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- ON THE FORM SUM AND THE FRIEDRICHS.
EXTENSION OF SCHRODINGER OPERATORS
WITH SINGULAR POTENTIALS

HANS L. CYCON

1. INTRODUCTION

Let Q be an open set in R”. Consider the formal Schrédinger operator
(L A 4V,
where V is a real-valued function and

Q).

loc

(1.2) : Vell

The problem we are interested in is to determine a Hamiltonian associated with t
as a self-adjoint operator in the Hilbert space L%(®). Since, regarding the high
singularities allowed to V, there exists in general no “minimal” operator (i.e., a
symmetric operator with the space of test functions C§(2) as domain),
Kato 1974 [11] suggested considering instead the “maximal” operator given by

(1.3) T ui==tu,

with domain
D(T,.):={ue LXQ) | Vue L} ,(Q), tue LX(Q)},

where tu is taken in the distribution sense. If T is not self-adjoint, the question
arises whether there are self-adjoint restrictions of T . .
If we assume for a moment that

(1.4) Ve L2 ()

instead of (1.2), then T, :=1| CP(2) exists, T, = Ta, and the question is
equivalent to that of asking for self-adjoint extensions of T, [11]. The answer to
this is highly ambiguous if T, is not essentially self-adjoint, since then there are
infinitely many such extensions [15].
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Therefore one usually selects extensions which arise in a natural “‘physical”
way {17,7].0

In the case (1.2) we will proceed analogously. Let V=V, + ¥, and
assume

(C)) Voe L} (Q) real-valued such that (—A + V)t C&(Q) is bounded from

below
and

(C,) Vye L}, .(Q) real-valued and bounded from below.

If T, denotes the Friedrichs extension of (—A + Vi)t C&(Q2), then we can
use quadratic forms to define at least two self-adjoint restrictions of 7 . (Note
that there is a one-to-one correspondence between semibounded closed quadratic
forms and semibounded self-adjoint operators [9, Ch. VIJ).

The first is the form sum T, 4+ V,, which is the self-adjoint operator
associated with the sum of the semibounded closed forms of T, and ¥;.

The second is the self-adjoint operator T, associated with the closure of the
minimal form, which is the restriction of the sum of the two forms of T, and ¥;
to C32(2) <X CL(Q). Obviously in the case (1.4) T'ris the Friedrichs extension of
T ;. we therefore might call Ty the Friedrichs restriction of T in the geneial
case (1.2). ’

If Vy = 0, then the domains of both the form sum and the Friedrichs restriction
are contained in the form domain of the “free’” Hamiltonian Hy: =(— A)1 CP(Q) Y.
This can be interpreted physically to mean that both operator domains contain
only states with finite kinetic energy. In this sense both T and T, 4- ¥, can be
considered as possible “physical” Hamiltonians associated with .

But as long as T and Ty -+ ¥V, do not coincide we are still left with an
ambiguity.

For special cases, i.e. if @ = R™\S (where S is either a finite set of points
or of balls in R"), V, is either zero or has s %-singularities in S, and various res-
trictions are made on ¥, and n, Robinson ct al. [17,4] and Semenov [19] have shown
the coincidence of T, and T, 4 V;; a very general result (among others) of this
type has also been obtained by Combescure-Moulin and Ginibre {1]® for N-par-
ticle systems, when ¥V, has certain r~*-singularities in the set of hyperplanes where
the particles collide. For ¥V, =0 and Q = R” the result has also been obtained
by Simon [21, Th. 2.1].

-1 Note that we are considering the semibounded case only.
2 In fact D(T) is contained in the form domain Q(T) for any T and AT =T, 4 Vy) =
= Q(To) n Q(Vy) (cf. Section 3).
3) Qur paper has in part been stimulated by [i].
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In the present paper we prove the following general result:
Assume (C,) and (C,); then
(1.5) I = To—i— vy
for ne N and any open Q in R”,

We add several remarks:

1. Note that there is a third possibility of defining a Hamiltonian by physical
considerations, i.e. by the limit in the strong resolvent sense of a monotone
increasing cut-off procedure for ¥;. But since it is well-known that this limit
coincides with the form sum (see [3, Th. 7.12; 18]), this creates no additional
ambiguity.

2. (1.5) is a Schrédinger operator result. For general semibounded self-
adjoint operators the form sum and the Friedrichs extension of the sum may
not coincide (see [9, Chap. VI, 2.5} for a counterexample). '

3. We make no use of any explicit form of ¥, and V;. Thus, if one chooses
Jacobian coordinates, the Schrodinger operator for N-particle systems with center
of mass removed is of the form (1.1) (i.e. no Hughes-Eckart terms occur [16,
p. 78 f.]), and our result includes also the N-particle case.

4. There would be no difficulty in replacing © by a more general second-or-
der differential operator of elliptic type, such as one involving a magnetic potential.

5. Note that (1.5) means commutativity between closure and summation of
forms, i.e.

ty + ty, =ty +tv,,
where #,, ty, denote the quadratic forms associated with T, and ¥, on C(Q).

The proof of our main theorem is based on Kato’s inequality [10], in fact
the method of the proof itself is a variant of Kato’s technique, which has been
used very successfully in tackling self-adjointness problems [10, 11, 20, 1]. But,
rather than looking for an “approximative” positive ground state for T, (an idea
which goes back to Simon [20]), we show that the cone of a.e. positive Cg’-functions
is dense (in the sense of the form norm of Tp) in the cone of a.e. positive ele-
ments in the form domain of T,. This will be referred to as T, having a positive
Jform core.

The key result of this paper is that any semibounded Schrodinger operator
has a positive form core. This is an analytical property of Schrédinger operators
which might be of some mathematical interest in its own right.

To prove this property we use a positivity preserving “‘approximative iden-
tity”” which commutes ‘“‘approximately’” with T}, a technique which we already used
to deal with self-adjointness problems [2].

The paper is organized as follows. In Section 2 we show some stability pro-
perties for Schrédinger operators with positive form core and finally that all semi-
bounded operators have positive form core. Section 3 contains the main theorem
and some additional uniqueness results concerning the Friedrichs extension.
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In conclusion we remark that in the proofs we always assume T, and V;
to be positive. We can do this without loss of generality, since one can always
add a suitable constant, without changing domains, form topologies, etc.

Aknowledgements: I owe thanks to R. Wiist for very enllghtnmg and
stxmulatmg discussions.

2. SCHRODINGER OPERATORS WITH POSITIVE FORM CORE

We first give some notations and recall some basic properties of quadratic
forms (for an extensive treatment of quadratic forms see [9, Ch. VI; 3; 14)).
Given D = L¥Q), we denote by D* the set of a.e. positive elements in D. Let ¢
be a semibounded quadratic form with lower bound o defined on D X D; the'n__
we denote the form domain of ¢t by Q(r):=D. tis closed if Q(¢) together with the
inner product (-,.), is a Hilbert space, where

@, v):=t{u, v} + (1 — )(u,v); wu,ve QQ).

The associated norm will be denoted by || .|, .

There is a one-to-one correspondence between semibounded closed quadratic.
forms and semibounded self-adjoint operators. The domain of the closed form associat-
ed with the operator T'is called the form domain of T"and is denoted by Q(T), and the
associated norm in Q(T") will be called the form norm of I For a semibounded sym-
metric operator T we denote by T'p the Friedrichs extension (this is the self-adjoint
extension of T associated with the closure of the quadratic form

tu, v]:=(Tu,v); u,ve D(T)).

DEFINITION. Let T be a symmetric operator bounded from below in L*Q)
with D(T) = CP(R). Then we say that T has a positive form core (p.f.c.) if, for any
u e Q(Tr)* there exists a sequence {u,,} ey in CP(Q)" with [|u,, — u|, = 0 (m — o0),
where ¢ denotes the form associated with T .

The following lemma states that the positive form core property is stable under
relatively bounded form perturbations with bound < 1. We will make no explicit
use of it in this paper, but it might be useful for possible extensions of Theorem 2
(cf. Remark 4).

LEMMA 1. Let T be a symmetric operator bounded from below with
D(T) = C§(Q), A be a symmetric operator such that D(T') < D(A) and suppose that
there exist 0 < a<1 and b > 0 with

(4w, w)| < a(Tw,w) + b(w,w), we CXQ).

If T has p.f.c., then so has T -+ A.
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Proof. -Since we know that Q(Ty) = Q((T + A4);) and the associated form
norms for T and (T + A)p are equivalent [15, Th. X. 17], the assertion follows.
immediately.

If we denote the Laplacian on C3°(Q) by
@.1) Hy:=(—2)1 C2(@),
then H, has p.f.c. and this is not changed by the addition of a semibounded
L (Q)-potential, as we will show in the next lemma.

LeMMA 2. Let H, be as in (2.1) and Ve L}, (Q) real-valued and bounded from:
below. Then Hy + V), has p.f.c. .

~ Proof. Without loss of generality assume ¥, > 0. Denoting by ¢ the quadratic
form associated with T:=(H, + V,)r, We have
ellt = lll2 + | ullt -+ V32l ue Q(H) n Q(Vy) .
Let we C3(Q). Then using Friedrichs mollifiers we obtain a sequence {W};en
in CP(R)" such that
2.2) Wy — Iwl i, =0 (k- o0),
and it follows.that |w| e Q(T). (For this and the following compare [6, proof of

Lemma 1].)
Now, let ue Q(T)". Then there is a sequence {@ptmen in C3(Q) such that

#n—ull, >0 (n—>o0)
Then
H laml - u”? < “am - u”2 + {H v(flm - u)” + |(Sign&m - ])} vai}z +

+ 1V, — w.

Together with du = 0 a.e. on {xe Q|u(x) =0} forie {1, ...,n} [5, Lemma 7.7],
we can use Riesz Lemma and then the dominated convergence theorem to
pass to a subsequence .{u,}.en Such that

2.3) MNuwl —ully =0 (m— o).

Consequently, by an ¢/2 argument, we can obtain from (2.2) and (2.3) a sequence
in C(Q)* which converges to u in the form norm of T. This proves Lemma 2.

4 We denote

n
tvuli="Y, 10, ueQHy).

i=1
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Assuming (C,), we will use the following notation in this and the next
section (in addition to (2.1)):

Ty:= Friedrichs extension of (—A + V)1 C(Q);

Ve i =max{0, Vy}, V¢ :=max{0, —V,};
2.4)
T :=(H, + V)r;

VE=min{k, Vo }, Ti:=(Hy + Vi — V) for keN;

by ty, t, and t, we denote the quadratic forms associated with T,, T, and T,

respectively (ke N). .
What follows is a more technical lemma, which we need for the main theorem

in this section.

LeMMA 3. Assume (C,). Then T, - T, (k — oo) in the strong resolvent
sense and Q(T.) < O(T,).

Proof. Since, for keN, we know T,< T, CYQ < Q(T,) and
W, T w) = (w, Tow) (k — o0), we CPX(Q), the first part of Lemma 3 follows from
{3, Th. 7.9]). The second part is obvious, because of 7, > T, .

The following theorem is the main result of this section. It states that any semi-
bounded Schrédinger operator with L2 (92)-potential has p.f.c.. The proof runs
roughly parallel to that of Theorem 1 in [2].

THEOREM 1. Assume (C;). Then T, has p.f.c..

Proof. Assume T, > 0.
We know from Lemma 2 and Lemma 3 that

{2.5) T, has p.fc.

and

(2.6) T = Q(T,) = ATy).
(2.5), (2.6) and

2.7 el < Hlelloe < U <llee (keN)

imply that there exists for any # e Q(T,)* a sequence {#,},n in CP(Q)* with
Ham - ﬁ”’n_>0 (m'_) OO).

Therefore by an &/2 argument, it suffices to show that for any ue Q(Tp)* there
exists a sequence {#;};en in Q(T,)" such that

(2.8) llu; — ully >0 (j— 00).
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Thus, let ue Q(T,)* and m, ke N; set

1 -1
Uy, = (-~— Ty - 1) u

m

1 —1
u’,ﬁ,::(—Tk—‘rl) u-
m

(Note that we assumed T, > 0 and thus T, > 0.)
Since (T, -~ 1)~! is positivity preserving [6], together with (2.6) we have

and

2.9 ul e Q(T,)".
1 —1
Since (Tp, + )12 and (7}5 Ty + 1) commute, we have

e — ulle, = H((;]; Ty + l)—l — 1)(T0 -+ 1)irzy

—-1
Therefore, since (% T, + 1) — 1 (m — 00) strongly, it follows that

(210) “um - u”tg -0 (ﬂ’l - OO)

Now,.let_m € N. Then for k € N, using (2.7) and the Schwarz inequality we get the
following estimates:

(T 4 my e — (To 4 m) ulliyem <
Q1D < (T + m) e + (Lo 4+ m) g rm — 20Ty + m) M, ) <

< [[(To + m)'u — (T, + m) u| {|ull.
From Lemma 3 we know (T}, + m) — (T, + m) (k - o0) in the strong resolvent

-1
sense. Therefore, the identity (711« T+ 1) = m(T + m)™* for self-adjoint ope-
rators T and (2.11) yields
“ufn — Upllyem >0 (k> o00),

which is equivalent to
@.12) s, — unlliy >0 (k — co),

Bearing in mind (2.9), we can use (2.10) and (2.12) to choose a subsequence {u;}; .n
out of {u}.en, ren With the desired properties (2.8). Thus Theorem 1 is proved.

6 — 1242
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3. FORM SUM AND FRIEDRICHS RESTRICTION

Assume (C,)), (C;) and define T, and T, by (1.3) and (2.4) respectively.
Denote by 1, the semibounded closed quadratic form given by the sum of the two
forms associated with T, and ¥,. Then the seif-adjoint operator associated with ¢,
is called the form sum of T, and V,. We denote it by T, -+ V;. Obviously T, ++ V1
is a self-adjoint restriction of T, . Note that Q(T, -- V1) = O(Ty) n O(V)). If
we denote by ¢, the semibounded quadratic form which is the restriction of ¢, to
CP(2) X C(R2), then the self-adjoint operator associated with the closure of 7,
is also a self-adjoint restriction of T, . We denote it by T\ and call it the Friedrichs
restriction of T,,. Note that Q(Tf) is the closure of Cg°(22) in the sense of: the
form norm of Ty + V.

We now prove our main result. The proof is very similar to that of Theorem
4.1 in [1].

THEOREM 2. Assume (C,), (C,) and define T, by (2.4). Then Tr= Ty + V,.

Proof. Assume T, > 0 and ¥, > 0. We denote here T,:=T, -+ V;. Since
1.2 and ¢, coincide on C(Q), it is sufficient to show that C$°(€2) is dense in the Hilbert
space Q(T,) with the inner product (-,-), . Let ve Q(T,) be orthogonal to ()
in the sense of the inner product (-,-);,. This is equivalent to '
3.1 Av= (Vo -+ V, + Do

in the distribution sense. _

Now (¥, + Vyve L (Q), since ve O(V,), Vye Lh(®) and Vye L5 (Q) by
hypothesis. Thus the right hand side of (3.1), and therefore also the left hand side,
is in L},.(Q). Therefore we can apply Kato’s inequality [10]

Afv| > Re{(sign v)Av}
and since ¥; > 0, we arrive at
(3.2). ((To + Dw, [o]) <0 (we CF(Q)").

Since ve Q(T), we know |v] e O(Tp) [6]; it follows that we can write (3.2) in terms
of the Hilbert space Q(T,) with inner product (-,-), , i.e.

(3.3) w, oD, <0 (we C(Q)Y).
Now let w:=(Ty + 1) v|. Thus ue Q(Tp)*, since (T, + 1)t is positivity
preserving [6]. From Theorem 1 we know that T, has p.f.c.; thus there exists a

sequence {w,}men in C(Q)" such that

- lim (u, [0}, = (o + 1), [0)y, = [Jo]%
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From (3.3) v = 0 follows. Thus C(Q) is dense in the Hilbert space Q(T,) and the
theorem is proved.

Remark. If we replace (C,) by the stronger condition
(Cyy Viel?

loc

(2), V, real-valued and bounded from below,
then

3.9 N Tt :=1u, D(T ;):=C(Q)

min

is well defined as a symmetric semibounded operator in L) and the Friedrichs
restriction of T coincides with the Friedrichs extension of T, . In this case Theorem

2 states that the form sum of 7', and V; coincides with the Friedrichs ex-
tension of T, .

We now give some uniqueness results which show the distinguished role of
the Friedrichs extension (compare with [7]).
The proof of the following lemma is analogous to that of Theorem 4.4inTl1).

LemMa 4. Assume (C,), (Cy)’ and define T, and T, by (3.4) and (2.4). Then
the Friedrichs extension Ty is the only self-adjoint extension of T, that has its
domain in Q(T,).

' Proof. Assume T, > 0 and ¥, > 0. Let T, be a self-adjoin. extension of T,
with domain contained in Q(Ty). It is sufficient to show that this implies
D(Ty) = D(Ty) since T, and T are self-adjoint extensions of T, .

Let ue D(TY) and

=T 1 ) A1+ Du.

Thus for any we Cg"(Q)

0= ((Tp + 1+ —(Ty +1 iy, wy = @ — u, Ty + 1 — i)w)
which yields

Avw(Vo—{—Vl»klﬁ—l)v forv*u——u

in the dlstrlbutlon sense. From this one deduces v =0 by the same argument

as in the proof of Theorem 2. Since u' e D(T,), D(T,) < D(Ty) and Lemma 4
is proved.

. If instead of (C) we take the stronger condition thatA Vs is a bounded
Hq-form with relative bound < 1, then T, is semibounded and Q(T,) = Q(H,)
[15, Th. X. 17]. We can immediately deduce the following theorem from Lemma 4:

- THEOREM 3. Assume (C,) and define T, and T, by (3.4) and (2.4). Let
Voe LE (Q) be real-valued and there exist 0 < a < 1 and b > 0 such that

(Vow, w)| < a(Hyw,w) + b(w,w); we CX(Q).

Then the Friedrichs extension of T,

min 1S the only self-adjoint extension of T, with
domain contained in Q(H)).
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Theorem 3 is analogous to a result of Nenciu {13} and Wiist and Klaus [12}
in the Dirac operator case. It can be interpreted physically as meaning that the
minimal operator has a unique self-adjoint extension whose domain contains
only states with finite kinetic energy.

A similar result for the potential energy can be obtained for the case 2 = R”™.
But we first proof a technical lemma.

LEMMA 5. Let Q = R". Assume (Cy), (Cp) and define T, and Ty by (3.4)
and (2.4). If T, is a self-adjoint extension of T, , then D(Ty) < Q(Vy) implies

D(T) = Q(Ty).

Proof. We use a lemma due to Karlsson {8, Lemma 1.1} in which he proves
essentially that for we L (R") with

e LE (R and  (V7)YPue LL(R")
and for a @ e CP(R™* the following inequality holds (cf. [8, (1.10)]):

— 1 .
0.3 \olive? + i < Re{g <pwu}+SfPVo‘lui2 - .2_8(* Ap)luf?.

Let T, be a self-adjoint extension of T, with D(T,) € Q(V). Let ue D(T)
and for k€ N define @, by
X
=P — >
P ( 2 )

where @ is a function in C°(R")* which takes the value 1 in the ball with radius 1
and 0 outside of the ball with radius 2. Then (3.5) holds if we replace @ by ¢, for
keN. Since ueQ(V,), we can use the dominated convergence theorem
for replacing ¢ by 1 in (3.5). Thus we conclude u € Q(H,) and ue Q(Vy). Therefore
we have ue Q(T,) and Lemma 5 is proved.

THEOREM 4. Let Q = R™. Assume (C,), (Cy) and define T,,, and T, by (3.4)
and (2.4). Then there is at most one self-adjoint extension of T with domain

contained in Q(V,). This coincides then with the Friedrichs extension of T, .-

Proof. Let T, be a self-adjoint extension of T, with D(T}) contained in
Q(V,). Obviously D(T,) is contained in Q(V;) and, using Lemma 5, also in Q(T5).
But Lemma 4 shows us then that T, = T, which proves the theorem.

Note that Theorem 4 does not mean that a self-adjoint extension of T, with
domain contained in Q(V,) always exists.

If ¥, is the negative part and ¥; the positive part of ¥V, and Vyis a Hy-form
bounded with relative bound < 1, then the domain of the Friedrichs extension of
T, is contained in Q(¥) (and therefore in Q(¥,)). This is then the only extension

with this property.
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We prove this in the following

COROLLARY. Let Q = R". Assume Ve L (R") real-valued with V =V, + V,,
where Vy = min{0, V}, V; = max{0, V} and define T, and Ty by (3.4) and (2.4).
If there exist 0 < a<1 and b > 0 such that

(Vow, w)| < a(Hgw,w) + b(w,w), we CJ(Q),

then the Friedrichs extension Ty of T, is the only self-adjoint extension of T,
with domain contained in Q(V).

i

Proof. Because of Theorem 2 and the H,-form boundedness of ¥, with bound
< 1 we have

Q(Tr) = Q(Ho) n Q(Vo)-n (V) < Q).

If T; is another self-adjoint extension of T, with D(T}) contained in Q(V), then
(since Q(V) < Q(Vy)) T, = Ty follows from Theorem 4.

The corollary can be interpreted physically as meaning that the Friedrichs
extension is the unique self-adjoint extension of T, having only states with finite
potential energy in its domain. Note that in this case this is also the only exten-
sion with finite kinetic energy states in its domain (cf. Theorem 3).

Supplementary note.

B. Simon has pointed out® that Theorem 2 may be considered as a positive
solution of the ‘““form analog” of JOrgens conjecture, i.e. the stability of self-
adjointness under positive potential perturbations (see [2]).
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