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K-THEORY FOR ACTIONS OF THE CIRCLE GROUP
ON C*-ALGEBRAS

WILLIAM L. PASCHKE

0. INTRODUCTION

M. Pimsner and D. Voiculescu [12] (see also [5), [3]) have recently obtained
the following cyclic exact sequence for the K-groups of a C*-algebra A4 and its
crossed product B by a single automorphism g:

M s KA TS KA S KB~ K 5 L (=01,

Our project here is to extend this important result to the situation in which Bisa
C*-algebra equipped with an action p of the circle group whose spectral subspaces
are “large” (see §2), and A is the fixed-point algebra for p. (The prototypical case is
when B = C*(4, 0) and p is the action dual to 0 as in [15].) In this more general
setting, with the additional technical assumption that B has a strictly positive ele-
ment, we show that there is an exact sequence of the form (1), where 8 is a certain
automorphism of 4 ® K. (Here, K is, as usual, the C*-algebra of compact opera-
tors on separable infinite-dimensional Hilbert space.) The automorphism-# is not,
of course, unique. One way to concoct a suitable # is via the spectral subspace
E, = {xe B: p,(x)=Ax V2}, which we assume to be large in the sense that £} E; and
E\F¥ are dense in 4. We may use [2, Thm. 3.4] to associate to Ef (viewed as an
A — A equivalence bimodule with the obvious left and right A4-valued inner pro-
ducts) an automorphism of 4 ® K which turns out to have the right effect on K, (4).
Another approach invokes Theorem 2 of [10] to see that 4 ® K is isomorphic to
the crossed product of B ® K by p ® idg, whereupon Takai’s duality theorem [i5]
gives B @ K as the crossed product of 4 ® K by the automorphism corresponding
to the generator of the action dual to p ® idg. These two constructions, which we
show induce the same map on K. (A), are non-formulaic and involve several arbi-
trary choices. Computation of 04: K. (4) — K, (A) thus becomes a problem in spe-
cific examples. We determine 0, when B is unital in as explicit a fashion as may be
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hoped for, and as a consequence obtain the sequence

o KA TS K(A) S K(CHA, ) - Ko y() 255 ... (=0,1)

for the algebras treated in [11].

The paper is organized as follows. In § 1 we put on record a proof of the fact
that the inclusion map of C*-subalgebra C into bigger, C*-algebra D induces an
isomorphism on K-theory when C is full hereditary in D and both have strictly
positive elements. This is crucial for some of the subsequent manipulations. Sec-
tion 2 deals with consequences of the assumption that p has large spectral subspaces,
including the two methods mentioned above for obtaining automorphisms of A®XK.
The K-theoretic results discussed in the previous paragraph are proved in § 3,
and applied in § 4 to crossed products by endomorphisms. In particular, we show
in this last section that for any countable subgroup H of R, there is a unital, infi-
nite, simple C*-algebra A such that Ky(4) =~

The K-theory used here is that developed in [16, §§ 5—10]. The arguments
given there are valid for non-commutative as well as for commutative Banach alge-
bras. We follow the standard practice of using projections (resp. unitaries) in place
of arbitrary idempotents (resp. invertibles) when working with C* -algebras this
changes nothing ([9, Thms. 2, 6, 27], [4]) and is sometimes useful in small ways.
Two important features of K-theory for C*-algebras are stability (K, (4) = K4 (A®K)
via the map on K, induced by a > a ® ¢,;) and periodicity (K;(4) =~ K;_j(A®
® Co(R)), j = 0,1). We will use square brackets to denote equivalence ‘e]asses
in K.

1. FULL HEREDITARY SUBALGEBRAS

Let D be a C*-algebra. A C*-subalgebra C of D is said to be full if it is con-
tained in no proper closed ideal of D, and hereditary if 0 < h € k, k e C implies
he C. When both these conditions are met (and C and D both have strictly
positive elements), L. G. Brown {[l1] has shown that C® K and D ® K are
isomorphic, and furthermore that the inclusion i: C — D induces an isomorphism
on Ext (for separable D). We will need the K-theoretic analog of this latter result,
a special case of which is proved in [13]. The following lemma will be useful in this
connection and later on. i

1.1. LEMMA. Let B be a Banach algebra. If x and y in B are such'ilzat 1 —xy
is invertible in B* (the algebra obtained by adjoining a unit to B, if necessary ),
then [1 — xy] = [1 — yx] in K(B).

Proof. We have

S R [
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Shrinking the off-diagonal entries to zero in the two outer factors connects them
through invertibles to the identity, and conjugating the middle factor by a path
of invertibles from the identity to ey, + e,, joins this factor to the matrix obtained
from it by interchanging x and y, which in turn can be joined to (1 — yx) @ 1.

1.2. PROPOSITION. Let C be a full hereditary C*-subalgebra of a C*-algebra
D and assume that each of C and D has a strictly positive element. The map
iy Ke(C) = Ky (D) induced by the inclusion of C into D is an isomorphism.

Proof. As in [1], we first consider the case in which C is a full corner of D, so
there is a projection ¢ in the multiplier algebra M(D) such that C = ¢Dg. By [I,
Lemma 2.5], there is a multiplier v in M(D & X) such that v*v = | and vo* =
= ¢®1. The map x — v*xv is an isomorphism of C ® K with D®K. It will suf-
fice to show that this map has the same effect on K, (C) as the inclusion map. To
see this for K, let u be a unitary in (C® K)" ® M,, so u=w + W, where
weC® K® M, and W is a unitary in M,. Since K ® M, =~ K and the unitary
group of M, is connected, there is no loss of generality in assuming that n =1
and u.=.w -+ 1. Since w is normal, we can factor w as w = ab, where a, b € C*(w).
With x = bv and y = v*a, we have x, ye D ® K (since v is a multiplier of D ® K),
xy = w (since a and b are commuting elements of C ® K and vv* = ¢ ® 1), and
yx = v*wo. Lemma 1.1 now shows that [u] = [v*wv + 1], so iy Ki(C) — Ki(D)
is an isomorphism. Tensoring C and D with Co(R) and using periodicity [16, § 9]
gives the same result for K,. The general case now follows by the argument used
to prove [I, Thm. 2.10].

2. FIXED-POINT ALGEBRAS AND CROSSED PRODUCTS

In thxs section B will be a C*-algebra equipped with a (point- norm) continuous.

action p of a compact abelian group G. For a character y in the dual group G we
set £, = {be B: p(b) = X(s)b Vse G}. Letting 4 denote the fixed-point algebra
for p, we say that p has large spectral subspaces if E;i‘; = A for each y in G. (By
EfE, we mean the linear span of {x*y:x, ye £,}.) Recall that the crossed product
C*(B, p) of B by p is the completion in the greatest C*-norm of L (G, B), the space
of norm-integrable functions from G to B, considered as a #-algebra with multi-
plication ‘and involution defined by

@ (fe)(s) = S J(B)p (s — 1) dt
G
2)’ 14s) = py(f(—s)%),

dt being Haar measure on G. Define j: 4 — LYG, B) < C*(B, p) by ja) (s) = «
(s in G). Tt is immediate that j is a *- -monomorphism.
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The next proposition probably comes as no surprise to crossed product spe-
cialists. It will be used in the proof of Theorem 3.2.

2.1. PROPGSITION. If p has large spectral subspaces, then j(A) is a full corner
of C*(B, p).

Proof. That j(A) is a corner of C*(B, p) is shown in [14]. It remains to show
that j(A4) is contained in no proper closed ideal of C*(B, p). Let L be a closed ideal
containing j(A4). Given y, ¥ in GA, let xe £ and yek,, and define fand gin LY(G, B)
by f(s) = x, g(s) = Y(s)y (s in G). An easy computation using (2) shows that
(fi(a)g)(s) = W(s)xay for any a in A. Because p has large spectral subspaces, the
linear span of the products xay is dense in E,. (Using an approximate unit for 4,
we have E, = AE, = E;WE}?WE; = —Eﬁ;SEx.) Hence every # in LY(G, B) of the
form h(s) = H(s)w, where He C(G) and we E,, belongs to L. The E,’s taken to-
gether span a dense subspace of B (since for any ¢ in 8% annihilating all the E,’s,
the Fourier coefficients of s — ¢(p,(b)) vanish for every b in B), so we may now
argue as in the proof of [11, Thm. 2] to conclude that L = C* (B, p).

2.2, REMARK. If G is separable, p has large spectral subspaces, and B has a
strictly positive element, then [10, Thm. 2] shows that C*(B, p) ® K and 4 ® K
are isomorphic. (This also follows from [1, Cor. 2.6], 2.1 above, and the easy fact
that C*(B, p) has a strictly positive element under the given circumstances.) Let
p be the action of G dual to p on C*(B, p) (s0 (p,.f)(s) = x(s)f(s) for fin LYG, B)),
and let ¢ be the action of G on 4 ® K corresponding to p ® idg on C*(B, p) ®K.

The duality theorem in [15] now shows that B ® K is (isomorphic to) the crossed
product of 4 ® K by o.

Suppose that G = T, the circle group. In this case there is a second, osten-
sibly different way to exhibit B ® K as the crossed product of 4 ® K by an action
of GA, based on the treatment of Picard groups in 2, § 3]. If p has large spectral sub-
spaces, then in particular we have EfFE, = 4 = EI“EE (It is easy to check that this
condition is in fact equivalent to p having large spectral subspaces.) The two-sided
A-module EF, with left and right A4-valued inner products {x, y); = xy* and
{x, yYg = x*y, is thus what [2] calls an 4 — A4 equivalence bimodule. The same
holds for £ ® K with respect to 4 ® K, so if A has a strictly positive element,
[2, Thm. 3.4] yields an automorphism 0 of 4 ® K and a linear bijection F: A ®
® K- E¥® K satisfying ;

(3) Flay)*F(ap) = 0(af ay),
C) F(a))b(ay) = Flaas),
(5) Fla)Flay* = ayaft,

{6) a, F(a,) = Fla,a,),

for a;, a; in A ® K.
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2.3. THEOREM. Let p be an action of T on B with large spectral subspaces; and
suppose that the fixed point algebra A has a strictly positive element. If 0 is an auto-
morphism of A ® K arising from EF ®K as in [2, Thm. 3.4], then BRK is isomorphic
to C*(A ® K, 0) in such a way that p ® id, corresponds to the action ) of T on
C*(4 ® K, 6) dual to 6.

Proof. Replacing A and B by their tensor products with K and p by p ® idg,
we may assume that 4 and B are stable, that @ is an automorphism of 4, and that
there is a linear bijection F: A — Eff satisfying (3), (4), (5), (6). We define linear
bijections F 1 A - Ef (= E_) for k=12, ... satisfying

(3) .« F_(a)*F _(as) = 0(al"ay),
(4) . - F (a)0(ay) = F_(aya,),
(5), (6) by induction as follows. Set F_; = F and suppose that F_. has been con-
structed and satisfies (3)_y, (4)_, (5), (6). For a,, ..., a,, b, ..., b, in A we have
Il Y F @) FOODIE = 1Y, F (a0 b )Fila)*| = (by (5))
= “2 F_(abbf)F i(ap*|| = (by 4.0
L)
= ||} abbiaf| = (by (5))

= | % abilp,
so there is a well-defined linear isometry F_,.,): A — EJ¥.,; satisfying
@ F_y1(ab) = F_(@)F(0(b)
for é, b in A. This map is surjective because E,;“*Ef‘ﬂ: E}, 1, and routine compu-

tations establish that F_, .., satisfies (3)_,_y, 4)_xy, (5), (6). For j=12,...,
define F;: 4 — E; by ‘

® Fi(a) = F_{(07(a*))*,
and let Fy: A — Ey(=4) be the identity map. We claim that
® Finlab) = Fo(@)F,(07"(]))

for a,b in A and all integers m, n. [For j, k > 0, we obtain F.,_; (a,a, . .. a;b) = .
= F_(a))F_j(6%(a, ... a;b)) by iterating (7) j times, so (9) holds for m, n < 0.

9 —1242
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For k >j = 0, we have
F_(ay)F, j(ek(b)) = Fj_k(al)F _j(ak-j(az))F -j(ek_j(b*))* = Fj_k(alazb)

using (8), (5), (4);_x. Hence (9) holds for m < m -+ n < 0. The remaining cases can
be checked using similar computations.] We are now in a position to define a #-homo-
morphism 4: C*(4, 6) - B. Let f: Z - A be afinitely supported function. (Mul-
tiplication and involution for such functions are defined by (2) and (2), with 6, = 6~
in place of p,, to give a *-algebra whose enveloping C*-algebra is C*(4, 0)).
Set A(f) = Z F,(f(n)). By (8) (which holds for all integers j) and (9), 4 is a *-homo-

morphism on the #-algebra of finitely supported functions and hence extends to
C*(4, 0). Since the E,’s span a dense subspace of B, 41i Is surjective. We have A(6 ,1( )=
= p,(A(f)) for finitely supported f and A in T, so 40 , = p,4. Integrating the action
6 over T gives a faithful conditional expectation of C*(4, 6) on the canonical copy
of A that it contains. Notice that the restriction of 4 to this copy of A is injective,
merely identifying it with the copy of 4 in B, whence it follows that 4 is injective

2.4. REMARK. The only positive functional on C*(4, #) annihilating the cano-
nical copy of 4 is the zero functional, so the hypotheses of 2.3 imply that B ® K,
and hence B, has a strictly positive element.

3. K-THEORETIC RESULTS

3.1. THEOREM. Let A be the fixed-point algebra for an action with large spec-
tral subspaces of T on a C*-algebra B, and suppose that A has a strictly positive
element. There is an automorphism 0 of A ® K such that, upon identifying K.(A® K)
with Ky (4), we have a cyclic exact sequence

KW ITS KB KB - K (2T L =0,

Proof. Take 8 as in 2.3 or set § = ¢, asin 2.2. After also identifying K,,(BRK)

with K, (B), [12, Thm. 2.4] applies directly.

The next result shows that the automorphisms given by 2.2 and 2.3 have
the same effect on Kg(A4).

3.2. THEOREM. Let B, p, and A be asin 3.1 and let 0 = ¢, as in 2.2. Leta, §
be #-homomorphisms of A ® K into itself for which there exists a map g: A @ K—
- Ef® K satisfying  g(a)*g(a:) = «(af'a,) and gla)g(a)* = B (aaf). Then
0y = Oy Py

Proof. Passing to 4 ® K, B® K, and p ® idg, and identifying C*(B ® X,
p ® idg) with C*(B,p) ® K, we may assume that 4 and B are stable, so that the
maps «, f§, and g are defined on A, with ¢ mapping into Ef. Let p=p,, the generat-
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ing automorphism . for the dual action on C*(B, p) (so (pF)(4) = AF() for F
in LY(T, B)and 2in T). With j as in 2.1, we have j,0,= 0 4js and hence 0y= j310 4 j»
since j, is an isomorphism (by 1.2 and 2.1). We deal first with K,. As in the proof
of 1.2, it will suffice to consider unitaries in 4™ of the form 1 -+ w, where we 4.
We factor w as w=ab*, where a and b belong to the commutative C*-subalgebra of 4
generated by w, and define X,Y in LYT, B) by X(A) = g(a), Y(1) = Ag(b)*.
Formula (2) gives (XY) (1) = Ag(a)g(b)* = AB(w) and (YX) (1) = g(b)*g(a) = a(w).
That is, XY = (pjB) (w) and YX = (ju) (W), 50 pyjuBalll + w]) = jaau([1-+w]).
We compose with jz' on the left to obtain 0.8, = o, as maps on K;(4).
Replacing A, B, and Ef by their tensor products with Co(R), «, f, g, and p by their
tensor products with idcyr), and identifying C*(B ® Co(R), p ®id) with
C*(B, p) ® Cy(R) causes j and p to be replaced by their tensor products with
idc,my, s0 we have

(% ®id)y(j ® id)y(B ® id)y = (j ® id)y (@ ® id),

as maps from K;(4 ® Cy(R)) to K ,(C*(B, p) ® Co(R)). By periodicity, this means
that pjuBs = jaos 00 Ko(A), 50 oy = 0,48, on Ko(4).

We can use 3.2 to identify 0, more explicitly when B is unital. In this case,
under the assumptions of 3.1, the dense ideal £*E, is all of A and as in the proof of
[1, Prop 2.1] we can find x4, ..., x, in £; such that xfx, ... +x¥x,=1. Consider
the map y: 4 - A4 ® M, defined by

Wa) = Y xaxt ® ey,
6

which is easily seen to be a x-monomorphism. (This map is used in the proof of [13,
Prop. 2.4).)

3.3. PrOPOSITION. The maps y and 6 induce the same map on K4 (A).
Proof. Define h: A — Ef ® M, and 5: 4 > A® M, by h(a) = Y, axjf®ey;

and 6(a) = a ® e;;. We have h(a)h(ay)* = S(aya¥) and ha)*h(a,) = ;(afa.z) for
a,, a, in A. Taking tensor products with K and identifying M, ® K with K, we ob-
tain from y and 6, respectively, s-endomorphisms « and f of 4 ® K, and from ha
mapg: A ® K — E¥f ® K, such that y, = oy, B, = id, g(a)*g(a,) = a(afa,) and
glay)gla)* = P(ma¥). The proof is completed by invoking 3.2.

4. CROSSED PRODUCTS BY ENDOMORPHISMS
We consider the case in which B is the crossed product of 4 by a single endo-

morphism, more or less as in [11]. Specifically, let A be unital and suppose we have
a x-isomorphism ¢: 4 — pAp, where p is a proper projection of A. By considering
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the completion in the greatest C*-norm of an appropriate *-algebra, we can find
a faithful s-representation of 4 on a Hilbert space H and an isometry S of H
satisfying SaS* = o(a) (a in A) with the following universal property: given a *-re-
presentation 7 of A4 and an isometry R of the representation space satisfying Rr(a)R* ==
= n(6(a)), there is a =-homomorphism from C*(4, §) to C*(n(4), R) taking a to
n(a) and S to R. We write C*(4, o) in place of C*(4, S), and call it the crossed pro-
duct of 4 by o. (It was shown in {11] that if A is strongly amenable and has no
nontrivial ¢-invariant ideals, then C*(4, o) is simple.) By the universal property,
there in an action p of T on C*(4, ¢) such that p,(a) = a, p,(S) = AS (a in A4, A
in T) whose fixed-point algebra is precisely A.

4.1. THEOREM. Let A and ¢ be as above and assume that o(A) is a full corner
of A. Then there is a cyclic exact sequence

gu—1id

> K(A) TS K (A) S K(CHA, ) — K () 2 . (j=0,1),

where o is regarded as a map of A into itself.

Proof. For the action p of T on C*(4, o), we have S in E,, so E\EY¥ contains
SAS* = a(4) and hence E,E¥= A, since no proper ideal of A contains a(4). We
have E{"E1 = A because $*S == 1. Now apply 3.3, with y = ¢, and 3.1.

4.2. COROLLARY. Let A and ¢ be as in 4.1 and suppose in addition that A is
an AF-algebra. Then Ky(C*(4,0)) = Ky(A)/Im{c, —id) and K(C*(4, 0)) =
~ ker(o, — id).

Proof. Since K,(4) = (0), this follows immediately from 4.1,

We can use 4.2 to construct ““0,-like”” C*-algebras (separable, unital, nuclear,
infinite, simple) with tailor-made K groups. Let G be a countable Riesz group (in
the sense of [6] ) with order unit , and let o, be an order-automorphism of G
such that ¢,(#) < v and G" has no non-trivial ¢,-invariant faces. By [6, Thm. 2.2],
there is a separable unital AF-algebra 4 with Ky(4) order-isomorphic to G in such
a way that u corresponds to [1]. Moreover, application of [8, Thm. 4.3] (see [7] for
the statement of this in terms of K) yields a proper projection p of 4 and a *-iso-
morphism ¢: 4 - pAp which, when regarded as a map from 4 into itself, induces
the given order-automorphism ¢, on G. Our requirement that G* have no non-
trivial o,-invariant faces means precisely that 4 has no non-trivial o-invariant ideals.
Under these circumstances, C*(4, o) has the ““0,-like” properties indicated above
[11]. We have Ky(C*(4, ¢)) =~ G/Im (o, — id).

One can, for instance, choose G and o, such that G/Im (o, —id) is isomorphic
to any prescribed countable subgroup H of (R, -+). The construction is as follows.
Choose 4 in (0,1) such that A is not a root of any non-zero polynomial with coeffi-
cients in H; such a A exists for the same reason that transcedental numbers exist.
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N
Let G ={ Y x;A: xje H for — N < j <N}, so G is countable and totally ordered

—N

by the order inherited from R. Let o, be multiplication by 1. Note that every non-
zero element ¢ in G* is an order unit (so G has no non-trivial faces) and satisfies
o4(t)<t (so we may pick u arbitrarily in G"\{0}). Deprived of its order, G is the
(weak) direct sum of countably many copies of H, indexed by Z, and o4 is the
shift. It is a routine matter to check that G/Im (¢, —1id) is isomorphic to H.

11.

12.

13.
14,

15.

16.
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