the subject), i.e. the requirement f(x) = 1 is relaxed to f(u) #0.
For simple dimension groups, {3, Theorem 1.4} asserts that

G"N\{0} = {ge G| f(g) ; 0 for all states f of (G, u)};

that is, the states determine the ordering in a sense. When G is a simple dimension
group arising from a stationary system, then some power of the matrix A has its
entries strictly positive (of course in (1), 4 may be replaced by A™), and G has (up
to scalar multiple) just one state (this is due to Elliott, see [4, Proposition
2.2).

Let r be the Perron eigenvalue of A (that is, the unique biggest one in any
sense), and v the strictly positive left real eigenvector corresponding to ». Then v
is ‘a row, so acts naturally on the columns of Z". Then we can define a compatible
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system of maps to R,

Aoz AL ... G24+G
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Here A is the order-automorphism induced on G (even if detd = 0!) by A, and A
multiplies the state to vr.

If G is free, of finite rank, a simple dimension group with unique state, then
we determine when it arises from a stationary system with A4 1n GL(n, Z), and
when (G, P), P a fixed automorphism can be obtained as (G, A) for some 4 in
GL(n, Z), as in (2).

Stationary systems arise in the study of subshifts of finite type, and classi-
fication byImeans of ordered groups has been initiated by Krieger and Cuntz &

Krieger [11], [12], [2]. The pair (G, A) is the invariant discussed there.

2. THEOREM I

Let A be a square matrix with real entries. We say A satisfies the weak Per-
ron property if A has a real eigenvalue r of multiplicity one, such that for all other
eigenvalues (in C), a, of 4,

r > laj.

The large eigenvalue r is called the weak Perron eigenvalue.
A matrix (or row or column) is strictly positive if all of its entries are real and
strictly greater than zero.

2.1. LEMMA. Let B be a square matrix with real entries. Then some positive:
integer power of B has strictly positive entries if and only if:

(i) B has the weak Perron property;

(ii) the left and right eigenvectors corresponding to the weak Perron eigenvalue
can be chosen strictly positive.

Proof. If B or some power is strictly positive, the Perron-Frobenius theory
applies to yield (i) and (ii).

Conversely, assume (i) and (ii); let » denote the weak Perron eigenvalue,with.
corresponding left and right strictly positive eigenvectors v, w respectively. Set
C = r™1B. Then C has 1 as an eigenvalue of multiplicity one, and all other eigen-
values have smaller modulus. It easily follows (use, for example, the Jordan normal
form) that the sequence {C™}men converges in the usual metric on R**", to a.
rank one idempotent P. We shall show P has all of its entries strictly positive.
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As v is a row, and w is a column, vw is a positive scalar, and wv is an n byn
matrix with strictly positive entries, as is Q = (vw) *wov. Clearly Q is a rank one
idempotent. Since woC = wo, woC™ = wp, so by continuity, QP = Q; similarly,
Q = PQ. Thus Q and P(I — Q) are orthogonal idempotents, so from

P=POQ+PI—-Q)=0+PU—0),

we deduce rankP(I — Q) = rankP — rankQ = 0, whence P = PQ, so P = Q.
Thus P is strictly positive.

Since {C™} converges to a strictly positive matrix, some power of C must
also be strictly positive, hence the same is true of B.

It is convenient to use the notation w = (w;, w,, ..., w,)' to denote a
column; tr stands for transpose.

2.2. THEOREM L. Let A be an n by n matrix with real entries such that:

(i) A has the weak Perron property;

(i) If w = (wy, we, ..., w, )" is a right eigenvector corresponding to the weak
Perron eigenvalue, then at least one of the ratios w[w;, w; # 0 is irrational.

Then there exists P in SL(n, Z) such that some power of PAP~! is strictly
positive.

Proof. Let v, w be the left, right eigenvectors corresponding to the weak
Perron eigenvalue r, chosen so that the scalar vw is non-negative. By using elemen-
tary row and column operations, we shall obtain P in SL(n, Z) such that both
vP™! and Pw are strictly positive. Then 2.1 applies to PAP™,

First we show vw is not zero. Suppose vw = 0. Define Q' = wov, an n by n
matrix. Then Q2 = 0. Since the matrix C = r14 has one eigenvalue 1, all the
others of modulus less than 1, the sequence {C™} converges to a rank one idempotent
T. Since wvC = wo, woC™ = wo, whence Q'T = Q’, and similarly Q' = TQ". As
T is rank one, Q' = TQ'T = sT for some real s. But Q'* == 0, so s = 0, and thus
@’ = 0, which would imply that all the entries of v and of w are zero, a contra-
diction (cf. the proof of 2.1).

Hence vw > 0. We may assume v has a strictly positive entry (multiply both v
and w by —1 if necessary), call it v,.

Let us first note that if S is an elementary matrix whose action on the right
(v — vS) adds m times the i-th column (of v, that is the i-th entry of v) to the j-th
column, then the action of S™ on the left (w — S™'w) subtracts » times the j-th
row of the column w, i.e. the j-th entry) from the i-th; observe that the roles of 7, j
are reversed, as is the sign. Both the inner product (the scalar, vw) and property
(ii) are preserved by the simultaneous map (v, w) — (vP, P7'w) if P lies in GL(n, Z).

For ease of notation, after v, w have been transformed at each stage, we shall
relabel the transformed vS, S7'w as v, w again.
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Since v admits a strictly positive entry v;, we may add enough positive integer
multiples of v; to all the other entries (that is, performing column operations on v)
to make them strictly positive. We thus obtain S in SL(n, Z) (S is a product of at
most # — 1 elementary matrices) so that vS is strictly positive. Of course S w
may be terrible. Relabelling, we have two cases, (a) and (b).

(@) v is strictly positive, and w has a negative entry.

Subtract enough multiples of the negative entry, w;, from all the others to
-ensure that the other entries become strictly positive. The inverse operation ap-
plied to v adds positive multiples of the entries of v, so v remains strictly positive.
An easy consequence of (ii) ensures that there is a w; such that w,/w; is irrational.
By subtracting another copy of w; from any other entries (if they exist, i.e. if n > 3),
‘we may assume that if n > 3, there is a distinct w,, with w,/w, also irrational. By
normalizing both v and w, and permuting the entries (an elementary operation),
we reduce to the following:

v=1(1,a,,a;, ...)
w = (—1, by, by, ...)*

with a’s and b’s strictly positive, where b, is irrational, and if n > 3, b,/b, is
irrational. We have two subcases, 7 >3, and n = 2,
(al) n = 3.

We have, vw is a positive scalar, say vw =d > 0. Hence Y, ab; =1 +d.
As by/b, is irrational, we may apply the division algorithm to the pair (b,, b;) and
continue until both remainders are arbitrarily small;e.g. if b, < bg, subtract as many
integral multiples of b, from b, so the remainder will be positive, and less than b,;
then apply the same process to reduce the b, entry. At each step the process is ele-
mentary and a subtraction of rows of w; hence the inverse operations applied to v
simply add positive multiples of the second/third entries to the other, and so v re-
mains strictly positive. Since b,/b; is irrational, this process may be continued until
the newly transformed b,, b; are both less than d/n. Now, at this point, the ratio
b,/bs Temains irrational, so that at least one of b,/b,, b,/b, is irrational, and thus
the division algorithm process can be applied to reduce b, to a positive number
less than d/n. This may obviously be continued until all the 5,’s have been ground
down to positive numbers under d/n. Hence we are in the situation :

v=(~1, 05,05 ...) >0, Yofi=1+4d
w= (=1, B, B3 .. ) 0<p, <dn.
Now subtract enough multiples of 1, the first entry of v from each of the «,,

so that the remainder is strictly positive, but smaller than or equal one; the inverse
operation adds multiples of B, to the —1 entry of w. This yields:

rr

v=(1,rx2,a§’,...) 0<al,'<l

W= (L‘, ﬂZ’ ﬂ3r . ')"'
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Now Y B <(dn)(n—1)<d, whence c=vw— Y pof >d—d=0, so
¢ >0, and we have successfully transformed v, w to strictly positive vectors by
products of elementary transformations.

(@a2) n=2.
Here we have
v={(1, a) ab>1; a,b>0

w=(—1, b)* b irrational.

Since 1/b is also irrational, given ¢ < a — (1/b), we may find by the usual dio-
phantine approximation methods, e.g. [10; Ch. 10], positive integers, p, g, r, s
so that

| .
a>2 5 — > L (thus g/p < b < s/r)
q b s

and ps — gr = 1.

Set X = [—p “r]. Then detX = —1, so X belongs to GL(2, Z). Consider:
. q S «

oX = (1, a)[“;’ —:]: (ag — p, as — r) = (g(a — (plg))» s@@— (/s));

so vX is strictly positive, and

Xty — [—s —r](—l):(s—br) :(r«sm = b)),
q »p b pq—>b pb — (q/p))
again strictly positive.
(b) v is strictly positive, but w has no negative entries.

If w had just one nonzero entry, hypothesis (ii) would be violated. Hence
there exist w;, w; > 0, i # j as entries of w. Subtract enough multiples of w;from
w; to force the latter to become negative. The inverse operation on v adds multiples
of v; to v;, so of course the newly transformed v is also positive, and we have arrived
at case (a).

Hence after the conclusion of case (a), we have obtained P in GL(n, Z) with
vP and P7lw strictly positive. If detP = —1, interchange any pair of positions;
this preserves positivity, but changes the determinant of the transforming matrix
by a factor of —1. Hence we can find this P in SL(n, Z). Now some power of
PTIAP is strictly positive, by 2.1.

If D is a subring of R, and the matrix 4 has entries from D, then one condi-
tion that will guarantee that (ii) holds (assuming (i) does), is that the weak Perron
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.eigenvalue r not lie in the field of fractions of D. For example, if the characteristic
polynomial of 4 is irreducible over the quotient field of D, then (ii) is automatic.
‘The usual example for D is Z; this will be applied in Sections 3 and 4.

On the other hand, even (especially ?) with D = Z, if (ii) is dropped, the

‘Theorem fails. Set 4 =[(2) —i]; although A is diagonable (via GL(2, Z)), 4 is

not conjugate within GL(2, Z) to a strictly positive matrix, nor to a matrix
some power of which is strictly positive.

This type of example occurs when all the entries of both eigenvectors have
-only rational ratios (of course (ii) in Theorem I can be replaced by an irrational
ratio in v, by simply applying the Theorem to A", and transposing the matrices
at the conclusion). In this case, we may assume all the entries are integers, and that
the greatest common divisor of the nonzero entries in each of the vectors is 1.

Now if the matrix 4 were conjugate via GL(n, Z) to a matrix some power
of which is strictly positive, there will exist P in GL(n, Z) such that both vP and
Py are strictly positive. Since all the entries of v, w are integers, the same is true
of vP and P lw; as vw = vP-P 'w > n, a necessary condition is that ow > n.
This condition is possibly sufficient.

In any case, in the specific 2 by 2 example above,

v={(1, 3) w=(l, O)

30 vw = 1 < 2, and thus A is not conjugate via SL(n, Z) to a matrix some power
of which is strictly positive.

On the other hand, to transform the pair to strictly positive vectors by means
of GL(n, Q) is completely straightforward, and yields Theorem I with (ii) dropped
and SL(n, Z) replaced by SL(», Q).

2.3. THEOREM. If' A is a square matrix of size n with real entries, and A has
the weak Perron property, then there exists P in SL{n, Q) such that some power of
PAP™ has strictly positive entries.

Proof. This proof follows that of 2.2 (with Z replaced by Q), until part (a)
is reached; we may obviously assume all the entries of both v and w (the left and
tight eigenvectors corresponding to the Perron eigenvalue, r) are rational. Then
we have

v=(ay, doy ..., a,) a;, b;eN

w o= (_bl’ b25 crey bn)tr Eaibi = albl + d, d > 0.
i=2

Select & < df(n — 1)max{b;|i > 2}. For j > 2, subtract a suitable rational mul-
tiple of a, from a;, so that the remainder is positive but less than ¢. The i inverse ope-
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ration adds rational multiples of b; to — b,. Then we are in the situation

= (ay, g ..., 0,) O<a;<eg 2<ign

w= (B, by, ..., 0"
Now

d=w=ap +3Y ab <apy, +e-(n— VDmax{b;|i> 2} < ap, +d.
i=2

So B, > 0, and 2.1 now applies as in the proof of 2.2.

2.4. COROLLARY. Let S = {r=ry,r,, ..., r,} be a set of (not necessarily dis-
tinct) complex numbers, closed under complex conjugation (counting multiplicity).
Ifr > |Ir J for all i > 2, then there exists a matrix of size n with real entries, A, whose
set of eigenvalues (including multiplicities) is S, such that some power of A consists
of strictly positive entries.

Proof. If {s;} is an enumeration of the real members of S other than r, and
{(tax_1> ta) = (@ +iby, @, — ib,)} is a list of the non-real ones (in both cases,
keeping track of the multiplicities), define the 1 by » matrix

. a —b
cz[r]@dlag(s,-)@(@[ : ])
b, a,
Then C has S as its set of eigenvalues, and by 2.3, there exists P in SL(n, Q) so
that 4 = PCP™ is ultimately strictly positive.

To see explicitly the matrix A4 constructed in the proof of 2.4, observ,é that
for C, the eigenvectors for r are

v=(1,0,...,0) = wt .

Then, to obtain P, one simply follows the operations:
v (LLL, ..., D)= ({/m,1,1, ..., 1)
wes (1,0, .. .,00" — (1,1/n, 1/n, ..., 1/m)".

We can use the method indicated above to construct examples illustrating the
surprising behaviour of positive matrices. :

Given n > 2 and m > 2, one can easily construct 4 in M,Z so that A™™*
contains a negative entry, but no higher power does. It is more of a challenge to
find such an 4 in SL(n,Z) (here n > 3 is required). We show how to do this
with 4 having irreducible characteristic polynomial, n =3, and m=2 or 4.
Additionally, A4 is conjugate (via SL(n, Z)) to a square (4-th power) of a positive
matrix, yet is not itself a square (4-th power) of a positive matrix, even in M;Q.
It follows that A is shift equivalent to this square (lag 2), but I have not been
able to establish strong shift equivalence. S
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Begin with the matrix

1 2 2
C=|1 1 2
1 1 1

This has eigenvalues r; = 1 - z\2V3 . z% 22/3 { = (,1,2 with z a primitive cube
root of unity, has determinant 1, and its left and right Perron . eigenvectors
(corresponding to r,) are

v= (1,218 228y w= (223 213 1)
Apply the first round of the division algorithm to the first two entries of v:
Vi (1,218 1, 223 v (4 — 3.213 2B —] 228,

—1

1
E, = P['CP,, E,is ultimately strictly positive. In fact E; has two negative entries,
but EZ, E} have none, hence the same is true for all higher powers; so with
A = E;, m = 2 in this case.

Set B, = E?2. It follows from the irreducibility of the characteristic polynomial
of B that +-F, are the only square roots of B, so B has no nonnegative square
roots (even in M,Q). Being conjugate to C?, B is shift equivalent to it (of lag 2).

If instead, we allow the division algorithm to continue another 1 1/2 rounds,

24 —5
—19 4
tive. A computer programme (arranged for me by Ronald Jubainville) yielded that
E; has negative entries for n ==.1,2,3, and has only positive entries for n = 4,5,6,7
hence for all higher powers.

This is implemented by the matrix P, = ( : ) @ [1], so that if we set

we obtain P, = ( ) @ [1]. Setting E, = P;XCP,, E, is ultimately posi-

3. TOTALLY ORDERED GROUPS

Let G be a simple dimension group with unique state, and suppose G is free
(as an abelian group of course), but not Z. We shall determine when G arises from a
stationary system, and if it does, when a power of a given automorphism is induced
from the canonical automorphism of a stationary system.

We know G possesses a map, f: G — R, its state, such that G*\{0} =
= YR\ {0}). Assume G is of finite rank (since otherwise it could not possibly
arise from a stationary system), it is finitely generated (being free) so splits as

G =~ f(G) ® Kerf.
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Now the relative ordering on f(G) (as a subgroup of G) is equivalent to the total
ordering as a subgoup of R, so f(G) is totally ordered. In particular, G is totally
ordered if and only if £ is one to one.

We shall investigate the totally ordered situation in this section, and the case
with non-trivial kernel in the next. They could be done simultaneously, but the
techniques are more transparent if the two types are done separately.

Now assume G is totally ordered, so G = R. Let £ = End_G denote the ring
of continuous endomorphisms of G (with respect to the relative topology); that is,

End_ G consists of endomorphisms : G — G that extend to real linear maps
Y:R->R,

GcR

wl lsv

GcR

The map  — ¥(1) is easily seen to be an embedding of rings, E = R, since ¥ is
determined by its value at 1; of course the image of G is dense in R.

We adopt the notation M,Z to denote the ring of n by » matrices with integer
coefficients, and M,Z** will indicate those with strictly positive entries.

The ring E acts in a natural and obvious way on G, so that G becomes an
E-module. Let K = R be the field of fractions of E. Since E < End,G ~ M,Z,
and E is a commutative domain (from being embedded in R), we have that (£, )
is of finite rank, and thus £ ® Q = K. Hence K < M,Z ® Q = M,Q, and it easily
follows that K is a finite dimensional extension field of Q, and that [K: Q] divides
n = rankG.

‘Next we show that if G had arisen from a stationary system,

G=0limz" S zZn A 7m A Ain M,Z+
—

{with m possibly larger than », but for all sufficiently high powers of ¢, rankA4’ = n),
then [K: Q] = n. (Of course the main result of this section is the converse, and the
A can be chosen from SL(n, Z)). Since KerA’ is always a direct summand of Z™,
by replacing A4 by a sufficiently high power, we may assume Kerd = Ker4? = .. .;
-observe that the limit ordered group G is unaffected. Set 77 = Ker4; then AT < T,
and so A induces an additive mapping on the quotient group ¥ = Z"/T, A: ¥ — Y.
Of course Y is free and torsion-free of rank » (since A is one to one), and G as an
abelian group (only) is isomorphic to the quotient limit

(It would make sense to impose a quotient ordering of sorts on Y, but this is not
generally simplicial, and so we do not do so0.)
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Let v be a positive left Perron eigenvector for A. Then we obtain a (and there-
fore, up to scalar multiple, the only) state on G via (2) of Section 1, with »
replaced by m. Since G isrank n and the state fon G is an embedding, v(Z™) has rank
n, and also vT = (0). Hence v induces a one to one map o: ¥ — R, and v4 = or.
If we choose a Z-basis for Y, since

rank Y = rankG = rank f(G) = rankso(Y),

and regard v as a row with real entries (depending upon the basis for Y), we see
that v is one to one, so that its entries are linearly independent over Q. On the other
hand v is a left eigenvector for 4, and the latter has integer entries. It easily follows

that the characteristic polynomial of A (as an endomorphism of Y =~ Z%) is
irreducible.

Now the endomorphism induced on G by 4, equivalently by A, is just multi-
plication by a real number r, so is continuous. Hence any polynomial in A induces
a continuous endomorphism, and since {I, Z, R Z”‘l} are Z-independent,
we see that rank (End G, +) > n, whence equality holds. As K = F ® Q, [K: Q] =n.

Before establishing Theorem II (3.3), we require a classical result about num-
ber fields and their units. If K is a finite dimensional extension field of Q, let Z,
denote the ring of algebraic integers in K; Z¥ will denote the collection of elements
of Zy which are invertible in Z,. The members of Z§ are known as the units of the
number field K. As usual, r; is the number of real embeddings of K, and r, is one-
half the number of non-real complex embeddings; also, r, + 2r, = n = [K: Q).

3.1. LEMMA (essentially [16; Corollary 5—3—8)). Let K be a number field, and
6o: K> R, a fixed embedding to the reals. Then Z{* = {ue Z¥ | oou) > 0} is a
torsion-free abelian group, free of rank r, +4-ry — 1, and a free Z-basis may be
constructed of the form {u;}, where

oolu;) > 1 > lo (u) for all i,
for all homomorphisms ¢: K - C, g # o,.

Proof. By [16; Corollary 5—3—8], there exists a unit », such that [oy(u,)| >
> 1> | o(uy)| for all other ¢: K — C. By replacing u, by —u, if necessary, we
may assume oo{u;) > 1. We may also assume u; is not a power of anything (if
u§ = uy, replace u; by --u,; as is well-known, Z¥ is finitely generated, so this process
terminates). Hence {#,} may be enlarged to a Z-basis for the free abelian group
7%, {uy, uy, us,...,u;}, r=r, +r,— 1. Then for each i > 1, there exists a
sufficiently high power of w, so that u; = u{"u] satisfies the desired inequalities;
of course {u;} is also a Z-basis for Zg*. |

5 - 1242
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I am indebted to Cam Stewart for pointing out the existence of [16; Corol-
lary 5—3—8] to me. -

Assuming that [K: Q] == rankG = # (in our notation), we have E = End G
c Z (since (E,+) is a subgroup of the finitely generated free abelian group (M,Z,-+),
and is thus finitely generated), and rank(E,+) = rank(Zg,+) = n. Hence there
exists an integer m so that mZ, c E, whenace Z +mZy < E. Now Zy/mZy is a
finite ring, so its group of units is finite. Hence given a unit « in Zy, there exists an
integer ¢ so that «'—1 belongs to mZy, whence u'e Z + mZy < E. Hence given
a unit u in Zg, some positive power lies in E; 1n partlcular E* has tor51on~free ra.nk
equalling that of ZK '

Let

F={ueE*|g, (u) > lo(u)] all 6: K~ C, 6 # 0o}

By the preceding comment and Lemma 3.1, F generates a torsion-free abelian group
of rank r, +r, — 1 inside E*.

If Q = L = K, and the torsion-free rank of 'Z equals that of Z} (obviously
it cannot exceed it), then elementary manipulations yield that either L = K or K
has no real embeddings; the latter does not arise here, so K = L. We shall employ
this comment later. '

Call an element y of K, introspective if Q(y) = Q(»™) for all m in N. Sincel
[K: Q] = n, given z in K, 22" is introspective. A

Let M = Q(u) be a subfield of K such that:

(i) wu is introspective;

(i1) u belongs to F;

(iii) [M: Q] is maximal with respect to the above two properties.

We wish to show that M = K. Select x in F. Let S denote the finite set of
fields L with Q < L < K. For each prime number p > 2, define a function

L {2, . ,n} > S
£(i) = Qwx)¥) e S.

Now {f,} is an infinite collection of functions between finite sets. Hence f, = f, for
some pair of distinct primes, p < g. Hence

Q) = Q) 1<i<n

Then (#”x)?", (u%x)?" are both automatically introspective and since the fields they
generate are equal, u@~P?" belongs to Q((u”x)¥"). As u is introspective, u thus
also belongs, and hence x2” does too. In particular, M is contained in Q((u?x)%"),
so by introspectivity of (w?x)¥", and the maximality of M, M = Q((u’x)¥"),
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whence 'x%" belongs to M. Thus the torsion-free rank of Z}; is at least that of Z,
so K= M. ‘
Weé have shown:

3.2. LEMMA. Let K be a number field equipped with a fixed embedding, 64: K—R.
There exists a unit u in Zg such that oo(u) > |o(u)| for all embeddings o: K - C
unequal to o,, and K = Q') for all i = 1,2,... . If Zy is replaced by a subring E
which is also an order in K, u may be chosen to belong to E.

(The final comment is a consequence of our earlier deduction that Z}/E* is
finite). '

The case n =2 of the following result was established by Effros and Shen
[5).

3.3. THEOREM I1. Let G be a totally ordered subgroup of R, free of finite rank,
n. The following are equivalent:

(1) G arises as the limit of a stationary sysiem of the form
zm ;‘_1_) zm _i) zm _f_) .
for some A in M, Z** with m > n.
(i) G arises as the limit of a stationary system of the form
/Ny /Ny /BN
for some A in SL(n, Z)"*.

(iii) There exists r in R such that rG @ Q (inside R) is a field.

(iv) (End,G, +) is of additive rank n.

(v) If K is the field of fractions of End G, then [K: Q] = n.

(vi) For any nonzero element g of G, (End_G)(g) is of rank n.

Proof. A priori, (ii) implies (i); that (i) implies (v) follows from the discussion
prior to 3.1, and (v) if and only if (iv) is trivial. The implications, (iv) = (vi) = (iii)
are routine. Assume (iii) holds; we establish (iv). Since multiplication by r is an
order-isomorphism, we may assume # = 1, so G = L < R, where L is a field of’
dimension » over Q. Select s in L. Then sG < sL = L, so, as G is of maximal rank
in the finite rank additive group (L,-}), and sG is free, there exists a positive
integer m such that msG < G. Hence ms belongs to End G, so that (End.G,+)
is of the same rank as L, namely » (also L = K). Hence (iii) through (vi) are
equivalent.

Now assume (v). By Lemma 3.2, we may find # in E = End,G, a unit such

that oo() (the real multiplier) exceeds all the other values for |o(u)]. In particular,
u is order-preserving (it corresponds to multiplication by the real number oy(u),
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where we have chosen o6,: K— R to be the fixed embedding obtained from
¥ = P(1)).

Select a Z-basis for G, and write a (the) state for G as a row, determined

by this basis. Hence we have a row v of real numbers such that G*={g e G| vg>0} u
U {0}; here “g” is regarded as a column in terms of the fixed basis. Now
u: G - G is order-preserving, so vu is also a state, and thus vu = sv for some
positive real number s; in fact s = o,(u), the multiplier. If we call U the matrix
corresponding to u, in terms of the fixed basis, then v is a left eigenvector for U,
with respect to s, and it easily follows that s is a weak Perron eigenvalue for U
(the eigenvalues are simply the values o(u), as 6: K — C ranges over all such embed-
dings). Refer to G as a group with the fixed basis (and a corresponding simplicial
ordering) as H.

Since U satisfies the hypothesis of Theorem I, we may find P in Aut(H) =
= GL(n, Z) so that some power of 4 = PUP™! has strictly positive entries (in the
fixed basis). Then vP7 is the left eigenvector for the Perron eigenvalue of A4, hence
up to multiplication by —1, is strictly positive. Suppose B = A, a power of 4, is
strictly positive, and ¢ = s* is the corresponding eigenvalue. Set @ = P™'; then
Q = U'QB. Consider the diagram:

G G
u-1Q
“‘Y\“-\\ X
H— = H——H - J
vQ
s-2%p0
R

Here H is the underlying group structure of G, and we wish to show the com-
patible sequence of maps U™Q:H — G induces an order-isomorphism of the limit
of the stationary system, J =1limH —» H-—> H— ...; here H is simplicially
ordered by the fixed basis, with respect to which B is strictly positive.

First, note that the diagram commutes. Second, J is a limit of a stationary
system, and since B is strictly positive, the limit is a simple dimension group, with
unique state, which is determined as in (2) (Section 1), by the left eigenvector
vQ. Next Q, U™ are group isomorphisms, so the limit map from J to G, 9, is
a group isomorphism.

Select x in J*\{0}. Then x may be replaced by x in H at some level. Now
s vQx > 0 (as the state on J determines the ordering); but the image in G is
positive at the state of G, v: vU ™ Qx = s7%" vQx > 0; since G" is also determined
by the state v, #(J) = G*, so P is order-preserving.

Conversely, if y lies in G™\{0}, then vy > 0. There exists x in J with $x = y.
Hence we may find x in some level, H, with x representing x, so that U™ Qx = y.
As vy > 0, vu ™ Qx > 0, whence s7%* Qx > 0; as the state determines the ordering

R
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on J (see Section 1), x > 0. Hence &(J") = G, so & is an order-isomorphism,
and thus G is order-isomorphic to the limit of a stationary system.

3.4. COROLLARY. Let G be a totally ordered subgroup of R, and suppose that G
is free of prime rank. Then G is the limit of a stationary system as in 3.3(ii), if and
only if End G is not trivial, i.e., G has a continuous endomorphism that is not
multiplication by any integer.

Proof. Since rank(End_G,) divides rankG, and the latter is prime, either
the rank is 1 (in which case End .G = Z, since End G is additively finitely
generated) or the rank is that of G. By Theorem II, the result follows. 2

Given a stationary system, with order limit J, the strictly positive matrix A4
. A .
induces an order-automorphism A of J, that resembles a shift:

A 4 4
Y ANy /Ny /=

,il Al Al 3:];

Y /Y /LN /G
4 A A

{Think of the direct limit as a quotient of a subgroup of the direct product; A
acts as a backward shift. This resembles the original motivation for stationary
systems, see for example [11], [12], [2)).

The method of proof of Theorem II actually yields more than is stated. Given
a stationary system, with the generating matrix A strictly positive and in GL(n, Z),
together with an order-automorphism , the proof gives a necessary and sufficient

criterion under which some power of ¥ is of the form B for some B in
GL(n, Z)**, generating a stationary system whose order limit is G, namely:

¥(1) > |all other eigenvalues of y |
the minimal polynomial of y (as an element of EndzG ~ M,Z), is of degree n=rankG.

The latter condition is vacuous (in the presence of the first), if # is a prime number.
The real number 1n¥(1) is the entropy of the subshift associated to B.

Of course if a totally ordered group does arise from a stationary system
generated by an n by n matrix 4 with »n = rankG, then 4 must have its
characteristic polynomial irreducible, and this characterizes the totaily ordered
situation.

4. NON-TOTALLY ORDERED SIMPLE DIMENSION GROUPS WITH UNIQUE STATE

Let G be a simple dimension group with unique state, and say free of finite
rank. Following Section 3, G can be written as a direct sum, G = f(G) @ Kerf

G* = {0} U{(a, K)|a >0},
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where f: G — R is the state. The order-automorphisms of G leave the state inva-
riant (up to positive scalar multiple), so leave the kernel, Kerf, invariant;
further, they induce order-automorphisms of the totally ordered subgroup, f(G).
Conversely, given any order-automorphism of f(G), any group automorphism
of Kerf, and any additive map whatever from G to Kerf, these can be put
together in a unique way to yield an order-automorphism of G. This is a special
case of the remark in the concluding paragraphs of Section 6 of [9]; a very
special case is proved computationally in [15; Proposition 1.2].

If such a G arises as the limit of a stationary system, say generated by A4
in M, Z"*, with m > n = rankG, then 4 induces an order—automorphisrﬁ A of G,
which in turn yields automorphisms of both f(G) (as an ordered group) and
Kerf (as a group). If we write 4 for the induced order-automorphism on f(G),
then identical considerations as in Section 3, yield that A has irreducible charac-
teristic polynomial (as a group endomorphism of f(G)). The matrix 4 has 0 as
an eigenvalue of multiplicity m — n, and its Perron eigenvalue is just the real
number that A multiplies f(G) by.

Hence we deduce necessary conditions for an automorphism to be induced
by the canonical one of a stationary system: and the converse holds with the
appropriate modifications of 3.3,

The case that n = 3 and Ker/ be nonzero, of the following, was established
by Shen [15; 2.1]. o

4.1. THEOREM. Let G be a simple dimension group with unique state f, and
suppose G is free of finite rank, n. Then G arises as the order limit of the stationary
system

A A A
Z"—)Z"—»Z"—-)...

Sfor some A in SL (n, Z)* if and only if f(G), the totally ordered :;ubgroup
of R, arises as the limit of a stationary system (viz. 3.3).

Proof. The preceding paragraph indicated that if G is the limit of a stationary
system induced by some B (a possibly larger size matrix), then the induced
order-automorphism B of f(G) has full rank, that is {J, B, B, ..., E“‘}
(t = rank f(G)) is linearly independent over Z, so f(G) satisfies 3.3(iii).

Conversely, assume that f(G) is the limit of a stationary system as in 3.3(ii),
say with ¢ by ¢ matrix B (¢>1). Then B necessarily has irreducible characteristic
polynomial (as an endomorphism of Zf), and its Perron eigenvalue must exceed 1
(since detB = 4-1). Form an automorphism of G simply by defining v = B ® i,
where i: Kerf — Kerf is the identity. It is easily checked that u is an order-auto-
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morphism. Now the same process as in the proof of 3.3 (ii) can be carried through,
since u as an element of EndzG ~ M, Z satisfies the hypothesis of Theorem 1.

 What about the non-free situation? Several complications arise owing to the
-group structure of limits of stationary systems, and also the failure of Theorem I,
when the irrationality hypothesis is dropped. Provided the rangs of f is at least
rank 2, the problem can always be resolved, but people might not find the
solution to their taste.

(1) The rank of the image of the state is one.

If such a dimension group arises as a limit of a stationary system, then
after normalization f(G) must be Z[1/m]} (the ring obtained by adjoining 1/m to
Z), where me N is the Perron eigenvalue of the generating matrix. Of course,
if G has rank 1, then G = Lim Z 25 Z 5. .

More usually, the rank of G exceeds one. In that case, the kernel of the state
is of rank n — 1, and need not be a direct summand. The group structure of G
can then be very complicated and interferes with attempts to classify the
-outcome. In addition, the right and left eigenvectors of the matrix will have all
rational ratios, so it will be difficult to tell when a specific group arises from a
stationary system (see the discussion at the conclusion of Section 2).

-+ (2) The rank of the image of the state exceeds one.

Here the totally ordered situation becomes interesting. If G < R does arise
from a stationary system with rankG = n, then we have A in M, Z"" (m = n)
generating it. Proceeding as before we obtain induced group homomorphisms
A:Z" > 7", whose limit is G. Then A4 satisfies the weak Perron property, and
since its characteristic polynomial is irreducible (over Q), Theorem I asserts that
A is conjugate to a strictly positive matrix; it easily follows that there exists B
in M,Z** such that G is order-isomorphic to the limit of the stationary system
generated by B (as in the proof of 3.3). Hence we may have assumed m = n.

We also note that if B is the automorphism of G induced by B, then
Z[é\,' 1}_1] < End G, and the latter is a finitely generated module over the former.
It follows that

(i) K, the field of fractions of End G, is of dimension n over Q:

(ii) There exists an integer m such that mZK[ﬁ“l] < End_G;

(iii) Tt follows from (ii) that the units of End,G have torsion-free rank at
least r'l' -+ ry (strictly more than the rank of Z3), but are finitely generated.

So a necessary condition for a totally ordered (not necessarily free) subgroup
of R to arise from a stationary system is

(iv) (End,G, +) is of rank equalling that of G and

(v) The ring End G is finitely generated over a ring of the form Zfr, r™], for
some r in Zy; alternately, there exists an element s in Zg (K is the field of fractions
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of End G) with Zi[s7'] a module of finite type over End G; and ;G is finitely
generated.

In fact (iv) and (v) together are sufficient as well. The group structure under-
lying G now plays a role, and interferes with the attempt to apply directly the tech-
niques suggested in the course of the proof of 3.3. This will be discussed in a subse-
quent paper, where a more general discussion of indecomposable torsion-free
abelian groups and their endomorphism rings will take place.

5. CLASSIFICATION OF TOTALLY ORDERED GROUPS

In this section, we show the classification of free totally ordered subgroups
which arise from stationary systems (equivalently, with “enough” continuous
endomorphisms, 3.3(iii), (v), or (vi)) is roughly the same as that of certain ideal
classes in integral orders in number fields, with a fixed real embedding.

This correspondence is similar to that obtained in Section 4 of [8], and
here the techniques are easier to implement. So the details will only be
sketched, and emphasis will be on the comparison with the results of (8; §4].

Let G be a dense subgroup of R™; impose the relative topology on G, and
define the ring End G = E, as the ring of continuous endomorphisms of G; that
is, End G consists of those endomorphisms ¥ of G that extend to real linear
maps,

G c R”

wl lw
GCR’"

In case G is free of rank m -+ 1, and (End,G,+) is of rank m 4 1 (equivalently,
(End_ G) (g) is of rank m -+ 1 for any nonzero g in G), then G is classified by a triple
[8; IV.6]:

(E = End G, [D], [¢G]).

Here ;G indicates G is being considered as an E-module; it turns out that as E-mo-
dules, ;G is isomorphic to an ideal I of E such that Endg/ ~ E; [;G] denotes the
ideal class of this 1. Also, D: E — R is a distinguished real embedding; [D] = [D’]
for another real embedding D', if there is an automorphism ¢ of E, such that
Dg = D'. Conversely, every such triple is attainable [8; IV.5].

Now suppose m = 1, and G is a subgroup of R, free of rank »n. Then any
continuous endomorphism u of G, has the property that ? and one of {u, —u}
are order-preserving. Hence, (End G)* provides virtually complete information about
Aut,G, the group of order-automorphisms of G.

Assume (End,G,+) has full rank » (so in particular, & is the limit of a sta-
tionary system). With F = End G, G becomes an E-module of E-rank 1 (this
means G is contained in a one-dimensional vector space over the field of fractions
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of E, K), and G is obviously E-torsion-free, so is isomorphic to an ideal of E.
Further, the module ;G has the same reflexivity property as in the previous situation:
the natural map

E - End G
is an isomorphism of rings. This may be proved exactly as in [8; IV.3].

The embedding G = R, induces a distinguished real embedding o4: £ — R,
¥ — ¥(1). Declare two ring embeddings 7y, 6, £ — R equivalent if there is an auto-
morphism o of E (this is stronger than merely an automorphism of K) such that
0,0 = gy; [0y] = [o]. )

Then totally ordered free subgroups of R with enough continuous endomor-
phisms are classified by the triple

(E “cha [o0], [:GD).

This means, given two such groups G,, G,, they are topologically and order-iso-
morphic if and only if there is an isomorphism of rings E, = End G, - E;, and
an E, — E, semilinear module isomorphism, ; G; = £,G,, so that the ¢y’s differ
by at most an automorphism of E,. The important thing is that the module iso-
morphism is just as modules.

Conversely, given an integral order E in a field K, together with a real em-
bedding 7: K — R, and. an ideal I of E such that the natural map E — Endg/
(“‘semi-invertible” in [8]) is an isomorphism, there is a unique up to topolo-
gical/order-isomorphism free subgroup of R, G, whose triple (End. G, loo], [£GD)
matches (E, [7], [;G]). (Prescription: Take for G, t(I) = R.)

The proofs are merely Bowdlerized versions of [8; IV.6] and [8; IV.5]
respectively; all the nasty bits are removed because the vector space is one-dimen-
sional.

In particular, certain of the ideal classes of these orders are the appropriate
object of study. It is known that for fixed E, there are only finitely many [1; p. 543,
2.3].

In case G arises from a stationary system, but is not free, it still makes
sense to consider G as an End G-module; of course it is isomorphic to an ideal,
and the reflexivity property still holds. It would be surprising if the analogous
results dealing with isomorphism failed to hold.
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