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'ON' THE SMOOTHNESS OF SPHERE EXTENSIONS

R. G. DOUGLAS and DAN VOICULESCU

Let o# be an infinite dimensional complex separable Hilbert space. By Z(s#)
and X () we shall denote the C*-algebras of bounded operators and compact
operators on J#, respectively, and Q(#°) will denote the quotient L(#)/HA (H)
with canonical surjection n: Z(s#) — Q(+#). For X a compact metrizable space an
extension of the algebra C(X) of complex continuous functions on X by A (¢)
is defined by a unital #-monomorphism p: C(X) — Q(s#) [1], [2]. If X is embedded
in C", then the co-ordinate functions {z;}}_, determine canonical elements {p(z,)}7,
of Q(s#) and we can consider n-tuples of operators {T;}7., « L(#) such that
p(z;) = n(T;) for i = 1,2, ..., n. For £ anideal in X () containing the finite rank
operators, the extension p is said to be S-smooth if the {T;}%.., can be chosen such
that the commutators [T;, T*], {T,, T;] for i, j=1,2, ..., n all lie in 4.

In [5] this notion was introduced and various results on %;-smooth elements
were obtained where %, denotes the Schatten-von Neumann p-class. It was conjec-
tured for finite complexes X (and proved for dimX < 3) that a %,-smooth element
of Ext(X) comes from the one-skeleton. It is reasonable to believe that analogous
results hold for € ,-smooth elements and g-skeletons. This paper arose in an attempt
at understanding this higher dimensional phenomena.

The basic technique used in [5] in studying €;-smooth elements depends on
the work of Helton-Howe [6], [7] and in particular on the fact that the index of ope-
rators in the “smooth” matrix algebras generated by the {T';} can be expressed in
terms of traces of commutators. Our principal result in this paper is a partial gene-
ralization to the case of spheres. This will depend on a fundamental combinatorial
identity relating formal traces of powers in the Grassmann algebra to antisymmetri-
zations.

If M is a C*-manifold and p is an element of Ext(M), then using the functional
calculus given in [7] one can show that the smoothness of p is the same for any C*-em-
bedding of M in C*. Thus smoothness depends on the differentiable structure for M
a C*-manifold. A basic ingredient in the study of the smoothness of extensions for
C*-manifolds is the determination of just how smooth are the extensions for spheres.
We show that a %,_;-smooth extension of S§*~!(n > 1), embedded as the unit
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sphere in C", is necessarily trivial, but that nontrivial extensions exist which are
%,-smooth for p > n. That all %,-smooth extensions of S$*'~! (n > 1) are trivial
was proved by Helton-Howe [6], [7]. Curto gave a proof of this [4] based on an
index formula of Markus-Feldman [9] which was our starting point.

We begin with the algebraic identity on which our considerations will be
based after introducing the necessary notation. ‘ ‘

Let ey, ..., e, be the canonical orthonormal basis for C” as a Hilbert space.
Let AC" =AC" @ AIC" @ ... & A"C" be the Grassmann algebra over C" with the
Hilbert space structure corresponding to the orthonormal basis (e))scq,.. n»
where e =1 and ¢, =epn...Ae; i J={j, ...} h<... <ji. On AC®
we define as usual the operators a; by a;i = e; Ah satisfying the anticommutation
relations

aa; + a;a; = 0 for all i, j,

a;kaj‘}"aja;*:o fOr l#_/a
and
afa; +-aaf =1  for all i.

Now let & be an algebra with unit over C and consider the algebraic tensor
product & ® L(AC"), which can be identified with the 2" X 2" matrices
(xy. )0, xcq,...,m over /. We shall denote by

118 ® L(ACT) - o

the map given by the trace; that is, 7(x ® @) = x-Tr(a) for x in &/ and a in .,(.J,”(:AC")__,_,
or equivalently in the matricial setting

T((XJ,K)J,KC{I,...,n})= Z Xy,
JC{, ...,n}

Further, we shall denote by P,, P, e £ (AC") the orthogonal projections onto
AC) = AC* @ A*C*'@... and respectively A°(C") = AC" + AN2C" @ ... .

Finally, let [x, ..., x,] denote the complete antysimmetric sum  of
Xpp ooy Xp€ S ' )

[ oo x) = 3 8(0)x,0) - -+ Xomy s

o

where o in the right-hand sum runs over the symmetric group on {1, ..., m} and
£(o) is the sign of the permutation o. :

ProPOSITION 1. Let Xy, ..., X, Y15 .-, ¥, € & and consider
d=x;,®a+.... +x, ® a,

d"=y,®at + ... +y, ® a*.
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Then we have:
(d +d"Y(1®@P,—1Q P,))=

(0 for 1 €k <2n

{(— 1)" [X]s V1o X5 Vo, -+ oy xns yn] fOl‘ k = 2”'

Proof. Since a; A°< A%, a; A°< A%, af A°c A af A< A° it is easily seen
that for k = 2p + 1 the diagonal entries of the matrix which corresponds to
(d +dY(1®P,—1®P,) are zero and -hence 1((d" +d" 1 Q P,— 1 @ P,))=0.
Thus it will be sufficient to concentrate on the case when & is even so let k = 2p.

To prove the proposition for k = 2p, 1 < p < n it will be sufficient to prove
that

Wl ®P,—-1Q@P)H=0
for b any of the (2#)% terms in the expansion of
(Xl @a]__l_ e +xn®an +y1 ®af _+‘ o +yn ®a:t)2p.

Such a term b is of the form

b=X®E
where X is a monomial of degree 2p in Xy, ..., X,, ..., V, and E is the correspondi
ing monomial in a,, ...,aq, af, ..., af obtained by replacing x; with a; and y;

with aff in the expression of X. We have:
(b1 ® P, — 1 ® P,)) = Tr(E(P, — P)X.

Thus, it will be sufficient to prove that for p < n we have Tr(E(P, — P,)) = 0.
The matrix of P,.— P, with respect to the basis (e;)scyi,...,»; being diagonal, it will
be clearly sufficient to consider only those E, the matrices of which have non-
zero diagonal entries. Taking into account the anticommutation relations it is easily
seen that this implies that the number of times a certain «; and respectively, the
corresponding aF, appear in the expression of E must be equal. Moreover, in
order that F s 0 it is necessary that between two consecutive occurrences of a;
(respectively af) in the expression of E, there also be an af (respectively a;). Using
again the anticommutation relations we get that

E= - 1rr - fr
where i <i, < ... <7, ji<...<],

{ipies oo 0 {Jiodor - s jy =@, 0<s, 0<1t, s+r<p



106 RONALD G. DOUGLAS and DAN VOICULESCU.

and fi# are the idempotents:
ft = ata, f = aat.

Now, fr... f7F i £ is the projection onto the subspace of AC" spanned
by ey, where K runs over all subsets of {1, ...,n} such that

{jb .- '9jt} cKc {la IR n}\{fl’ eey is}'
Equivalently, K= {j,, ...,j,} U K’, where
Kl ooonN\J < i fir oo die

Since n — s — t > 0 the number of subsets K’ with an even number of elements
and the number of subsets K’ with an odd number of elements are equal, implying

Tr(E(P, — P,)) = 0.

Turning now to the case p == n (k = 2n) we begin again by looking at
bl ® P, — 1 ® P)), where b= X ® E is one of the monomials from the
.expansion of

@@+ ... +x5,Q@a+n®a’ + ... +y, a)¥.

By the preceding discussion, we see that 7(b(l ® P, — 1 ® P,)) is zero. unless
each g; and g} occurs exactly once in the expression of E. This means that

E:;}:fif...f,jj'fj:...f;

where s+t =nand {i;, ..., iyji, - -, Ji} = {12 ..., n}. Then f;F . f+f“. .f;
is the projection of AC” onto the subspace Ce,, where J = {j;, ..., j}. > ‘
Using these facts it is easily seen that the diagonal entry of (d" -+ d”)“" cor-'

responding to e; where J = {ji, ..., j.}, {12, .., 0}N\oT = {ip o, 0f Ji <l <y
iy < .. < I, can be written as
(o) Y, e(o) X,
eES; -

Here, S, is the set of permutations ¢ of {1,2, ..., 2n} such that 6(2j, — 1) < a(2f),

o2 — 1)-> 6(2i), X, = X,y - - . Xy@m Where Xop ) = Xpy Xop = V,p and 6y is' the

permutation which is the product of the transpositions (2i, — 1, 2i)), I'=1, ..., s

‘We have used here the fact that the idempotents fi*, ..., fif, /i, ..., fx commute.
Thus we obtain:

(d +d)"(l P, —1Q P))=
= ¥ ((—1)’ &(o,) Z (o) X,).

J,C{l_,... &Sy
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Since &(o;) = (—1)"~1/1 and the S,’s form a partition of the symmetric group
on {I,...,2n}, we have

d +d"yP(l® P; —1®P)) =

= (—1y Y eo) X, =

g

:<_l)” [xls V1o Xos Vas + o o5 Xy yu]-
Q.E.D.

We can now paés to the extensions of C(S?~1). An extension of C(Sﬁ”—l) is
determined by p: C(S¥~1) — Q(F). ]'dentifyiﬁg §2n-1 with the unit sphere of C,
p: C(S™"1) - Q(H) is equivalent to specifying an n-tuple (xy, ..., x,) < Q(#)
such that [x;, x;] =0, [x;, x*1 =0 for all 1 <ij<n and ¥ x¥x;=1. The

lgign
corresponding p is determined by p(z;)= x,. Passing to preimages. in. Z(#)
of x;, ..., x, we see that p will be determined by an n-tuple (T, ..., T,) = L(H#)
such that [T;, T), {T5, TF), and Y, T#T, — Iare all in"A(A).
I<i<n

Recall from [2] that Ext(S*~1) =~ Z with the isomorphism being given by the
homomorphism Ext($#*~!) —+ Homz(K'($¥'~1), Z) associated with index. More
precisely, there is a certain unitary matrix o with entries in C($2*71), which is a gene-
rator of K1(S*~1), such that Ext(S2"~1) - Z "is given ' by [1] — indexp(x) - Wheid
p(x) is viewed as a unitary in Q(#F @ ... @ H).

With the notation preceding Proposition 1 for an extension p of C(S¥'~1)
determingd by T, ..., T,, a preimage of p(«) can be described .as an element of
L(A# ® AY(C") in the following way. Let #: A°%(C")— AS(C”) be unitary, let

d=T,Qa+ .. +T,®a,
and _
d"=TF®af +... +Tf @ a}
be elements of Z(3# ® A(C"), and define
A=T @ +d") | (HF @ A(C)) e L(H# ® A(C),

which is the preimage of the 7(a) we shall use. Such matrices 4 appear in the work
of Vasilescu [10] and Curto [4] on Fredholm n-tuples of operators. Note also that
if we identify A(C") = A%(C") @ A°(C") with A%(C") @ A%(C™), then d' + d”

can be written as _
(0 A*
o)

Moreover, A4 is essentially unitary.
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Defining
T L(H Q@ A(C")) =~ L(H) ® Z( ASCH) = L(#)
by '
(S ® X) = (TtX)S,
we see that

T (AT AP — (A4%)) =
= (@ +dAQ P, — 1O P)

where 7 is the map used in Proposition 1 in the case & = L(¥).
We have used here the fact that

(o) = (5" )

ProrositioN 2. Let Ty, ..., T, € L(#) be such that

[T, T)€%,, [T, T*le %, foralll <ij<n
and

1— Y, T*T;e%,

=1

Then. for A defined as above, we have
indexA = Te[Ty, Ty, T, TS, ..., T,, T}

Proof. First we shall prove that A*4 — e ¥,, AA* —Ie %,. Since

*
(d/ +d”)2 _ (A A 0 )
0 Ad*
it will be sufficient to show that
d +d'2—Je%b,.
We have:
(dl + dll)z —
= Z (T¥T; ® afa; + TT7 ® aaf) +
itj .
+ ):. (T*T; ® affa; + T; Ti* ® aal’) =
= Y IT#, T) ® afa; + Y [T, TF] ® aaf +
i j i

HETFL-DHe1 +1®|

which shows that indeed (d' + d"”)* — I %,.
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Now, since 4*¥4 — I, AA* — [c%,, we can use Lemma 7.1 of [8] which
gives:

indexA = Tr((I — A*A)" — (I — AA*Y").

Since the trace of an operator-valued matrix is equal to the trace of the sum of its
diagonal entries, using Proposition 1, we have:

indexd = Tr(t (I — A*A)" — (I — A4A*))) =

=Tr( (g s Ay (AA*)P)))=

= Tr( z ;'—(;l’ll})_, (=P +dy(I®P, —I® Po))) -
p=0 D: — {

=TT, T¥, T, TF, ..., T,, T*]. Q.E.D.

There is unfortunately one short-coming of Proposition 2, which we must
mention. We do not know whether there exist operators T3, ..., T, satisfying the
assumptions of Proposition 2, and such that indexA4 s 0. The obvious candidate
for such an n-tuple is the Toeplitz operators on H%0B8,) (where B, is the unit ball
of C") with symbols z,, ..., z, (cf. [3]), but this n-tuple satisfies [T, T*] e €, only
for p > n.

However, Proposition 2 can be used to give a triviality result for certain
extensions. Although the conditions in Proposition 2 are apparently more restric-
tive than %,-smoothness, we shall show that the additional assumption concerning
I— Y T*T, can be satisfied by perturbing T}, ..., T,.

PROPOSITION 3. The b, _i-smooth extensions of €(S*~Y) (n = 2) are trivial.

Proof. First we shall prove that T, ..., T, defining a %,_,-smooth extension
can be chosen so as to satisfy I — Y, T*T, € 6,_, besides [T}, T;}e 4,_,, [T, Tj*]e
€ %,y Indeed, since I — Y, T*T;e A (#) we can find Xe L(#), X > 1/2I such

1
that X — Y, T#T; is finite rank. Since [X, T;] € %,_, and the function t - ¢ 2 is C*®
in a neighborhood of [1/2, ||X|i] it follows by the Fourier-transform method of

1 1
[6] that [X 2, T]e €,_; for 1 < i, n. Clearly X 2 —Ie A (3#) so that replacing
1 1
I,...,.T,by T\X 2, ..., T,X 2 will leave the extension unchanged and since
1
[X 2, T,)e%,_1, we shall also have

1

. _1 _1 1 1
[TX % TX 1€,y [TX 2, (TX D]e®,
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Moreover

) ¢ TiX_%)* ( TiX“%) =

1<ign

=X~ 2(X Y X 2e<€,, .

i<ign

To see that the extension defined by T, ..., T, is trivial we have to prove
that index4 = 0. This can be seen éither by using Proposition 1.1 of [7] which
will give

Tr(Ty, T, To, T, ..., T, T¥] =0

or by going through the proof of Proposition 2, and noting that since

[— A*A€%b,_,, I— AA*c@,_,
we have
indexA = Tr((I — A¥A"~1 — ([ — A4%)" V)

which is zero by the same kind of computation involved in Proposition #:
' QED.
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