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POINT INTERACTIONS AS LIMITS OF SHORT
RANGE INTERACTIONS

SERGIO ALBEVERIO and RAPHAEL HOEGH-KROHN

1. INTRODUCTION

In the physical literature, in particular in nuclear physics and in solid state
physics, there has been a long standing interest in studying models of a quantum
mechanical particle moving under the influence of fixed centers, the force between
the particle and the centers being a point one (zero range), of different strengths
(we speak for short of models with d-potentials). For such models see e.g., [1]—[6].
The mathematical description of the Hamiltonian for these models is by standard
quadratic forms theory in the one dimensional case (the d-potential being in this

2

case relatively form-bounded with respect to — 5—2 , see e.g., [7] (Ch. X.2), [8]).
X

In the two and three-dimensional cases the definition of the Hamiltonian requires
more subtle methods. The problem for the case of one center had been discussed
in the physical literature starting with [9] (see also [10]), mathematical solutions
were then provided by Berezin and Faddeev [11], by using Krein’s method of self-
adjoint extensions, by Streit and ourselves using the method of Dirichlet forms
{12] and by Nelson [34] and Fenstad and ourselves using non standard analysis
[13] (in the latter paper the many centers problem is also solved). The non
standard analysis version exhibits the Hamiltonian as a smooth perturbation
of — A by a potential of infinitesimal support. An explicit computation of the
resolvent was also given, by these non standard methods.

The detailed study of the resolvent and of the scattering was pursued further
(without non standard analytical methods) in [14], [15], where also applications
to models of solid state physics were given; see also [16]. A natural question
that arises i1s whether the so defined Hamiltonians for d-interactions can be appro-
ximated by Hamiltonians with smooth local potentials, i.e., by operators of the
form —A + ¥V = —A -+ Y Vix — x)), with some smooth functions V;. This

1 See also [38]. For other references concerning one-center -potentials see also e.g., [39]-
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question of approximation is an interesting one whenever one has Hamiltonians
for “‘singular” potentials. Mostly the approximation is sought because questions
about the definition of the scattering matrix are more easily solved mathematically
for Hamiltonians given by smooth potentials (see [17]), however in the case of §-po-
tentials it is rather the opposite point of view the interesting one. Namely for
S-potentials all physical quantities (resolvent, bound states, resonances, scattering)
can be computed explicitely, and hence one can use these results, provided one
has a sufficient strong approximation theorem, to draw conclusions for the phy-
sical quantities associated with the approximating Hamiltonians — A + V' (from
this point of view the J-potentials Hamiltonians are looked upon as a idealized
case, the realistic ones being those described by Hamiltonians of the above form
— A+ V). Some of the approximation procedures discussed in the physical
literature and also the one given by Berezin and Faddeev in [11] are by separable
non local potentials. More recently Friedman [35] has studied a class of local
approximations and shown strong resolvent convergence. This result was rein-
terpreted and extended in non standard analytic terms by Nelson [34] and Fen-
stad and ourselves [13]. Larger classes of approximations and more detailed

results have been obtained, again with the help of non standard analytic means,
by Alonso y Coria [36] (who also considers the case of convergence to the free
Hamiltonian in the case of a multiparticle system interacting by J-potentials). In
the present paper we study approximations of the form i(sz_) V(xfe) with V a
g

Iocal potential on R3 in a general class (containing the one considered by Alonso

y Coria) namely integrable and Rollnik, i.e., fulfilling
, V) V)
(1.1) S{V(x)idx<oo, SS|—-"—

Ldx dy < co.
|x — ¥
R3 R3 R?

We put the asymptotic behaviour as é—0 in relation with the presence of zero energy
resonances (for a discussion of the presence or absence of zero energy resonances
see also [37]). We also give the corresponding results for the many (finitely many,
infinitely many) centers problem. Our results also provide the basis for a pertur-
bation theory around the limiting case of d-interactions with approximating local
potentials which is now being developed [19], [40] and which gives a mathematical
expression to ideas one often encounters in the physical literature (scattering
length approximation, shape independent approximation, effective range expan-
sion, which all are forms of a low energy expansion, see e.g., [18]). Let us also

mention that ideas related to the one used in this paper have been recently applied
to the discuss of the Efimov effect in three particle systems [20].
Let us now shortly describe the structure of the paper.

In Section 2 we recall the properties of the Hamiltonians associated with
potentials of the form (1.1), and we derive technical tools concerning the norm limit
of certain basic operators used in the subsequent sections.



POINT INTERACTIONS 315

These results are then used in Section 3 to study the limit of H, = —A 4
+ He)e2V T) as ¢ — 0, in the resolvent sense. We prove in particular that H,

converges to —A if there is no zero energy resonance for —A -~ ¥ and, in the
case when there is a zero energy resonance and this is either simple or ¥<0 2 the
limit is —A,, where —A, is the Hamiltonian of a &-potential of strength

n

-1
o= — 1'(0) ( PILE np,-)|‘~’) , with ¢, the resonance functions (—A + V), = 0,

i=1
normalized by Sl//i(x) V() (x)dx = —é;;. If V' < 0 has at least one zero energy

resonance then —A, has also exactly one resonance at the point k = — 4rix
if 4(0) < 0 and exactly one negative eigenvalue — 16n%2 if A'(0) > 0 (and in
this case there is an eigenvalue £, of H, which converges as ¢ — 0 to — 16n%2),
Further results are obtained in the case when ¥ has compact support. In parti-
cular in this case all negative eigenvalues and resonances of H, tend to infinity
as ¢ = 0 except, in the case of some zero energy resonance for —A + V, for one
of the negative eigenvalues resp. resonances, according to whether 1'(0) > 0 or
A'(0) <€ 0, respectively, and these converge to the negative energy eigenvalue
resp. resonance for ——A, . In Section 4 we extend the results to the case of a
discrete (finite or infinite) family of centers in R3,

2. INTERACTIONS BY SHORT RANGE POTENTIALS

We start by summarizing some known results on Hamiltonians given by
potentials ¥ in the Rollnik class defined below.
Let V' be a measurable function on R?® and define

@1) V15 = n P D axay.

If |[V]ig < oo then one calls ¥ a Rollnik potential ([21], [22]). Rollnik potentials
have been extensively studied especially by H. Rollnik ([21]), A. Grossmann and
T.I.Wu ([23]) and B. Simon ([22]). They form a complete vector space % in the
Rolinik norm || [i; (containing e.g., L¥*(R®) and LY(R?®) n L*R?). Let us denote
by % the set of all Rollnik potentials. If V € Z then one knows, see e.g., [7] (Th.X.19,
p. 170) that ¥V is infinitesimally small in the sense of quadratic forms in L2R?®)
with respect to —A, —A being the Laplacian in L*(R3). Thus by the KLMN
theorem (see e.g., [7], Th. X. 17, p. 167) there exists a unique self-adjoint ope-
rator H with quadratic form domain Q(H) equal to the one of Hy; = —A,
A being the Laplacian on LA(R3), i.e., Q(H) = D(H}*), and such that H is the sum

) The situation for ¥ not restricted to be <0 is discussed in [40].
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of H, and V in the sense of quadratic forms ie., (Y, HY) = (¥, Hy) + (¢, V)
for all Y € Q(H). H is bounded from below and any domain of essential self-
adjointness for H, is a form core for H.

Let now ke C, k* ¢ spec(H) U spec(H,), where spec means the spectrum.
It is known (see e.g., [22], Th. II. 34) that if Ve &

(2.2) (H— k)= G, — Gl + uGv)y G, ,
where G, = (H, — k¥, u = signV|V|/2, v = |V|"/2. Furthermore it is known
(see e.g., [22], 11.3) that for Rek = 0, Imk > O sufficiently big, one has

2.3) H = k)" = G+ ¥ (=G V)G, ,
I=1

where the series on the right hand side is norm convergent.

ReMARK. In fact if Ve £ one has that H, + 2V is a holomorphic family
of type B in the whole A plane ([24], p. 395).
The kernel G,(x — y) of (H, — k*)7! is for Imk > 0 given by

eik:x—yl

(2.9) Glx —y)= :
4n|x — y|

Let from now on Ve #. Then one has for all Imk > 0

IV (x)!! ,
(25) ” L{le) 1-3 - (47-[)—2 S S M\ e2Imk:x—p. d}’,
. b rx —_— }7!-
where || ||, is the Hilbert-Schmidt norm of the kernel uG,v. In particular we have
thus

G0l = ey *(§ L vy,

lx — pi*
From this it follows that the map k — uG,v is analytic from the half-plane Imk >0
into the space of Hilbert-Schmidt operators with respect to the Hilbert-Schmidt
norm and it is continuous from Imk > 0, k% ¢ spec(H) into the same space. More-
over one has, from (2.5) and the Lebesgue dominated convergence theorem, that

luGwll, > 0 as k| > oo in Imk > 0, k? ¢ spec(H).

From the same fact we have also that for any ¢ > O there is a k&, > 0 such that
luGvlly < & for all Imk > k,. For Rek = 0 we have |uGv|, = || GL*VGE?|,,
and this is less or equal ¢ for Imk > k, .
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This in turn implies
(@, Vo)l < &lp, (—A)p) + alol?,

for all @ € D((—A)Y?), which then shows that [V{*/* is infinitesimally small with
respect to (—A)V2

1t is also well known ([25] — [28]), and follows easily from these facts, that
if Ve# then H has at most

(2.6) min((4n)—2 S S %l}g dxdy, (4n)"ZS S %ﬁ‘f/y—]@) dxd y)

negative eigenvalues, where V_ = min(V, 0).

REMARK. In fact one has that H, 4+ AV has at most n negative eigen-
values if |A] < 1/|y,l, where po € y; < ... are the negative eigenvalues of uG,v.
Let us also mention that it is known ([22], Th. 1I1. 13) that the set of positive energy
eigenvalues is bounded and nowhere dense.

From the fact that uG,v is a compact operator for Imk > 0, k® ¢ spec(H)
we have from (2.2), by the analytic Fredholm theory (see e.g., [29], [22]), that if
V e # the singularities in Imk > 0 of (1 -+ uG,v) ! are isolated poles of finite order,
namely the points (on Rek = 0, H being self-adjoint) where —1 is an eigen-
value of uGv, as an operator on L*R3). The poles in Imk >0 are in 1-1 cor-
tespondence (by k — k2%, Imk >> 0) with the strictly negative eigenvalues of H and
the multiplicity of the pole corresponds to the multiplicity of the corresponding
eigenvalue.

We summarize these results in the following.

ProrositioN 2.1. If Ve % then H= —A + V is defined as a self-adjoint
operator given by the sum of Hy= —A and V in the sense of quadratic forms. H
is bounded from below and any domain of essential self-adjointness of H, is a form
core for H. For k® complex such that k? ¢ spec(H) U spec(H,) we have

(H — k?)"' = G, — G(l + uG,o) G, ,

where G, = (Hy — k¥)™, u=signV|Vi}3 v = |V
sufficiently big

2 and for Rek = 0, Imk > 0

(H— k7= G, -+ ¥, (—DI(G V)G,
I=1

where the series on the right hand side is norm convergent.
For VeZnLXNR®), k*é¢spec(H), (H— k¥t is an integral operator of
Carleman type i.c., it has a kernel (H — k*Y(x, y) such that it is in L*R3) sepa-
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rately in x, y, in fact (H — k*)™ — (Hy — k»7Y is of trace class. One has
(H—K)1x, »)=G(x—y)— SS Gi(x—y)o(x)(1+uGy0) g, X)u(X) Gi(xp—y)dx,dx, -

For VeR we have that k — uG is an analytic map from Imk > 0 into
the space of Hilbert-Schmidt operators with their natural norms and is a continuous
map from Imk > 0, k* ¢ spec(H), into the same space.

The singularities in Imk > 0 of (1 + uGv)~* are finitely many isolated poles
of finite order on the imaginary axis, the points where —1 is an eigenvalue of uG,v.
The map k — k? gives a one-to-one correspondence of the poles in Imk >0 with
the strictly negative eigenvalues of H, and the correspondence preserves multiplicities.
If @ satisfies uGvp = —@ then  satisfies (—A + V) = k%) whenever ¢ = —u.
If uo €< 1y < ... are the negative eigenvalues of uGyv then —A + AV has at most
n negative eigenvalues, if | <-1/iu,}l, n=0,1,... .

For Imk > 0, (H — k¥ ™V is norm-analytic and (H — k¥)™(x,») is for x # y,
analytic in k except for poles of finite order at the points k where uG,v has the eigen-
value —1.

ReMark 1. It is also known (see e.g., [22], [31] XI.6, p. 101) that if
ve # n LY(R3) either (1 + uG,v)-! exists for no k in Imk > 0 or the set § of
real k such that (1 -+ uG,v)"! does not exist as a bounded everywhere defined
operator is a bounded closed subset of R of Lebesgue measure 0. If &% is a
positive eigenvalue of H then k2e &. If || V|lg << 1 then & is void. (In fact in this
case H and H, are unitarily equivalent.) If V' falls off exponentially at infinity in the
sense that e** V(x) e Z for some « > O then uG,v can be continued analytically to

an Hilbert-Schmidt operator in the whole region Imk > — ?, hence in particular

Imk = 0 is in this case in the analyticity domain and the analytic Fredholm theory
yields the discreteness of &. If ¥ has compact support then by (2.4) k — uG,v is
a Hilbert-Schmidt-valued, analytic map for all ke C. In this case the only singu-
larities in k of (1 + uG,v)™* are isolated poles of finite order where —1 is an eigen-
value of uG,v. Consequently in this case the only singularities of (H — k%)"! and
(H— k)™ Yx, y) for x # y as maps from ke C into bounded operators resp.
functions are poles of finite order at the points & where uG,v has the eigenvalue
— 1. The poles in the half-plane Imk << 0 (the so called “‘unphysical half plane’)
are called resonances of H. We recall that we have already identified, in Proposi-
tion 2.1, the poles in Imk > O (the so called “physical half plane”) with the nega-
tive eigenvalues at k2 of H.

REMARK 2. For any Ve one can also show ([32], XIII, p. 100)
that the number of eigenvalues of H in the interval (— oo, 0] is

< ((4n)'ZSS —Vl‘(’—‘c—)V‘l(zy—)dx dy). In particular thus the multiplicity of the eigen-
xX—y
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value —1 of uGy is finite. In the case when V'€ &, V' > 0 we see that there are
no eigenvalues which are negative or zero.

Throughout this paper we shall use the following.

DeRINITION. Let Ve #. We say that H fas a zero energy resonance if —1 is
an eigenvalue of the operator uGyp in L¥R®). We say that the zero energy resonance
is simple if —1 is a simple eigenvalue of uG,v.

Assume now that ¥V e # and that —A--V has a zero energy resonance.) By
the fact mentioned above, this resonance has a finite multiplicity. Let ¢ be an eigen-
function to the eigenvalue —1 of uGv i.e.,

2.7 @ = —uG,vo.

Let ¥ = Gyuep, then we get from (2.7)

(2.8) Y= — G,V
ie.,
(2.9) (—A + V) =0.

We shall call ¥ a resonance function. Note that y need not be in L*(R®), in general.
Since u = signV.v» and v = sign¥.u we have

(2.10) vGou = sign¥V(uG,v)sign’V,

so that uGyv is unitarily equivalent to its adjoint oGy . Hence, setting
¢ = —signV-@, we have

.11 ¢ = —oGup.

If the zero energy resonance is simple, i.e., —1 is a simple eigenvalue of ¥G,v, then
we have from the spectral theory of compact operators that we may normalize ¢
in such a way that (@, @) = —1, where (,) is the scalar product in L2(R®). Then
we have, in the norm sense,

212)  lime(l +uGw + &)t = — o> <l = lo> <5, @),

&0

where |@p> <<¢| denotes the spectral projection corresponding to the simple
eigenvalue —1, ie.,
o> <plf = (@, o

for all fe LA(R3).

3) For a recent discussion of when such a situation can arise see [37].
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Moreover the same theory gives that if 4 is a bounded operator such that
(p, Ap) # 0 then

2.13) lime(l + uGyv + ed)™* = (¢, Ap) o> <.
e—0

Let us now assume that we have a zero energy resonance which is not neces-
sarily simple. If V' < O then u = —uv, hence uG,v = —vG,v, hence uG,v is sym-
metric in this case. Moreover 1 is an eigenvalue (of finite multiplicity) of vGyo,

REMARK. The case when ¥ > 0 is trivial since in this case there do not exist
any zero energy resonance functions. The situation for ¥ not necessarily of a defi-
nite sign is discussed in [40].

Let us now assume that V' 0. Call P the orthogonal projection onto the
eigenvalue 1 of vGyv. Let @y, . .., ¢, be an orthonormal base in the corresponding
subspace PL%(R?). Then by the spectral theory of symmetric compact operators
we get that if 4is a bounded operator such that the nxn matrix (¢, 49)),
i,j=1,...,nis non singular then

lime(l 4 uGyv + ed)™ = lime(l —- vGyv + ed)™t =

£20 >0

2.14)
= lp:> [(9;, 40)]™ <oy,

i j=1
where [(;, Ap;)]™! is the inverse matrix to the matrix (p;, Ap;).
Thus we have the following:

LEMMA 2.2. Assume that Ve R and we are either in the situation of no
zero energy resonance or that we have a zero energy resonance which is simple or
that we have a potential V < 0. Then if A is a bounded operator we have in the
Horm sense

lime(l + uGyv + ¢4 + o(e)) ™ = B(A),
e—0

where o(g) is any bounded operator such that €| o(e)|| -0 as ¢ - 0. The bounded
operator B(A) is the zero operator if there is no zero energy resonance, it is equal to

B(4) = Zlco>[(<p,, Ap)I™ <o)l

if V has a definite sign, and where ¢;, i = 1, ..., n is an orthonormal base for the
ecigenspace of vGyv to the eigenvalue 1, and it is assumed that (¢, Ap;) is a non
singular matrix. If there is a simple zero energy resonance then

B(A) = o> (¢, A9)™ <9l
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where |@> <@| denotes the projection onto the eigenspace to the eigenvalue —1
of uGy, and it is assumed that (p, Ap) # 0.

For simplicity we shall say that V e # is admissible if either of the cases of
Lemma 2.2 occurs, i.e., either ¥ has no zero energy resonance or it has a zero
energy resonance but this is simple or ¥ < 0.

In the following we shall assume that Ve % n LY(R®. We shall call short
range potentials the elements V of % n L*(R3) which satisfy

(I + [x)*V(x) e LY(R3).

If ¥ is a short range potential then we have u, v € L*(R?) and it is easily veri-
fled by expansion that

(2.15) uGyuv = uGyo + ¢ —;{k— lu> <v|+ O(e?)
T

for all Imk > 0, in the norm sense. Let now A(.) be a differentiable function on
R such that A(0) = 1. Then we have from (2.15)

(2.16) MG v = uGyo + A (OuGyv + ;—k ju> <vi +Of(e?).
n

From Lemma 2.2 we then have, for ¥ admissible, with

2.17) 4=k > <v| + X(OuGyp,
4n
(2.18) lim e(l + AeuG )™t = B(A).
&—0

Suppose now we have a zero energy resonance and let ¢ be any eigenfunction
to the eigenvalue —1 of uG,v, then we have by the definition ¥ = Gyvp:

(2.19) — AY = vo.
From this and (2.9) we obtain
(2.20) vp = — Vi,

which shows that one has, since v, ¢ € L(R®), Viy ¢ L'(R3).
Let us now assume that the zero energy resonance is simple. With ¢ defined

as in Lemma 2.2 and choosing the normalization (¢,p) = —1 we have
—1=(p, ¢) = — (VGup, p) =
2.2 = — (Gup, vep) = (Gup, Vi) =
= — (G VY, YY)

9 — 1529
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where we used (2.20), (2.11) and
2.22) vp = up = — VGup = —Vy,

which follows from (2.11) using the definition ¢ = —signVo.
But using (2.8) we then get that (2.21) is equal to (¢, V¥), hence

(2.23) —1=(, Vy).

In the case when the zero energy resonance is not necessarily simple but
V < 0, then, with the ¢; as in Lemma 2.2 and setting y; = G,vp; (these functions
are then again called resonance functions), we have similarly as above that

2.29) W V) = —6,;.

We now see that because of the value (2.17) of 4 the expression (¢, Ag)
entering B(A4) by (2.18) becomes

. ~ ik ~
@.25) (3, 49) = (<p, > <v|<p) + (@, X (OuGovg).
The first term, using (2.7), (2.11) and ¥ = Gyvo = G,up, becomes

Kk (—vGup, u)(v, —uGye) =
4
(2.26)
— 5 g, o, ) = 5, VYV, ),
4r 4n

which is finite since Vi e L}(R3).
The second term in (2.25) becomes

(2.27) (@, X OuGyve) = —X(0)o, @) = — X(O)W, YY)

where we used (2.7) and (2.21).
Inserting this and (2.26) into (2.25) we get

(2.28) (@, Ap) = — X O)Y, Vi) + %(l//, VYV, ¥).
This then yields for B(4) in (2.18)

229 By = — (z'(oxw, ) — —E W, V), W))'l o> <.
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Similarly in the case when one has a zero energy resonance and V < 0 and
¥;, j=1, ...,n are the resonance functions-with the normalization (2.24) we get

n s -1
230) B = 3] o> [/1’(0) W VI, w] <.

ij=1
We have thus proven the

LEMMA 2.3. Assume that V is a short range potential and let Mg) be a diffe-
rentiable function with A(0) = 1. Then we have in the operator norm

lime(l + Ae)uG,v)™t = B(k).
&0

B(k) is zero if —A + V has no zero energy resonance. If —A ~+ V has a simple
zero energy resonance we have that both Viy and V\|* are in L\R®). In this case

Bl = — (uoxw, ) — Zi W V)V, w))_l 9> <3,

where |@> <@| is the spectral projection to the eigenvalue —1 of uGu (and in
particular Yy = Gyoo). If —A -+ V has a zero energy resonance which is not
necessarily simple but V < 0 then calling ¢, i = 1, ..., n an orthonormal base in
the spectral subspace to the eigenvalue —1 of uG,w and calling Y, = Gwo; the
corresponding resonance functions, then we have that V\y,|* and Vi, are in
LYR3), (¥, Vi) = —é;; and

" . ik -
Bl = Y lo> [A O3, -+ - (b VX, 1//,-)] <.
i, j=1
REMARK 1. In above expression for B(k) we have assumed that the inverse
of the matrix 1'(0)5;; + i]—c— Wi, MV, ) exists. If A(0)=0 and n>1 this
T

assumption is violated and it can be shown ([40]) that in this case the limit B(k)
does not exist. The complete discussion is given in [40].

REeMArRk 2. The condition Ve LY(R®) is used in this lemma to establish
Vi e LY(R®), which follows from (2.20). Note that the condition that (V, i) exists.
seems to be needed, because this expression appears explicitely in B(k), however
the result of Lemma 2.3 in the case of no zero energy resonance holds also under
the sole assumption Ve 4.

3. POINT INTERACTIONS AS LIMITS OF SHORT RANGE INTERACTIONS

Let ¥V be a short range potential and let U, be the unitary dilation group in
L*R3) ie., for ¢ >0

G0 U)) = ey (“f‘)'
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X

We see that U,VU;! = V( ), U, AU;! = &A and

&
(3.2) UG U™ = 672G, -1 .

X

LetH, = — A+ AV, V.= 8—2;/( ) and H = — A +- AV, then we have

£
3.3) H, =2 UHU,

and for (ek)? ¢ specH:
3.4) (H, — k»™ = U (H — (¢b)®» U .

Let now k, > 0 be such that, by (2.4), ||uG,v],<< 1for all Imk >k, We
shall now prove the following

LEMMA 3.1. Let V be an admissible short range potential. Let ) be a non ne-
gative differentiable function Xe) of ¢, with A(0) = 1. Let H, be defined by —A -

€
such that Imk? # 0.

Proof. From the resolvent equation we have by iteration for Imk > 0

+ A2V (—x—), then (H, — k*™' converges weakly in LA(R®) as ¢ —» 0, for all k

(3.5 (H— k' = G, — \G VG, + 22GV(H — k¥ VG, .

This together with (3.4) gives
{3.6) (H, — k8t = G, — 2G V.G, + ¢ 2R2G U V(H — (k> VUG,

Denoting by (H — (ek)*)™* (x, y) the kernel of (H — (¢k)®)™%, we can rewrite (3.6)
in the form

(H, — k) (x, 3) = G(x — ») — Xe) ¢ S Gilx — ex)V(x)Gylex; — y)dx, -+

3.7
+ Me) e SS G(x — ex)V(xy) (H — (ek)*) H(xy, X2) V(x2)Gy(ex, — p)dx,dx, .

-~

Now the trace norm of 5 G(x — ex)V(x,)G(ex; — y)dx,; is bounded by

(3.8) S G(x — ex)PF(xp)l dxdx = | VILIG, 12,
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where || ||, is the LP-norm, p = 1,2. The right hand side of (3.8) is finite indepen-
dent of ¢, by the assumption Imk > 0 and the estimate

1 e—2Imk x!
39 G} =\ G)Pdxg —— - dx < o0.
(39) Gl S‘I (% (4n)2§3 S dr <o

Hence the norm of the second term in (3.7) is bounded by A(e)e|| Vi, |GlZ - O
as ¢ — 0. Using (2.2) the third term in (3.7) can be written as

Meye SS Gilx — ex)V(x)G oy — Xo)V(x2)Gylex, — y)dx,dx, —

(3.10) — A eSSSS Go(x — ex)V(x) Gy — x)0(x)(1 + UG )™ (x, %)+

u(x2)G (X3 — x)V(x)Gylexy — y)dxydxadxgdxy .

Now the first term in (3.10) has the form
(.11 ﬂsggwx — ex)p(x)][uCry) Gy — )00 () Gylexy — 3)Idxdixs -

This is of the form A(e)? e4,B,C,, where 4., B,, C, are the operators with kernels
A%, y) = Glx — ep)v(y),

Bx(xs _V) = u(x)Gz;k(x - y)U(y) )
and

CAx, ) = u(x)G(ex — y)

respectively. The Hilbert-Schmidt norms of 4, and C, are given by (3.8), hence
are bounded independently of &. The Hilbert-Schmidt norm of B, is bounded by
1V |lr. Hence (3.11), which was the first term in (3.10), converges to zero in operator
norm as & — 0. The second term in (3.10) is of the form

(312) -}'(8)3 AsBaDJ:BECg >

where D, = ¢ (1 + AuG,, v)™.

From Proposition 2.1 we know the Hilbert-Schmidt continuity of uG,v for
Imk > 0, k?¢ spec(H), hence B, » B, as ¢ — 0 in the Hilbert-Schmidt norm.
From Lemma 2.3 we have that in the case of an admissible ¥, D, converges in the
operator norm sense, as ¢ — 0, to an operator B(k). Above, in (3.8), we have already
seen that the Hilbert-Schmidt norms of 4,, C, are bounded independently of &.
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On the other hand by

(3.13) Gof) () = is T fo)dy
dn Jx — y|

we see that for Imk > 0 we have that G, maps the space € (R3) of continuous func-
tions vanishing at infinity into itself. Therefore if f e €,(R?), €,(R®) being the space
of continuous function of compact support, we have that (G, f)(ex) converges in
sup-norm as ¢ — 0 to (G, f) (0). This implies that C, f(x) converges as ¢ —» 0 (strongly)

to u(x) S G.(») f(»)dy. Thus, C, being norm bounded uniformly in ¢, we have that C,

converges strongly as a bounded operator on L¥(R?), as ¢ — 0, to [u > < G|, where
lu > < G| is the operator defined by

(lu> < Gyl ) (x) = u(x) (Gi(-), 8), for ge L¥R®),

(,) being the scalar product in L*R®) (note that G,(-)e L%R?®), for Imk > 0,
by (3.9)).

In the same way we prove that A¥ — |v> << G¢/, strongly as bounded ope-
rators in L3*(R3), as ¢ — 0, where AF is the adjoint of A,. From these results we
see that for any f, g e L%R®) we have

(314) (f’ AaBstBecag) = (A;‘f3 BsDeBsceg) - (A(;kf’ B()DOBOCOg)

as ¢ — 0, where A = |v > < G|, B, =uG,w, D,= Bk), C,=u><G.
This together with the results concerning (3.11) and (3.12) gives the weak conver-
gence of (H, — k%)™ as ¢ — O for Imk > k,, Rek = 0. On the other hand by (3.4)
we have that (H, — k?)7! is analytic in k for all ¢ >0 when (H — (ek)®)!
has these propertiecs. We know by Proposition 2.1 that if e.g., Ve # hence a
fortiori for our ¥, (H —k?)™1 is analytic in k for Imk > 0 except for finitely many
poles of finite order on fImk >0, Rek = 0. In particular thus (H, — k%)7! is
analytic in k? for all &® with k2 ¢ [—k2, oo).
This finishes the proof of the lemma.

REMARK 1. As in Remark 1 of Section 2 the case 1'(0) = 0, n > 1 is excluded
by our present assumptions. However the result itself is valid also in this case,
as proven in [40].

Let us now look at the proof of the preceding lemma, in order to identify the
limit. We saw that the second term in (3.7) vanishes in the limit ¢ — 0, the first terms
is independent of &, and the third term converges as ¢ — 0 to the limit of (3.12) as
¢ — 0, which was computed to be, in the weak sense,

(3.15) ‘ |G, > < v| uGyv Blk)uG,y v | u> < Gyl
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From Lemma 2.3 we have that B(k) = 0, hence (3.15) is zero if there is no
zero energy resonance ; hence in this case we have simply (H, — k)7 — G,. Assume
now that V is such that there is a simple zero energy resonance. Then again B(k)
is given by the corresponding case in Lemma 2.3 i.e.

316 B = (i% W, V) (V. %) — 2 0) (0, V¢))"1|¢> <.

By (2.20) we have vp = — Vi and since, by (2.8), v = —G, V', we have, recalling
that wvo =V

(3.17) (v, uGyoe) = — (V, GoVy) = (V, ).

In a corresponding way we find

(3.18) (@, uGyou) = (f, V).

From (3.16), (3.17), (3.18) inserted in (3.15) we get

: -1
1G> (V2 ) [(ﬁ)(w V) (V. §) — 10 ¥, sz)] W, V) <G| =

(3.19)
=G, > (i— a>—1< G,
4
with
(3.20) a = 2(0) (f, V)/I(¢, V)%

It was proven in [13] that the sum of (3.19) and G, is the resolvent of
the self-adjoint operator —A,, where —A, is defined as that self-adjoint extension
of —A restricted to ¥%R3 — {0}) that is given by the boundary condition #'(0) =
= 4no(0) in the space L:(R", rdr), for — d?/dr® (one decomposes — A and L*R3)
in radial and angular coordinates).

The last case we have to examine is the one when ¥ < 0 and there are zero
energy resonances. In this case we have (3.19) in a corresponding way, using Lemma
2.3 but with « replaced by

(3.21) @ = =10 (XIW, NI,

where we have used the normalization as in Lemma 2.3, (¢;, ;) = —&;;. Hence
we get in all cases that the weak limit of the resolvent (H, — k?)™! is again a
resolvent, namely (—A, — k*)71, with ¢ = 0 in the case of no zero energy reso-
nance and o given by (3.20) resp. (3.21) in the case where there is a simple energy
resonance resp. there is a zero energy resonance and ¥V '< 0.
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It is a standard result (see e.g., [30], Ch. VIII, p. 284) that if the weak limit of

a resolvent is a resolvent then the limit is a strong one. Hence, recalling also the
Lemma 2.3, we have proven the following:

THEOREM 3.1. Let V be a short range potential and let i(e) be differentiable

with AM0) = 1. Then if —A 4V has no zero energy resonance then (—A—}—

+ Ae)e2V (L

£
k such that Imk? # 0. If —A-+V has a zero energy resonance then this resonance
is of finite multiplicity and if we call Y;, i =1, ..., n the corresponding resonance
Sunctions (satisfying (—A + V), = 0) then we have that V\,* as well as Vs, are
in LXR®). Moreover if the resonance is simple (i.e., n = 1) or V < 0 then the strong

limit as ¢ > 0 of (—A + Me)e2V (i) — k) 1s
&

-1
) — kz) converges Sstrongly as ¢ > 0 to (—A — k¥ for all

1 -1
(_Az—k2)_1:Gk"“in>(£—a) <Gk|7

4z

n

~1
where a =— A'(0) ( ¥ v, t//,-)|2) , the resonance functions being normalized

i=1
according to (f;, Vif;) = —o

ije

From the expression for

: ik -1 :
(3.22) (—A, — k' =G, — G, > (4’7 — J) <G|

of Theorem 3.1 we see that, for & # 0, —A, has exactly one resonance (in Imk < 0)
resp. one eigenvalue k® (in Imk > 0) at the point k% = —16n%? for k = —4nia.
The first case is realized when A’(0) < 0 and the second one when A(0) > 0. In

the second case and because of the strong resolvent convergence (—A+

-+ 2(8)8_2V(i) — z) — (—A, — 2)'Y, z¢[—k}, co) we see that an eigenvalue
&

&
of —A, (by the principle of non sudden expansion of the limiting operator, see
e.g., [24], VIII, 2, Th. 1.14). We formulate this as a

E, of —A 4 Ae)e2 V(i) must converge as ¢ —» 0 to the eigenvalue — 16n%x2

COROLLARY. In the case when V has at least one zero energy resonance then we
have that the limit operator — A, has exactly one resonance at k = —4nia if '(0) < 0
and exactly one negative eigenvalue —16 n%® if 2'(0) > 0. Thus in the case 2'(0) > 0
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X

there exists an eigenvalue E, of — A -+ Ae)e™? V(
g

) which converges as ¢ — 0
to the unique eigenvalue — 16 n%a® of — A,.

REMARK 2. The same observation as in Remark 1 holds here and in particular
we refer to [40] for a discussion of the case when the condition V < 0 is not neces-
sarily fulfilled.

Let us now assume that ¥ has compact support. By what we recalled in Re-
mark 1 after Proposition 2.1 in this case (—A + V — k¥ (x, y) is, for x # y,
analytic in the whole complex k-plane with only finite poles at the points k* where
~—1 is an eigenvalue of uG,v (these are the resonances of — A -+ V for Imk < 0
and the negative eigenvalues k% for Imk > 0). From the strong convergence of
Theorem 3.1 we see that (H, — k®)7! (x, ¥) converges for x # y pointwise almost
everywhere, and hence by continuity everywhere, by subsequences as ¢ — 0 to
(—A,— k371 (x, y). Hence in particular the poles in k converge to those of (—A, —
— k®)7t(x, y), thus the eigenvalues and resonances of H, converge to those of
—A,. However the latter has exactly one resonance (if 2'(0) << 0) or one eigenvalue
(if 2'(0) > 0), at k? = —16n%2. In particular if — A + ¥ has no zero energy reso-
nance, i.e., —A, is to be replaced by —A, then the eigenvalues and resonances of
H_ have to tend to the poles of (—A — &%7I(x, y), x # y, i.e, to infinity (since
(—A — k®Y(x, ), x s y is analytic in the whole complex plane). Similarly,
if —A - V has a zero energy resonance and we suppose that this is either simple
or we have V' < 0 then, for 2'(0) > 0, — A, has no resonance and exactly one eigen-
value at k%2 = —16n2%?, hence all the resonances and all but one of the eigenvalues
of H, have to tend to infinity as ¢ — 0, and that eigenvalue converges to k® =
=—16n%x2. The case 4(0) < 0 is discussed similarly, and we arrive thus to the
following:

THEOREM 3.2. Let V, A be as in Theorem 3.1 and suppose that V' has compact
support. Then if —A + V has no zero energy resonance then all the negative eigen-

values and resonances of —A + £ 22(e)V (_x_) tend to infinity as ¢ — 0.
&

If V is such that —A -+ V(x) has a zero energy resonance and either V < 0
or the zero energy resonance is simple, then if A'(0) > 0 all the resonances of —A +

+ a—zz(s)V(i
€
values, and this one tends to k* = —16 n2A'(0( Y |(V, ¥ )22, (where Y, are the

) tend to infinity as ¢ — 0 and so do all but cxactly one of the eigen-

resonance functions such that (—A -- VY, =0, (¢, V;) = —38,;). On the other
hand, if X (0)<0 then all the eigenvalues tend to infinity together with all but one of
the resonances, and this one tends to k = —4nid’(0) (Y |(V, ¥)I»H~L.

J
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REMARK. —A, is the Hamiltonian for a point interaction at the origin, of
strength o (see [13]). The translate —A¢, 0 of —A, by the vector xq € R3 is then the
Hamiltonian for a point interaction at x, of strength a. By (3.19) we have

21 ik i .
(3.23) (—Ap, 00—k xy) =Gilx — ) — i Gi(x — x0)Gly — xo)-

'

These interactions and superpositions of these were studied in [12], [13], [14], [15].
In particular our results above show that the bound states and resonance spectrum
of the zero range interaction on R® can be approximated by those of short range
potentials. Applications of this observation will be given elsewhere.

We shall now study in more details the case of a potential ¥ of compact sup-
port, and these results will also be applied in the next section. Let ¥, A(e) be as in
Theorem 3.1. From Proposition 2.1 we have that

(3.24) (FA+ V., — k) =G+ Y, (—D"GV)"G,
m=1
converges absolutely in norm for Imk sufficiently large. From the resolvent identity
we have
(3.25) (—A+V,— ) V,G, =G, — (—A+V, — k3!

so by Theorem 3.1 we have in the strong operator sense that (—A-+V,—k2)"1V,G,
converges to zero as € — 0 if ¥ has no zero energy resonance, or to (3.19) with
o given by (3.21), if ¥ has a zero energy resonance and this is simple or ¥V < 0.
Applying (3.19) to (—A — k¥)f for fe €3(R®) we get from (3.25)

(3.26) lim((—A + V. — k)17 f)) = (f‘— - a)"l Gy(x)f(0).
Eamp T

Let now B, be the ball of radius r, ie., B, = {xeR® | |x| < r} and let
¥(B,) be the Banach space of continuous functions on B,, and set 1~3,5R3\B,.
Let I(%(B,), €«(B,) be the space of bounded linear maps from %(B,) to Go(B,),

for s, £ >0, and let | -||, , be the Banach norm in L(%(B)), ‘gm(é,)). We shall see
that || (—A + V, — k»V,|i;,, is bounded uniformly in & for ¢ < & and k& > k,. Sup-
pose now that ¥ has compact support, say supp¥ < B, , for some r, > 0. From
(3.7) we have

(—A+ V, — I W (x, ) = Me)e SGk(x — ex)V(x)d(ex, — y)dx, —
(3.27)
— Ae)e SS Gi(x — ex)V(x)(H — (b)) xy s x2)V(x2)6(ex,—y)dx,dix, .
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Applying the first term in (3.27) to a continuous function f we get
(3.28) M) eS G(x — ex)VOx)f (exp)dxy,
‘the absolute value of which is bounded for x e E’, , F > ¢ery by

(.29) oty qup ()

4n(r — ery) ix1 <ery

Thus the |- IIB,Q,,-norm of the first term in (3.27) is smaller than or equal to the
-expression (3.29), without the term sup | f(x)|.

x| <erg

The second term of (3.27) applied to f yields
(3.30)  — ey SS Gilx — ex)V(x)(H — (6k)2)xy, xo) V(o) f (x:)dxydxs

Using (2.2) this can be rewritten as

— Me)e SS G(x — ex) V(0 Gl — X9V () f (exo)dnydx, +

B3l + ey SSSS Gl — ex) V() Gulry — x)0(x2)(1 & 4G o) Mxy, x5)+

cu(xX3)G o X5 — XV (x)f(exa)dxy - .. dxy .

‘The first term in (3.31) is of the form -— /1(8)28/15.38&5, where A,, B, were already
defined in the proof of Lemma 3.1 and Z‘,’E the operator with kernel C~3(x, y) =
= u(x)d(ex — y). The second term in (3.31) is of the form /1(8)38ASBED£B56£, where
132 was also defined in the proof of Lemma 3.1. Since suppV < B, we have that
C, maps €(B.,) into L2(R®) with bounded norm equal to |u|l; and converges strongly
as ¢ = 0 to u(x)o(y) asa map from €(B;), € < r5'd, 0 > 0 arbitrary, into L*(R?).
Moreover B, is a uniformly bounded map of L*(R?) into itself, converging strongly
as ¢ —» 0 to B, (as we remarked already in the proof of Lemma 3.1). 4, is a norm
bounded map from L%(R3) into (ém(ﬁ,) with norm bounded by

1 ~Imk(r -erg)
(3.32) el ogrey, 4,5y < 10lle ————¢ o
LR, €8y T2 An(r — ery)

Moreover A4, converges strongly as ¢ — 0 to 4, = |G, > << v|. Thus the first term
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of (3.31) has a || ||, ~norm which is less or equal

. (A(ﬁ))28 e—lmk(r—ero) ” V”h

.33 C
(3.33) 4n(r — ery)

for some constant c.

The second term in (3.31) is controlled using the above estimates on 4,, B,, C,
and the fact that D, is uniformly bounded and converges strongly to D, as a map
from L2(R3) into itself. We have thus proven the following:

THEOREM 3.3. Let V be a short range potential with support in a ball B,.'J>
of radius ry > 0. Let A, V, be as in Theorem 3.1. Lets,t > 0 and let L, , = L(¥(B,),
(o”w(ﬁ,)) be the space of bounded continuous linear maps from 4(B,) into G B)),
where €(B,) is the space of bounded continuous functions on B and @(B) is the
space of bounded continuous functions on 1~?,ER3\B, which tend to zero at infinity.
If | < lis ¢ is the norm in Ly , then there is a constant ¢ depending only on V' such that
if e < min{rg's, rglt} then for Imk > k, we have

[(—A + V, — k)W, < ce ™9,

If —A -+ V has no zero energy resonance then (—A + V, — k¥ 'V, — 0 strongly
in Ly ,. If —A 4 V has a zero energy resonance and either V < 0 or the resonance
is simple then

(A + V, — BV, (x, y) - (;—"n - a) " G950

n -1
strongly in L ,, where a = — 1'(0) ( Y (v, l//,.)zz) , W, being the resonance func-
i=1

tions, normalized such that (f;, Vi;) = — 9;; .

4. SHORT RANGE INTERACTIONS WITH
A DISCRETE SET OF CENTERS

Let ¥V, i=1,2,... a finite or countable set of short range potentials. We
suppose first for simplicity, that —A -+ ¥, has, for all 7, a zero energy resonance.
Let X = {x;} be a discrete subset of R?®. Consider the operators
(4.1 — A+ W, ,(x)

where

(4.2) Wen) = 3, Vi)
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with

X — X

(4.3) Vi {x) = e2(e) Vi( i )
&

and where A(e) are differentiable functions with 4,(0) = 1. Then W, , is a short
range potential, hence by Proposition 2.1 we have that

44) (A + W — k)T =G+ Y, (—D)GW, )" Gy

m=1

is absolutely norm convergent for Imk > 0 large enough. Hence we get, inserting
the definition (4.2) and performing a partial resummation

(AW =k =G =% Y DA+ Vi — £ Wi
m=1 i, #i,
o1 #Fim

(4.5)
(=AY — KV, o VLG

m

We want now to study the limit as ¢ — 0 of (4.5).
From the resolvent identity we have

(4.6) (=B + V= KMV G = G — (— A+ V — kD7,

so by Theorem 3.1 we have, in the strong operator sense, that lim (—A+ V;, —
&=>0

— k»)™V; .G converges to zero if ¥ , has no zero energy resonance, or to

i -1
4.7) G, — (—A, — k) = | G, > ('—k- — oc) <G|

4
where o = -}J(O)(ZKVJ.,E, Y)IH™, if ¥V, has a zero energy resonance which is

either simple or one has ¥; . < 0.
Let now € €5(R3) and apply (4.7) to (—A—k?) f. Then we get

. ik -1

@y lmeA V= k0 = () G
&—>0 ' ! 47I

Now to study the limit of (4.5) as ¢ — 0 we recall results from Theorem 3.3.

Let s,¢t > 0 and let B(x), f?,(x) be the translates by x of the ball B, and of

B, = R*\B,, respectively. Suppose suppV; < B,u, for some fixed r, >0,
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independent of i = 1,2, ... . From Theorem 3.3 it follows with ¢ < min{rg's, rg 't}
(4'9) ”(_A + Vf,E - ICZ)_II/t',t:”s,l‘,.’t{< 4 e—lmk(f—ffo) 3

where |- [, . is the norm in L(%(B,(x,)), Ge(B (x)).
Since X = {x;} is a discrete subset of R3 we have that if y¢X then
G (- —y) e B(B,(x)) for all x,, if s is sufficiently small, and in addition we have

(4.10) sup [Gy(x — y)| < ¢;entmhixidl,
XE Bs(x;)

From (4.9) and (4.10) we get that if K isany compact subset of R®such that K n X =@,
then

SUp|[(—A + V, oAV, o~ A+ V, o= KW .

xEK

“.11) ...(—A+ Vim,s“ kz)_lV,-m,EGk] (x, i< Cc” exp[——Imk(]x,-1 — x,~2| +
+ Ixi2 - xiall + oo+ lxim_l - x.'m] + |Xim“‘)’|)],

for some constant C. From (4.9) and (4.10) we also get that if f is a bounded conti-
nuous function of compact support with suppp N X = @, then if f> 0 with

Sf(y)dy = 1I:
sup (A + Vi =KWV, i i (—AF VL — )W G, )<
xeBe,o(xil) 1 1 m m

(4.12)
< Clexp[— Imk(lx; — x;| + -« + Ix; = yol)]

where y, ES »f(3) dy and C’ is a constant, independent of ¢, if Ba,o(x,-) n Bz,n(x_,-) =@,
i#J
Since suppV,.l,E < Ba,o(x,.) and (—A + V",’E_ kZ)‘lV,.l,a maps L*R?) into
L%R3?) we have moreover
A+ Ve =V (—A+ Ve — k) . (A Vo — KW, Gifll<
(4.13)
< a‘zexp[—lmk(lx,-1 — x,-2| + ...+ IX,-M—J’o])l

For fixed ¢ < ¢, we have from (4.13) and (4.5) that (—A + W, , — k*)7! converges
strongly as n — oo to

@) G (D" Y (A4 Vi — KW VG,
m=1 iy#iy
im-1#im
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for Imk sufficiently large. This being the strong limit of a resolvent it is the resolvent
of a self-adjoint operator —A + W, .

On the other hand by Theorem 3.3 we get that in the case V; has a zero energy
resonance and either le < 0 or the resonance is simple, one has as e—>0

" .
@15) (—A+ V. — KV, (5, ) > — (%,{ - ajl) Gi(x — ;)00 — x;)

strongly as a map from %{*Bso,(le)) to 4(B, r(sz)) for j; % j,. This and the uniform
estimate (4.13) imply that (4.14) converges ;trongly as an operator from %(K) into
itself, where K is any compact subset of R® such that Kn X = @J. By (4.14) and
(4.13) we have that the limit has a kernel given by

Glx =0+ 3 0" 8 Gl ) () G =) -

m=1 Rtars 4rn
Im—1#im
(4.16)
ik -1
) s,
4r

for x and y not in X. Summing up the right hand side of (4.16) we get

i -1
(4.17) Gix —y) + Y Gilx — x;) [—;% —® = gk] Glx; — »),

s iy iy

i -1 . ik . .
where [—;-IE— —a — gk] is the inverse of the matrix ;—C —a — g, which is
T T

given by
( ik ) ik .,
——a—g = — for i,=1i,,
(4.18)
ik ..
(,,_ —x— gk) = — G,\,(x,.1 — x,-’) for i, # i,.

Note that (4.17) is the limit as ¢ — O of the kernel of (4.14), which is equal to
the strong limit asn — oo of (—A + W, , — k*)7*. Thus we have that lim lim (—A +

&0 n—00
+ W, — k¥ Xx, y) is given by (4.17), the convergence in lim being the strong
>0

one for operators on ¥(K).

If X=X, = {x;, ..., x,} is a finite set the sums in (4.17) are finite, namely
iy, i, =1, ..., n. In this case (4.17) was shown in [13], [14] to be the resolvent of
a self-adjoint operator —A, X . Where Ay ) denotes the Hamiltonian for a sum of
point interactions at x,,. .., x, of respective strength a;, i = 1, ..., n. We define «
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to be the function on X, such that a(x;)=0a;. Ay .y has been defined in [13], [14]. If
Rek = 0 and Imk is large enough it is easy to see that

(“A(xn,a) — k)(x, ¥) = Gx —y) —
“4.19)
n ik -1
R B IR
s 4n iy iy
as an operator on L?(R%) is increasing in n.

Let now again X be an arbitrary discrete subset of R* and define « on X as the
function such that a(x;) = ;. By the monotonicity we have (see [15]) that
(—Ax ) — k»7 converges strongly monotonically increasing as n — oo in such a
way that (—Ax ) — k*)7(x, y) converges to (4.17).

It was shown in [15] that this is in fact the resolvent of a self-adjoint operator
—A(x,- Hence lim lim (—A+W, ,—k*)'=(—Ay,,y—k? ! where the lim is under-

-0 n—>oco £—0

stood in the weak sense of operators on L3*(R3).
However this weak convergence implies strong convergence, the limit being

a resolvent.

Observe finally that allowing some of the V; not to have a zero energy resonance
merely amounts replacing X be the subset of those x; for j such that —A + V; has
a zero energy resonance. We have then the following

THEOREM 4.1. Let X = {x;} be a discrete subset of R3. Let o be a function

on X with a(x;) = x;. Let
ik

ik “An
I:—'_“_gk] =] 4

4r
Gk(xil - xi=)> h#iy.

- ail5 LHL=1

iy g

ik -1 . -1
Then Gy(x =)+ % Gle =) [ = o =g | Gt =), where [ <17,
is the inverse matrix to [ - ], is the resolvent kernel (—Ayx , — k®)7(x, y) of a self-
adjoint operator —Ay ,. This operator coincides with —A on €* functions which are

zero on X. Let V; be short range potentials of compact support such that for each

i=1,2, ..., —A 4 V;has a zero energy resonance and either this is simple or V; < 0.
Let Ae) be a differentiable function with 1 0)=1. For each i set
o = ——A'(O)[Z (Vi Yip)IPT7, where Y, j =1, ..., m; are the resonance functions

Jor —A + V}ie., (—A + Vy,; = 0, normalized such that (y;;, Vi) = —3,;. Then

n R - 1
lim lim (-A + Y A(e)e7?V; (b‘_sff_l_) _ kz) = (~A&a — k),
j=1

&0 n—>co

where the limit is in the strong operator sense of operators on L*(R®). X is the subset
of X consisting of those x; such that —A + V; has a zero energy resonance.
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