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A TOEPLITZ-HAUSDORFF THEOREM
FOR MATRIX RANGES

FRANCIS J. NARCOWICH and JOSEPH D. WARD

1. INTRODUCTION

Given a bounded linear operator T defined on a complex Hilbert space A,
the spatial numerical range  of T is the set

. WAT) = {{Tx,x>: xeH, ||x|| = 1}.

The Toeplitz-Hausdorff Theorem states that #°,(T) is convex ([9]; [14]); the closure
of #'|(T) is the numerical range,

(1.2) WAT) = {p(T): p € S,},

where S, the state space, is the set of norm-one positive linear functionals defined
on the set of all bounded linear operators on H#, Z(#).

" To simplify matters, restrict # to be finite dimensional; note that % ,(T)
is closed in this case, so #'(T) = W (T). The Toeplitz-Hausdorff Theorem: may
be viewed as a consequence of the equality between #,(T) and W,(T). This equality
comes about by virtue of the fact that not all functionals in S, are needed to sweep
out W(T); only those of the form {(-)x, x), where xe# and |x| =1 — all
of which are extreme points in S; — are needed. Thus to prove the Toeplitz-
Hausdorff Theorem, it suffices to show that the numerical range is swept out by the
extreme points of S;. Such an approach will yield both a geometric proof of the
Toeplitz-Hausdorff Theorem, thus answering a question of P. R. Halmos [7; 8,
p. 110}, and a generalization of the theorem to matrix ranges.

Using completely positive maps, Arveson [2, p. 300] generalized the concept
of numerical range in defining matrix ranges. Recall that if & and # are
C*-algebras and M, is the set of complex m X m matrices with identity 7,,, a
linear map ¢: & — A is said to be completely positive (see [1]) if the associated maps

0@, A M, ~BROM,, m>1,

1 Usage differs. Some authors use “‘numerical range’ and ¢‘algebra numerical range’ for
what are here termed ¢‘spatial numerical range” and ‘“‘numerical range”, respectively.
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are all positive. The set of all such maps is denoted by CP[«#, #]. If &/ has identity
I, then the subset of CP[, #] consisting of all ¢ such that ¢(/) = K, K fixed and
positive in 4, is denoted by CP[«/, #; K]; in addition, CP[«Z,M,;I,] = S, is
termed the n'® state space. (S; consists of norm-one positive linear functionals on
&/ — this agrees with previous usage.) Finally, the n® matrix range for Te &/ is

(1.3) WD = peMyp=o(T), e S,).

Each W,(T) is a compac., convex subset of M,. For & = B(#), n = 1, W(T) is
the numerical range of T given in (1.2).

One possible generalization of the spatial numerical range was given by
Bonsall [3], who defined spatial matrix ranges: If C* is complex n dimensional
space, then

(14) WD) ={peM;p=V*TV, V¥V =1, VeB(C"H),

where in general #(s¢,, #,) denotes all bounded linear maps from 3, into yﬂ_,
For n =1, this is the spatial numerical range of 7. If n > 2, # (T) lacks two
important properties of ¥ (T): it is not convex [4, p. 142] and its closure is not
W(T) [5, Remark 4.12]. As the work of Bunce and Salinas [5, Sec. 3] demon-
strates, the matricial convex hull of #",(T") (denoted by mconv(# ,(T)); see Section 3),
which is both convex and has W,(T) as its closure, is a better analogue to the
spatial numerical range.

The main purpose of this paper is to provide for mconv(# (7)) a theorem
analogous to the Toeplitz-Hausdorff Theorem; that is, to find a class of maps
in CP[#(s¢), M, ; I,] which sweep out mconv(# (7)) in the same way that norm-one
positive linear functionals of the form {(-)x,x) sweep out the spatial numerical
range. In particular, it will be shown Nthat the necessary maps all have the form
S V()V;, whete ¥V, B(Ch, #), 3, VAV, =1,, and N < 3.
m=1 j=1

Outline and summary. In Section 2, an extremal problem similar to that
discussed by Choi [6] is solved; a special case of the solution to this problem is then
used to provide a new proof for the Toeplitz-Hausdorff Theorem. Because this
new proof relies on a special case of a complicated theorem, a second, direct
geometric proof of the Toeplitz-Hausdorff Theorem — one which does not
use results involving completely positive maps — will also be given. The section
closes with a corollary which describes the structure of the matrix range when 57
is finite dimensional; this result, which is another consequence of having solved
the extremal problem mentioned earlier, is used to motivate the definition of
the n't vector matrix range for T, w(T).

Section 3 begins with a theorem which states that the n*® vector matrix range
for T is precisely the matricial convex hull of % (T); this theorem is the matrix
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analogue of the Toeplitz-Hausdorff Theorem. The section continues with a
discussion of the topological properties of matrix ranges and vector matrix ranges.
In partlcular it is shown that if W,(T) contains a closed disk of*radius r, then
W, (T) contains a closed ball of radius r (see [13], Theorem 4.6). Finally, relation-
ships among essential matrix ranges, matrix ranges, and vector-matrix ranges are
given and then used to show that vector-matrix ranges and matrix ranges
coincide for a compact operator with O in the interior of its numerical range.
Closing remarks are made and a few questions are raised in Section 4.

2. AN EXTREMAL PROBLEM

In [6), Choi gives the following elegant characterization of CP[M,, M,}:
¢ € CP[M,, M,] if and only if there exist r X n matrices ¥; such that

N
2.1 o(T)=Y, ViTV;, Te M,, N < co.

j=t
The expression for ¢ given in (2.1) is said to be canonical if the set {¥;} is linearly
independent. In addition, Choi characterizes the extreme points of CP[M,, M, ; K}
as those ¢ € CP[M,, M, ; K] whose canonical decomposition is such that {V*V;}
forms a linearly independent set.

The extremal problem solved by Choi may be viewed as follows: Let &,
be the subspace of M, spanned by I, and let ¢ € CP[M,, M,]. What are the
extreme points of the set of all ¥ e CP[M,, M,] such that Y|, = ¢y, ? Put this.
way, there is a natural generalization. Let & be a self-adjoint subspace of M,
and let ¢ € CP[M,, M,]. The set

2.2) Alp, &) = (¥ e CP[M,, M,]: ¥|, = 0|y}
is clearly convex — what are its extreme points? The answer, which will yield the

Toeplitz-Hausdorff Theorem as a special case and give rise to the generalization of"
this theorem, is given below:

THEOREM 2.1. Let & be a seif-adjoint subspace of M, and let A,, ..., AL be
self-adjoint matrices which form a basis for F. A completely positive map ¥ having -
the canonical decomposition

N
2.3) ¥ (T)y=Y, V*1v;, TeM,
j=1
is an extreme point of A(p, &) if and only if the set of matrices {G;},
2.4) Gy = @ VAV, S k=1,...,N,

is linearly independent in M, @ ... @ M, (L copies).
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Proof. Suppose that ¥(T) is an extreme point and that {G,} is a linearly
dependent set. The latter assumption implies the existence of complex numbers
{a;,}, such that

(2.5) Y Gy =0, 3 o, |2 #0.
By virtue of the fact that

{2.6) Gh =Gy, jik=1,....N,
these numbers may be chosen so that

2.7) ay =&, JSk=1,...,N.

In addition, multiplication by a non-zero real scale factor allows the additional
restriction that the two N X N matrices with components &;, 4- a;, be non-negative.
As such, there exist self-adjoint N X N matrices with components i such that

N
2.8) O oy = Eﬁjtﬁvii(’ Jk=1,...,N.
y=1
Define linear maps ¥ .: M, - M, by
n ]\]
(2.9) W;{:(T) = Z {5jk :t ajk}V}*TVk, TE M,. .

Je=1

Using (2.8), the fact that [87%] is self-adjoint, manipulating sums, and setting

‘(210) Zv:t = Z ﬁvdl:ch ’
k=1
transforms (2.9) into
N
(2.11) Y.(T)= Y (ZF*TZF, TeM,.
pe=1

By (2.11) and the result of Choi mentioned earlier, both ¥, and ¥ _ are completely
positive. Furthermore, taking components in (2.5) yields

N
(2.12) Y o VFAV, =0, I=1,..., L
P =
Since {4, ..., A.} is a basis for &, (2.12) gives
N

(2.13) Y VTV, =0, if Te .
1 k=1
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In particular, if Te &, (2.3), (2.9) and (2.13) imply that ¢(T) = Y (T) = Y _(T);
the completely positive maps ¥, thus belong to A(p., ). Manipulating (2.9) and
{2.3) gives:

(2.14) ¥~ % (P, +¥).

The extremality of ¥ implies that
2.15) Y()=¥()=¥_).

This_last equation and a remark of Choi {6, Remark 4] imply that the self-adjoint
matrices [Bj;] are also isometries:

2.16) | z BB —

The self-adjointness of B, (2.8) and (2.16) reveal that a;, =0, j, k=1, ..., N.
This contradicts (2.5); the set {G ) is linearly independent.

Conversely, suppose {G;,} is a linearly independent set; in addition, suppose
¥ satisfies

2.17) W — %(wl vy,
where ¥,, ¥, e A(p, &) and have the canonical decompositions,

N’ N’
@.18) V(T) = Y, XPTX,, ¥AT)= ¥, YFTY,,

j=1 j=1

where T e M, . Substitute (2.18) into (2.17) and replace ¥ by its canonical
decomposition (2.3):

N 1 N 1 N
2.19) Y V,-*TVj~—2~2 + 72 YXTY;.

j=1

Choi’s remark [6, Remark 4} and (2.19) imply that both the X;’s and Y}’s are linear
combinations of the ¥;’s. In particular,

N

(2.20) Xj: Eﬂjka, jzl,...,N’.
k=1

Define the set of matrices

L
2.21) Hy= @ 4K, jk=1,...,N;
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substitute (2.20) into (2.21) and collect terms:
N -_—

(2.22) Hy= Y HiptagGpq-
g=

Because both ¥ and ¥, are in A(p, %), Y VFAV, =Y X}AX; = ¢(4).
Setting j = k in (2.21), (2.22), (2.4) and summing then gives

N’ N 3
(2.23) Y H=Y G = ) o(4)).
j=1 =

j=1

Put the expression for H; gotten from (2.22) into (2.23) and manipulate the sums:

N
(2.24) ) { Y Fjphtjq — 0 q}qu —0.

pg=1 j=1

The linear independence of {G,,} and (2.24) reveals that
N -
(2.25) E Bipllig = Opq -

Substitute (2.20) into the expression for ¥, in (2.18), collect terms, and use (2.25):
(2.26) Y (T)=¥(T), TeM,.

From (2.26), (2.17) it follows that ¥ = ¥; = ¥,; hence ¥ is extreme in A(p, &).
This completes the proof.

REMARK. The proof of Theorem 2.1 was motivated by various proofs used
by Choi [6, Remark 4 and Theorem 5].

In the canonical decomposition (2.3) for an extreme point ¥, how large
can N be?

COROLLARY 2.1. Let ¥ be an extreme point of A(p, &) and let N be as in the
canonical decomposition for ¥ given in (2.3). Then N satisfies

2.27) N< |Ln,

where L is the dimension of &.

Proof. From (2.4), there are N2 elements in {Gy;}. On the other hand, the space
M, ®...® M, (L-copies) has dimension Ln®. For {G;} to be linearly indepen-
dent, it is necessary that N2 < Ln?; (2.27) then immediately follows.
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‘REMARK. The referee has pointed out that it is possible to prove Corollary 2.1
without using Theorem 2.1. His elegant proof follows along lines similar to the
proof used later in Remark 2.1.

An interesting application of the results given above is a non-computational,
geometric proof of the Toeplitz-Hausdorfl’ Theorem.

CoroLLARY 2.2. (Toeplitz-Hausdorff Theorem). The spatial numerical range of
a bounded linear operator defined on a complex Hilbert space is convex.

Proof. As P. R. Halmos notes [7], it suffices to give a proof for the case in
which, the Hilbert space is C? and the operators are 2 X 2 matrices (M,). In this
-«case; the spatial numerical range and numerical range of the operator coincide.

Let vy, v,€ C* have |lv;{| = 1, j = 1,2, and define the (completely) positive
maps @, ¢y, and ¢ by '

(2.28) o)1) = Tv;, vy, j=12;
(2.29) o(T) = apy(T) + (1 —)po(T), 0 <a <l

Here Te M,. Fix Te M, and put & = span(l,, T, T*). The convex set A(p, ¥)
consisting of all positive linear functionais on M, which agree with ¢ on the space
& is clearly compact. It thus has at least one extreme point — say, ¥(-). The
integer N in the decomposition for ¥ given in (2.3) is less than ]/§, because n =1,
L = 3; thus N ==1. The map ¥ then has the form

(2.3) ' Y(S) = v*So = (Sv,0), SeM,.

Since ¥ e A(p, &), it satisfies the following: ¥(L,) =1, Y(T)=e(T) (and
W(T*) = @(T*)). Thefirst of these equations implies that |jv]| = 1, the second that

{Tv,vy = alTvy,v,) + (I — ){Tvy, va).

‘Thus the spatial numerical range is convex.

REMARK 2.1. The proof of the Toeplitz-Hausdorff Theorem given in Corol-
lary 2.2 relies heavily on Theorem 2.1 and Corollary 2.1. For the case needed (i.e.
T € M,; positive linear functionals rather than the more general completely positive
maps), a direct route following the lines of Theorem 2.1 is available: Fix T'e M,;
let ¢ € S; (= norm-one positive linear functionals on M,), & = span{l,, T, T*},
and 4 = {¥e S,: Py = ¢|y}. Since 4 is clearly a compact, convex set, it has an
extreme point V. If ¥ is also an extreme point of S,, then, as is well-known,
W(.) = {()x,x), ||x||=1; hence, ¥(T)= o(T)={(Tx,x) and the Toeplitz-
Hausdorff Theorem holds. So suppose ¥ is not an extreme point of S;. Using the
identification MF ~ M,, ¥ may be uniquely represented as W(.) = tr((-)P),
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where Pe M,, P > 0, trP = 1. The fact that ¥ is not extreme in S; means that the
eigenvalues of P satisfy 0 < 4; < 1, j = 1,2. Since the complex dimension of & is
at most 3, and since & is a self-adjoint subspace of M,, its orthogonal complement
relative to the trace inner product is also a self-adjoint subspace and contains a
self-adjoint matrix Q # 0. Obviously Q satisfies trQ = tr7Q = tr7*Q@ = 0. In
addition, it is clearly possible to choose ¢ > 0 so small that P 4 ¢Q is positive as
well as self-adjoint. The corresponding functionals ¥ _(-) = tr((- }(P + ¢0)) are,

. 1 . . .
however, in A; moreover, ¥ = Er(‘P + + ¥_) — which contradicts ¥ being an
extreme point in A. Thus ¥ is extreme in S; and the proof is complete.

A more elementary proof with a different flavor was suggested by the referee:
Define Pe M, by P, = @(E,;), where E;; is a 2 X 2 matrix with one in the j — k
position and zeros elsewhere. Note that ¢(X) = tr(XP) for all Xe M,, so P is
positive and has trace one. Construct Q as above. For e R, let F(t) = P + Q. Since
trQ=0, the signs of the eigenvalues of Q differ; for large ¢, F(t) is not semi-definite.
By continuity of the determinant, there is a 7, > 0 with F(z,) having determinant zero
and trace one. Thus F(7,) is a rank one projection. Choosing a unit vector
xo€ Range(F(ty)) then gives ¢(T) = tr(TF(ty)) = {Txp, Xo), and the result is
again obtained.

:The proof of Corollary 2.2 and the proof in Remark 2.1 answer abque'stiom
raised by P. R. Halmos in [7; 8, p. 110].

ReMARK 2.2. The bound for N given in Corollary 2.1 does not depend on the
dimension of M,; moreover, the bound is of order . Is this bound for N the best peos-
sible? While the answer is not known for the general case, the referee pointed
out the following: There are examples in which N is at least [[/ L]n. (Here [x] is
the gréatest integer less than or equal to x). In particular, if L is a perfect square,
the bound in Corollary 2.1 is best possible.

In constructing such examples, the following facts are needed: Let Ej, be
the elementary matrix with one in the j — k position. Choi [6, Theorems 1 and 2}
has shown that ¢ is in CP[M,, M,] if and only if the nr X nr matrix

- r. .
@ =V, ©(E;) ® Ej, is positive. Moreover, a careful reading of the proof used
Jk=1

by Choi reveals that the integer N in the canonical decomposition for ¢ given in
(2.1) is precisely the rank of @.

To construct the examples, choose r = [JL] + 1 and let ¢: M, - M, be
defined by @(T) = tr(T),. Take & to be an L-dimensional self-adjoint subspace
of M, which contains all matrices whose last row and column vanish. If ¥ e 4{¢p, &),
it is clear that Y(Ej) = @(E}) = 6;1,, Where j, k < r— 1. The matrix ¥ thus
contains /,, ;, as a block; the rank of ¥ is then at least n(r — 1) = n[}/Z], SO
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N = o[|/L]. In particular, if ¥ is extreme and L is a perfect square, this and
Corollary 2.1 imply that N = ]/En.

A second consequence of Theorem 2.1 and its first corollary is a new charac-
terization for the matrix ranges of an operator T'e M, .

CoROLLARY 2.3. If TeM,, then peW,(T) if and only if there exists
S{’GCP[M,, (.3 1) such that p = W(T) and ¥ has the canonical decomposition

N N —
@31) VS =Y VAV, Y VVi=1h, N<|3n,
’ j=1 i=1

where Se M,.

Proof. An n X n matrix pis in W(T) if and only if there exists a state
Qe CP[M » M, ; I,] such that p==@(T). The set of all completely positive maps whose
restrictions to & = span{/,, T, T*} agree with ¢ is the convex set A(p, &). This
is easily seen to bé a compact subset of Z(M,, M,) and therefore has an extreme
point ¥. Corollary 2.1 implies that ¥ has the form (2.31). Since ¥ € A(p, &),
W(T)= @(T) = p. This completes the proof.

The characterization given in the corollary allows W (T) to be defined in terms.
of the subset of completely positive maps having the form (2.31), instead of all
maps in CP[M,, M,; L]. Since the maximum integer N needed in (3.21) is of order
n and since this bound is independent of r, it is natural to try to replace M,
by @(9‘/) To this end, define the following: The /length of a unital completely
posmve map @: B(H) > M, is the smallest integer N such that

(2.32) oY= ¥ VI, SV, =1,
j=1

where V; € #(C", #); denote the length of ¢ by /(). If such a representation does.
not exist, put £(¢) = -Foo. The n™ vector-matrix range for T e B(H#) is the set

2.33)  w D) ={peM,: p=o(T), p e CPIBH), M,; L], {(p) <|3n}.

1n words, this set consists of the image of T" under all unital completely positive
maps from B(#) to M, whose length is less than [/3 n. (The term ‘‘vector-matrix
range” was chosen to reflect the close relationship between the completely positive
maps used and the underlying Hilbert space.) '

REMARK 2.3. In case #° =~ C" (#(#) = M,), Corollary 2.3 implies that the nth
matrix range and »'™ vector matrix range coincide; that is,

(2.34) wo(T)=W,(T), TeBH)~M

REMARK 2.4. In case n =1, the first vector-matrix range and the spatial
numerical range coincide. For n > 1, it is clear that # (T) < w(T) c W (T)

Properties of vector-matrix ranges will be explored in the next section.
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3. VECTOR-MATRIX RANGES

Vector-matrix ranges share with spatial matrix ranges the property of being
defined in terms of the underlying Hilbert space . (# will be assumed infinite
dimensional throughout this section.) As will be seen, vector-matrix ranges are
closely related to corresponding spatial matrix ranges: the n'' vector-matrix range
is the matricial convex hull of the a™ spatial matrix range; as such, it is convex
and has the #'" matrix range as closure (Bunce and Salinas [5], Theorem 3.5). The
relationship between the #'" vector-matrix range and the n'® matrix range is thus
quite analogous to that between the spatial numerical range and the numerical
range. The purpose of this section is to investigate this analogy. To do this, the fol-
lowing lemma is essential:

Lemma 3.1. Let TeB(H) and suppose pe W, (T). If p= o(T), where
@ e CP{BH), M,; L), and if the length of ¢ is finite, then p € w(T).
Proof. Put v =/ (¢); by assumption, v < co and the map ¢ has the form

v

(3.1) o()= ¥, VW, X ViV =L

J=1

where V; e B(C" ). Take &, ..., &, to be the standard basis for C"; that is, &, =
=col (0, ..., 0,1,0, ..., 0), where one is in the k' position. Define Q to be the
orthogonal projection in # onto span{¥;&}. Since this space is finite dimensional,
Q is a finite rank projection; moreover, Qs =~ C’, where r = rankQ. In addition,
it is clear that

3.2) @(S) = 9(@8Q), SeB(H);

hence the map ¢': Q¥ > M, given by

(3.3) »'(R) = ¢(QRQ), ReBOK),
is completely positive and unital. Set

(3.4) T = QTQ € B(QK),

and apply (3.3) to get

(3.5) p =@ (T)e W (T).

From Remark 2.3 and the finite dimensionality of Q#, (3.5) implies that p € w,(T").
‘Thus there exists ¥’ e CP[#(0#), M,; I,] such that

(3.6) p=W(T), £(¥)<|3n.

Set Y(S) = ¥'(QS0), SeB(s#). Inspection reveals that ¥ e CP[B(H#), M,; 1),
p="Y¥(T), and £(¥) < |/3n: pew(T), and the proof is done.
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REMARK. Since there exist operators with non-closed spatial numerical range,
the hypothesis that ¢ has finite length cannot be omitted from Lemma 3.1,

The matricial convex hull of a subset I” < M, denoted by mconv(l’), is the

J J
set of all » X n matrices having the form z XFgX;, Z X,-*ij I,, J<oo, where

J=1 J=1 R
X;eM,, g;eI'. The following theorem relates vector-matrix ranges and spatial
matrix ranges; it is the analogue of the Toeplitz-Hausdorff Theorem.

THEOREM 3.1. The n'® vector-matrix range for T € B(H) is the matricial convex
hull of the corresponding spatial matrix range; that is,

(3.7 w,(T) = mconv(# (T)).

Proof. If p e meonv(# ,(T)),] there exist n X n matrices X;, ..., X, and iso-
metries - V;: C" — 5 such that

J J
68 =YXV, ¥ XK=,
P i=t

J=1

From the form given in (3.8), it is clear that p = o(T), ¢ e CP[B(H#)M,; ],
£(@) < oo; by Lemma 3.1, pe w(T):

3.9 : mconv(# (T) < wy(T).

If p € w,(T), then p is given by
N

N —
(3.10) p=Y Z}TZ;, ¥, Z}Z;=1, N< /3 n,
: j=1 J=1 .

where Z; € B(C", #). Define K; to be the positive square root of the matrix ZFZ;;
thus,

@3.1D g K¥=27}Z, K;20, j=1,...,N.

Next consider the map V;: Range (K;) — # defined by
(3.12) V(Kix)=Z;x, xeC®,

It is easy to check that || V(K;x)|l = || Z;x[|, and so ¥; may be extended to all of C*
as an isometry. In addition, inspection of (3.12) yields

(3.13) Z; = VK, Z} = KV}

Equations (3.10), (3.11), (3.13) and the fact that each V; is an isometry imply that
p has the form

N
(.19 p=Y, KVFTV)K;, YK =1, ViV, =1,;

j=t

7~1242
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hence p e mconv(¥ ,(T)): o
(3.15) '  wy(T) 'S meonv(#,(T)).
Combine ‘(3.9) and (3.15) to complete the proof.
. The following consequence of Theorem 3.1 stresses the analogy between. vec-
tor matrlx range and spatial numerical range

COROLLARY 3.1. The n™ vector-matrix range JorTe .93(.%) is matrlczally comex
and has the i matrix range as its closure.

Proof. In view of Theorem 3.1, the matricial convexity is obvious; that
w,(T)”~ = W,(T) follows from a theorem of Bunce and Salinas [5, Theorem 3.5].

If C is a convex subset of a finite dimensional real vector space V, theri'the
relative interior of C (ri(C)):is the interior of C when C is regarded as a subsét of its
affine hull (aff(4)) (Rockafellar [12], Section 6). Viewing M, as a 2n2-dimensional
real vector space yields the following:

COROLLARY 3.2. If T e B(HK), then the relative interiors of w(T) and W, (T)
are the same; that is, ’

(3.16) - : o ri(w,(T)) = ri(W,(T)). .

Proof. Convex subsets of a finite dimensional real vector space whﬂch have
the same closure also have the same relative interior (Rockafellar, [12], Corollary
6.3.1, p. 46). By Corollary 3.1, w,(T) is convex and 'has the convex set W,(T) as
its closure, so ri(w,(T)) == ri(W,(T)).

In studying the topological properties of a convex set, only its affine hull
needs to be considered; the rest of the underlying space may be dispensed with.
Given the importance of the affine hull of a convex set, it is natural to ask what
the affine hulls are for the matrix ranges of an operator. The answer to this question
is easily obtained from the following strengthened version of a theorem found in
[13, Theorem 4.6] and the subsequent remark:

THEOREM 3.2, Let r > 0, Te B(H), and zoc W(T). If W(T) contains the
closed disk By(zy, r) = {z€ C:|z — zy| < r}, then W, (T) contains the closed ball
Bn(ZOa r)———{ueM,,: ”ZOIn_ﬂ” < l’}. » ) C

Proof. Because W, (T) = z,[, + W, (T — z,1,), there is no loss of generality
in assuming that zy = 0. .

Two results found in [11] are needed: v _
(1) If H,(-) is the support function for W,(T), then p e W,(T) if and only if

(3.17) Re[tr(A*p)] < H,(4)
for every Ae M, [11, Proposition, 2.4]. . )
(2) Ifzy, ..., z, are arbitrary points in W,(T), and if {v;}7_, is an orthonormal

basis for C”, then

(3.18) H,2) > Z (Re(z o), vy,
j=1
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where 4 is the matrix whose components are complex conjugates of thosein A[11,
Proposition 3.3].
To obtain the result, first put A into its polar form that is, write 1 = pu where
> 0, u is unitary. Next, take v, .. ., v, to be the orthonormal set of eigenvectors
correspon'ding' to e, ..., el — the eigenvalues of u — and from B,(0,r) < W(T),
take z, = re=¥, ..., z, = re—%,  With these choices, (3.18) becomes

G Hn<z>>r(§;<pb,-, vj>)=r<trp>:rwl;

where :]-llrzis the trace norm of a matrix. From staﬁdard matrix theory,
(3.20) . - Re(tr(A*p)) < tr(*p)] < [Ip{l {4

Combmmg (3 17), (3.19) and (3.20) then gives the inclusion W, (T) = B, (0 r), and
the proof is complete.

REMARK 3.1. If W,(T) does not contain a disk, then it is a point or a line seg-
ment. In either case, T bas the form T = z,I -+ z,S where S has numerical range
[—1,1]. ‘Matrix ranges for seif-adjoint operators are known [2, p. 302]. In partl-
cular, W, (S)= {pe M,:p = p*, |Ip|| < 1} and hence,

(3.21) WuT)={peM,p=zl,+zq ¢=q* lql <1}

Direct calculation or 4 modlﬁed version of the proof of Theorem 3.2 then implies

that if the interval joining z, + re®® and z, — rei® is contained in W,(T), then W, (T)

includes the set of all matrices of the form zol, + reiq, where ¢ = g*, |lq|| < 1
Two corollaries are immediate: S

COROLLARY 3.3. If z4 is in the relative interior of Wl( T), then ZOI,, is in the relative
interior of W,(T).

Proof Apply Theorem 3.2 and Remark 3.1.

The next corollary characterizes the affine hulls of matrix ranges :

COROLLARY 3.4. If the affine hull of W(T) is a point zy, or a line through the
points zy - 2z, (2, #0), or all of C, then the affine hull of W,(T ) is {z1,}, or {p eM,:
p =z, + z,q, g = q*}, or M,, respectively.

Proof. Again apply Theorem 3.2 and Remark 3.1.

There is an interesting interplay among the matrix range, vector-matrix range,
and essential matrix range which is analogous to that among the numerical range,
spatial numerical range, and essential numerical range. The results which follow re-
semble those obtained by Lancaster [10].

For TeB(H#), the n™ essential matrix range is
(3.22) WyT)= {peM,:p=o(T), ¢ € CP[B(H), M,; L}, €(#)< kero},

where €(3#) consists of all compact operators on #. The following result is a res-
tatement of a result of Bunce and Salinas in terms of vector matrix ranges.
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THEOREM 3.3. If T is in B(3¥), then
(3.23) W (T) = mconviw,(T) y W(T)].

Prbof. From [5, Theorem 3.7], W,(T') is the matricial convex hull of #,(T) u
UWT). Clearly, # ,(T) may be replaced by its matricial convex hull, w,(T) (see
Theorem 3.1); hence, (3.23) holds. )

REMARKS. The result is analogous to a theorem of Lancaster [10, Theorem 1],
but not completely. The presence of the matricial convex hull, rather than the convex
hull, is due to the fact that the extreme points of the state space of norm-one posi-
tive linear functionals are either of the form {(-)x, x), x €, |jx|| = 1, or annihi-
late the compact operators. A similar dichotomy does not occur for the generalized
state spaces, CP[#(#), M,; L. .

The following two corollaries to Theorem 3.3 illustrate nicely the analogy
between vector-matrix ranges and the spatial numerical range. (For the spatial
numerical range case, see [10, Corollary |1 and Corollary 7].)

COROLLARY 3.5. If Te B(#), then w(T)= W T) if and only if Wi(T) <
< w(T).

Proof. If WYT) < w,(T), then
(3.29) mconv(w,(T) U WT)) = mconv(w,(T)).

From (3.23), the left-side above is W,(T); from Corollary 3.1, mconv(w,(T)) =
= w,(T); hence, W, (T) =w,(T). The converse is a trivial consequence of the
inclusion, W(T) < W,(T).

COROLLARY 3.6. If Te #(H#) is compact, and if O is in the relative interior of
W(T), then w(T)= W (T) for all n > 1.

Proof. Direct application of the definition gives that W§(T') = {0,} for every
T e €(o#). Making the additional assumption that 0 e ri(W,(T)) and using Corol-
lary 3.3 yields
(3.25) 0, € ri(W,(T)).

From (3.16) and (3.25) it follows that W(T) < w,(T); Corollary 3.5 then implies
that w,(T) = W,(T).

4. CLOSING REMARKS

The authors wish to note that Vern Paulsen has looked at problems similar
to those studied here. [Private communication).

There are several interesting questions which arise in the course of the work:

QuestioN 1. In defining the vector-matrix range w,(7T), the unital comple-
tely positive maps were restricted to having length less than 1/ 3nIsit possible to
use a smaller bound? Will n do?
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QUESTION 2. Let &/ be a C*-algebra having identity J and let Te &/; let S
denote the set of norm-one positive linear functionals on & and ext(S) the extreme
points of S. Let &(T) = {o(T): ¢ € ext(S)}. When is &(T) = W(T), the numerical
range? When is &(T) convex?

QUESTION 3. Let o, T, and I be as in Question 2. If S, = CP[«/, M,; 1], then
what subsets of S, sweep out the matrix range W, (T)?

Acknowledgements. The authors wish to thank the referee for providing a
number of helpful suggestions. Among the improvements coming from these sugges-
tions were the following: the second proof of the Toeplitz-Hausdorff Theorem
given in Remark 2.1; the examples given in Remark 2.2; and a shortened version
of the proof originally given for Theorem 3.1.
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