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THE PRODUCT OF SPECTRAL MEASURES

W. RICKER

1. INTRODUCTION

The example of S. Kakutani [3] shows that the construction of the tensor
product of two commuting spectral measures is not always possible. Accordingly,
if S and T are commuting scalar operators on a space X (see [2]), then S + T and
ST may not be of scalar type.

It was pointed out by C. Foias (for a discussion see [1]) that the tensor product
of two commuting spectral measures always exists if they are interpreted as spectral
distributions. Then the product is, of course, only a spectral distribution and not
necessarily a spectral measure. Accordingly, the sum and the product of two commut-
ing scalar operators are generalized scalar operators. As such, they admit a function-
al calculus for smooth functions only.

An alternative solution is possible if the operators S and T have extensions
acting on a suitable larger space containing X. The technique of going to a larger
space is often used in mathematical physics.

For example, the (unbounded) operator of differentiation in L3(R) does not
admit any eigenfunctions. However, L*(R) can be considered as part of a larger
space which accommodates the complete set of eigenfunctions, x — exp(ilx), of
the differentiation operator.

Or, let D be a self-adjoint, second order, non-singular differential operator
with C* coefficients on [a, b], and let Du = be an associated Sturm-Liouville
problem with appropriate boundary conditions. Let u = m(y/) be its solution for
Y € Cla, b). Then m : Cla, b] = C¥[a, b] is a Radon measure which does not have
a density in the space C'a, b]. However, using the density of m with values in
Cla, b] 2 CYa, b], the Green’s function for the problem can be constructed (see [9]).

In this note we apply this time-honoured technique to construct the tensor
product of two commuting spectral measures P and Q. Let P have domain .# and
QO have domain .#". We shall seek a space Y, containing X as a dense subspace, such
that for each E € # and F € 4, the operators P(E) and Q(F)have unique continuous
extensions Py(E):Y — Y and Qy(F): Y — Y respectively, and the so obtained
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spectral measures Py and Qy have a teasor product. If § and T are scalar operators
with resolutions of the identity P and Q respectively, they have continuous exten-
sions Sy and Ty on to the whole of ¥, then the operators Sy + Ty and SyTy are
again of scalar type. Accordingly, the operators Sy -+ Ty and Sy7y admit a rich
functional calculus.

2. PRODUCT OF SPECTRAL MEASURES

Suppose that P and Q are given commuting spectral measures in X. In this
section, the notion of an admissible space for P and Q is introduced. It is a space
including X, in which the tensor product of P and Q can be constructed.

Let .# and 4" be g-algebras of subsets of the sets 2 and A respectively. Let
4 ® A denote the algebra generated by the rectangles # X & ={E X F:Ee.,
Fe A} and 4 (;b A" the o-algebra generated by # @ 4. Each Ge#Z ® A is

of the form

) G= )& x F),

i=1
where the sets E; X F;e/ X A, i=1, ...,n, are pairwise disjoint.

Let sim(.# ® /") denote the algebra of all simple functions based on .#® 4"
Assume that sim{.# @ ) separates the points of Q2 x A. The closure of sim(.# ® A")

with respect to the uniform norm is denoted by sim(.# ® A"). There exists 2 unique
compact Hausdorff space (2 X A4)", containing @ x A as a dense subset, such that
each member of sim(.# ® /") has a unique continuous extension to (2 X A)".

If Ge A/ ®AN, then G denotes the closure of G in Q@ x A)". Let (ZQ@AN)" =
= {67‘ :Gedl @A) and let 2 be the o-algebra generated by (# @ #)". If pis
an additive scalar-valued function of finite variation on.# ® .47, then the set function
fi, defined by 2(G) = u(G) for each G e (M ®A)", is c-additive on (A Q@A) .

Let X be a locally convex Hausdorff space, X’ its continuous dual, X* its
algebraic dual and L(X) the space of all continuous linear operators on X. The space
L(X) will always have the topology of pointwise convergence. If we wish to consider
X equipped with a locally convex Hausdorff topology 7, other than its original topo-
logy, we will denote it by (X, ). The identity operator is denoted by 7. The adjoint
of an operator T e L(X) is denoted by 7".

Let Q be a set and ./# a o-algebra of subsets of Q. A map P :.# — L(X) is
called a spectral measure if,

(i) P(@) =0 and P(Q) = I;

(i) P(En F) = P(E)P(F) for each E, Fe ./,
and

(i) E~ P(E)(x), E e.# is o-additive for each x e X.
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A spectral measure P is said to be equicontinuous if {P(E): E€.#} is an equicon-
tinuous part of L(X).

Let P: # - L(X) and Q : A — L(X) be commuting spectral measures.
Define the set function R : . # @ # — L(X) by setting

R(G) = 3, PE)O(F),

whenever G € # ® 4" has the representation (1). This definition is, of course, inde-
pendent of the representation. Furthermore, R is finitely additive, R(Q x A) = I
and R(Gn H)= R(G)R(H) for all G, He #/ ® /.

A locally convex Hausdorff space Y is said to be admissible for P and Q if
the following conditions are satisfied:

(i) Y is barrelled, X is continuously included in ¥ and X is dense in Y.

(ii) For each Ee.# and Fe .4, P(E) has a unique extension Py(E)e L(Y)

and Q(F) has a unique extension Qy(F)e L(Y).

(iii) There exists a o-additive measure J# : B - L(Y) such that
H(G) = Ry(G)= Z Py(E)Qy(F),
i=1

for every G e # ® 4 given in the form (1).
It follows, from (i), that Y’ can be identified with a subspace of X’ and that
Y’ separates the points of X.

PROPOSITION 2.1. The map # - % - L(Y) is a spectral measure.
Proof. It is to be shown that if 51, 62 e then,
) H(Gy N Gy) = H(GDH(G).

The multiplicativity of Ry shows that (2) holds whenever 61, &2 el @ AN)".

Let 61 e(H# ® A#)". Denote by M, the system of all sets @2 e # such that
(2) is valid. Clearly (.# ® #")" = M;. Due to the g-additivity of 5# the collection M,

is a monotone system. Consequently # < M,. Now let &2 be an arbitrary element
of . Denote by M, the system of all sets GAlegg’\ such that (2) is valid. Since
(M RN) = M, and M, is a monotone system it follows that % c M,.

PROPOSITION 2.2. Let P:.#l — L(X)and Q : N — L(X) be commuting spectral
measures. Let Y be an admissible space for P and Q and let Y be the completion of Y.
Then Y is an admissible space for P and Q.

Proof. Tt is clear that Y is barrelled, X is continuously included in ¥ and X
is dense in ¥. Furthermore, for each E € ., the operator P(FE) has a unique extension
Pf(E) e L(Y), and for each Fe 4", Q(F) has a unique extension Q?(F) e L(Y).

11-1529
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By hypothesis there exists a spectral measure #: B - L(Y) such that 36”(6) =
=" Ry(G) for each G e.# ® A . Since s is g-additive and the space Y is barrelled,
{#(B):Be %"\} is an equicontinuous part of L(Y). Each #(B) € L(Y) has a unique
extension J#(B) e L( Y), and the family {J?(B): B e.@} is an equicontinuous part
of L(Y).

Let ze Yand let B, be sets in é\?, such that B,2 B, ,, for everyn=1,2, . s
and the intersection of the sets is empty. Let U be a neighbourhood of zero in Y.
Choose a neighbourhood W of zero such that W + W < U. By equicontinuity,
there is a neighbourhood V of zero such that %(Bn)(V) < W for all n. Since Y is
dense in Y, there exists ye Y with z—ye V. As #(B,)y)— 0 in Y, there is a
positive integer N such that s#(B,)(y) eW, whenever n > N. Hence, the identity

H(B)2) = #B)z — y) +HBY)e W+ We U,

valid for every n > N, shows that A is g-additive.

A family € of subsets of a set Q, is said to be compact if it has the (countable)
finite intersection property. That is, if the sets C,e ¥, n = 1,2, ..., have empty
intersection, there exists a finite number of them having empty intersection.

Let of be an algebra of subsets of Q. An additive, scalar-valued function u
defined on &7 is said to be #¥-regular if, for every A € o and ¢ > 0, there exist sets
Be o/ and Ce ¥ such that B = C € A4 and |u(E)| < ¢ for every Ee & such that
E < ANB. An additive map & : & — L(X) is said to be ¥-regular if, for every
xeX and x' e X', the additive function

E > {(F(E)x),x"), E€ A,

is ¥-regular. An additive, scalar-valued function g on & or an additive map
& of - L(X)is called regular, if itis ¥-regular for some compact family ¥ of
subsets of £.

LEMMA 2.3. Let u be a bounded regular additive scalar-valued function defined
on an algebra of. Then y is c-additive on /.

Proof. Since the variation of u is again bounded and regular the result follows
from 4(i) of [6].

LEMMA 2.4. Let P : 4 — I(X) be a spectral measure, €-regular with respect
to some compact family €. For every Ae 4, ¢ > 0, x € X and every equicontinuous
subset W < X', there exist sets BE 4 and C € € such that B < C < A and

sup{[{P(E)(x), x')| : x' e W} < ¢

for all Ee X such that E = AN\B.
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Proof. The statement follows from Rybakov’s theorem ([5], p. 121) and the
fact that the gauge of the polar of W is a continuous semi-norm on X.

PROPOSITION 2.5. Let P : M — L(X) and Q : N — L(X) be commuting spectral
measures. Let Y be an admissible space for P and Q. If the operator valued measures
Py : M - L(Y)and Qy : &/ — L(Y) are regular, then there exists a unique spectral
measure A . M o® N = L(Y), such that H(E X Fy= P{E)YQy(F) for every

EX Fed X ¥.

Proof. By hypothesis there exists a spectral measure #: % — L(Y) such
that %”(GA) = Ry(G) for each G e 4/ @.4". Since Y is barrelled, 2 is equicontinuous
and it follows that {Py(E): E€.#} and {Qy(F) : Fe 4} are equicontinuous parts
of L(Y). Lemma 2.3 and the Orlicz-Pettis lemma imply that P, and Qy are spectral
measures. In particular, Ry:.# ® 4 — L(Y) is finitely additive and multiplicative.

Using Lemma 2.4, it can be shown as in Proposition 2.4 of (8], that the map

G = (Ry(G)»),Y), Gedl @ N,

is regular for every yeY and y’ € Y'. Lemma 2.3 then shows that Ry is s-additive
on # @A Since, for fixed yeV, the set {R(G)y):Ge M ® A} is contained
in the relatively weakly compact set {#(B)(y) : Be é}}, by the Theorem of Extension
in [4), there exists a unique s-additive measure A °(-)(y) :,//l(?./V—» Y, such that

A (G)y) = Ry(G)(y) for every Ge M @ N
¥ M={Acll ® # : X (A4) e L(Y)}, then M contains A ® 4. It follows

from the Banach-Steinhaus theorem that M is a monotone class. Hence,
M= 4 ® 4. The multiplicativity of % can be proved as in Proposition 2.1.
g

The condition that the measures Py : .# — L(Y) and Qy : N — L(Y) are
regular 1s weaker than the requirement that the original measures P :.# — L(X)
and Q : A — L(X) be regular.

LEmMMA 2.6, Let P: M — LX) and Q : NV — L(X) be regular, commuting
spectral measures. Let Y be an admissible space for P and Q. Then Py : M — I(Y)
and Qy : /" — L(Y) are regular spectral measures.

Proof. Let ¥ be a compact family such that P is ¥-regular. Since Yis admissible,
Y’ is a part of X' and {Py(E) : E € 4} is an equicontinuous part of L(Y).
Let y¢ Y,y € Y',e >0 and 4 .#. Since

V=1{zeY: [z, yD| <2}

is a neighbourhood of zero in ¥, there is a neighbourhood U of zero such that
Py(EYU) < V for each Ee.#. Choose x e X such that y — x e U, then for every
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Eeld,
[KPYEXY — x), ¥ )| < ¢/2.
As P is regular, there exist sets Be ./ and Ce € such that B < C = A4 and

[(P(E)), y)l < &/2,

for each E € 4 with E = AN\B. The regularity of Py follows.

3. A CONSTRUCTION

In this section, a way of constructing admissible spaces for P and Q by
weakening the topology of X is discussed.

Let P: 4/ - LX) and Q : /" — L(X) be commuting spectral measures.
A locally convex Hausdorff topology = on X, weaker than the original topology
on X, is said to be admissible for P and Q, if the completion of (X, ) is barrelled
and if {R(G) : Ge.# ® A’} is an equicontinuous part of L((X, 1)).

Let 7 be an admissible topology for P and Q. Denote by Z the completion
of (X, t). For G e 4 ® .4, consider R(G) as a continuous linear operator from (X, 1)
into Z. The operator R(G) has a unique extension R-(G)e L(Z). 1t follows that
{R,(G): Ge @A} is an equicontinuous part of I(Z). In particular, for each
EeJl and Fe 4, there are unique extensions P,(F)e L{Z) and Q,(F)e I(Z)
of P(E) and Q(F) respectively.

LemMma 3.1. Let P: # - L(X) and Q: 4 — L(X) be commuting spectral

measures. Let T be an admissible topology for P and Q. Then the maps Py : .4/ — 1(Z)
and Qg : /" — L(Z) are spectral measures.

Proof. The multiplicativity of P, and Q, follows from the multiplicativity
of P and Q. The ¢-additivity of P, and @ can be proved in the same way that the

g-additivity of A was proved in Proposition 2.2.

Let P:.# — L(X) and Q : & — L(X) be commuting spectral measures and
Y an admissible space for P and Q. Let 7 be the topology that X inherits from Y.
Then 7 is an admissible topology for P and Q. Furthermore, the completion of (X, 1)
1s precisely Y, the completion of Y (cf. Proposition 2.2). Hence, every admissible
space for P and Q is a dense, barrelled subspace of the completion of (X, 1), for
some admissible topology 1 for P and Q.

A locally convex space X is said to be weakly X-complete [9] if every sequence
{Xu}ney Of its elements, such that {(x,, x")}n.; is absolutely summable for each
x'€ X', is itself summable with the sum belonging to X. In [4], such a space is said
to have the B-P property. Weakly sequentially complete spaces, in particular
reflexive spaces, are weakly Z-complete.
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According to a theorem of Ju. B. Tumarkin [10], generalizing the well known
result of C. Bessaga and A. A. Pelczyniski, a space X is weakly Z-complete if and
only if it does not contain an isomorphic copy of the space ¢,.

THEOREM 3.2. Let P : M — L(X) and Q : #° — L(X) be commuting spectral
measures. Let T be an admissible topology for P and Q, and Z the completion of (X, 7).
If Z is weakly X-complete, then Z is an admissible space for P and Q.

Proof. It was noted that for each Ec.# and Fe 4", the operators P(E)and
Q(F) have unique extensions P,(£) e L(Z) and Q,(F) e L{Z) respectively.
For each ze Z and z’' € Z’, the map
G (R(G)2)Z'y, Ge(H# N,
is bounded and finitely additive, hence, is o-additive. That is, the map m : (#/®@.4")" —

— L(Z) defined by m(GA) = R (G)(2), is weakly g-additive for each z € Z. Further-
more, as m is bounded and its range is contained in the weakly Z-complete space Z,

by the Theorem of Extension in [4], there exists a g-additive map J2(-)(z) B Z

such that %’(6)(2) = R (G)(z) for each Ge 4 @ A"
That # is a spectral measure can be shown as in the proof of Proposition 2.5.

COROLLARY 3.3. Let P : M — L(X) and Q : /- L(X) be regular, commuting
spectral measures. Let t be an admissible topology for P and Q, and Z the completion
of (X,z). If Z is weakly Z-complete, then there exists a unique spectral measure
4 :JZG®/V — L(Z), such that % (G) = R,(G) for each GE M4 RN .

Proof. The statement follows immediately from Proposition 2.5, Lemma 2.6
and Theorem 3.2.

In the above corollary, it sufficies to assume that P :.# — L((X, 1)) and
Q : ¥/ — L((X, 1)) are regular.

Let P: .4 - L{X) and Q : ¥ — L(X) be commuting spectral measures. Let
Z' be a subspace of X’ which separates the points of X such that R(G)(Z') < Z’,
for each Ge 4@ 4. Let 1 = o(X, Z') be the weakest topology on X making all
the elements of Z’ continuous. The maps P : # — L((X, 1)) and Q : N~ L((X, 7))
are spectral measures. In this case, the completion Z of (X, 1) is (Z’)* equipped with
the topology ¢(Z, Z’). The space Z is barrelled and weakly sequentially complete.
For each Ge # ® /" the operator R(G) has a unique extension R,(G)e L(Z).
Since R(G) maps Z” into Z’, the operator R;(G) can be interpreted as the operator
dual to the restriction of R(G) to Z', with respect to the duality of Z and Z’.

If, in addition, {R(G) : Ge # ® 4} is an equicontinuous part of L((X, 1)),
then P, and Q. are s-additive.

PRrOPOSITION 3.4. Let P : . # — L(X) and Q : /"~ L(X) be commuting spectral
measures. Let Z' be a subspace of X’ such that Z’ separates the points of X, R(G) (Z')= Z*
for each Ge M @ N, and {R(G) :Ge M @ N} is an equicontinuous part of
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L((X, 6(X, Z'))). Then o(X, Z’) is an admissible topology for P and Q and, conse-
quently, the completion of (X, 6(X, Z")) is an admissible space for P and Q.

Proof. The statement is a particular case of Theorem 3.2.

4. EXAMPLES

Given two commuting spectral measures P and Q, it is relatively easy to
find subspaces Z’ of X’ which separate the points of X, such that R(G)(Z') = Z "
for every Ge/ ® 4. However, it is usually more difficult to show that
{R(G): Ge/ ® #'} is an equicontinuous part of L((X, o(X, Z’))), because the
equicontinuity of R: ./ @ A& — L{(X, o(X, Z'))) does not follow from the
equicontinuity of R : .# @ # — L(X).

ExampLE 4.1. Let © be the set of positive integers and .# the o-algebra of all
subsets of Q. Let X =¢%(Q). For any E € .#, define P(E) to be the operator of point-
wise multiplication by the characteristic function of E. Then P : .# — L(X) is an
equicontinuous spectral measure.

Let Z'=c¢y, & X'. Then for each Ee.#, P(E)Y : X’ —» X’ is again multipli-
cation by the characteristic function of E. Hence, P(E)'(Z’') < Z’ for each E€ ./,
and it follows that {P(E): Ee.#} is a subset of L((X,o(X, Z')). However,
P - L((X, 6(X, Z'))) is not equicontinuous.

LemMA 4.2. Let X be a locally convex Hausdorff space, {T;:i€ F#} a subset
of L(X)and W' asubset of X'. Assume that W' separates the points of X, that T;(W'y< W"
for each i€ F, and that for each w' € W' there is a constant a > 0, such that

?3) sup{[{Ty(x), w)| :ie F} < o{x, WD),

Jor each x € X. If Z' is the linear span of W', then {T; :ie F} is an equicontinuous
part of L((X, o(X, Z))).

Proof. A subset M’ < Z’ is equicontinuous for (X, o(X, Z’)) if and only if
there exist finitely many points z;,. .., z; € Z’, such that M’ is contained in the con-
vex hull of {z} : 1 < j < k}. Hence, the family of operators {T; :i€ £} is an equi-
continuous part of L{(X, ¢(X, Z'))) if and only if for each z'€ Z’ there exists a con-
stant y > 0 and points z7, ..., z;€ Z’, such that

sup{[(T(x), z’)| 1 i€ F} < ymax{|{{x, z;)| : 1 <j < k},

for each x € X. This inequality follows from (3).

ExampLE 4.3. (S. Kakutani [3]). Let @ = A be the Cantor set in [0,1]. Consi-
der the linear manifold C(Q) ® C(A) of C(Q x A) consisting of all finite sums
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of the form

@ x(s, 1) = 3 (gD, (5, D€ QxA,
P==1

where f,€ C(Q), g,e C(A) for i=1,...,n Define the norm of an element
x e C(2) ® C(4) by

©) [xl=inf ¥ 11filo | & os

i=1

where the infimum is taken over all representations of x in the form (4), and || - ||,
denotes the supremum norm. Let X be the completion of C(Q) ® C(A) with
respect to the norm (5).

Let # = 4 be the o-algebra of all closed and open subsets of the Cantor set.
Let P : M - L(X)and Q : #” — L(X) be defined by letting

(PEYX))(s, 1) = yp(s)x(s, 1), (s, 1) e @ X4,
for every Ee .4 and x € X, and
(Q(F)(.X))(S, t) = XF(t)x(s’ t)’ (S, Z) € Q X A,

for every Fe 4" and x € X. As shown by S. Kakutani, P and Q are equicontinuous,
commuting spectral measures such that the product R : .4 ® &/ — L(X) is not
uniformly bounded, and so the extension of R to .4 @ N, with values in L(X), is
impossible.

For we Q X A define w e X’ by w'(x) = x(w), for every xe X. Let W' =
= {w':weQ X A} and Z’ be the linear span of W’. Then R(G)'(W') = W' for
each Ge# ® A and it follows from Lemma 4.2 that {R(G): Ge /4 Q@ N} is
an equicontinuous part of L((X, o(X, Z’))). Furthermore, the spectral measures
P:M - L(X,0(X,2")) and Q : A — L((X, 6(X, Z'))) are regular with respect
to the family of all compact subsets of the Cantor set. Hence, if Y denotes the com-
pletion of (X, ¢(X, Z')), Corollary 3.3 and Proposition 3.4 imply that there exists
a spectral measure :/Z(?/V‘—» L(Y), such that A(E X F) = Py(E)Qy(F) for

every E X Fell X N.

Let X be a locally convex Hausdorff space. Let £ be an interval of ordinal
numbers. A family, {e; : i € £}, of points in X is said to be a basis for X if the follow-
ing conditions are satisfied:

(i) For every x € X there are unique scalars «;, i € #, such that

J
x= Y oe =lim Y, wen
ics 7 i=o
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(i1) The associated coefficient functionals e/, i € £, given by e}(x) = «;, when-
ever x has the expansion (i), belong to X'.

For example, if X is a Banach space then any Schauder basis for X is a basis
for X.

LeEMMA 4.4. Let {e; : i€ #} be a basis for the locally convex Hausdorff space
X, W ={e; :ie F} be the associated coefficient functionals, and Z’' be the linear
span of W'. Let P : .4 — L(X) and Q : N — L(X) be commuting spectral measures.
If RGY(W') = W' for each GE M QN and if for each w' € W’ there is a positive
constant o such that ‘

sup{|[{R(G)(x), w')| : Ge A@N} < alx, w)l,

Jor all x € X, then the completion of (X, o(X, Z")) is an admissible space for P and Q.
Proof follows from Lemma 4.2 and Theorem 3.2.

ExampLE 4.5. (C. A. McCarthy [7]). Let S,=T,={1, 2,...,2"} for
n=12,..., and X, denote the projective tensor product of the spaces C(S,)
and C(T,),n = 1,2, ..., (cf. Example 4.3). Then X, is a Banach space of dimension
4" whose elements can be interpreted as matrices x with entries x(s, 1), (s, t) e
€ S, X T,

Let I be the disjoint union of the sets S, X T,,,n=1,2, ... . Let X denote
the space of all functions x on I' such that, if x, is the restriction of x to S, X T,
(considered as an element of X)) for everyn = 1,2, ..., then

-] 1/2
Jxll= (z HX..IF) < o.
n=1

If we identify X with X,,, n = 1, 2, .. ., then X’ can be identified with X as a vector
space.

Let Q denote the disjoint union of the sets S,,n = 1,2, ..., and A denote
the disjoint union of the sets T, n = 1, 2,. .. . Let ./# be the g-algebra of all subsets
of 2 and .4 the o-algebra of all subsets of 4. Define equicontinuous, commuting
spectral measures P : .4/ — L(X) and Q : #" — L(X) by letting

(PE)x))(s, 1) = Ap(8)x(s, 1), (s,)eT,
for every Fe ./ and x € X, and

(QF)X))s, 1) = Xe()x(s, 1), (s, )T,

for every Fe /" and x e X. It was shown by C. A. McCarthy that the product
R : 4 @ &/ — L(X) is not uniformly bounded.
For each n =1, 2, ..., let B, denote the subset of X given by

Koy s (1€ 8, X T}
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Define a collection {e,, :m = 1,2, ...} < X inductively as follows:

i) For n =1, let {e,, e,, e, ¢,} be an enumeration of B,.
t 1

(i) Forn>1, let {e,_ ...,e,, .} beanenumeration of B,, where

The collection {e,, : m = 1,2, ...} is a Schauder basis for X. Let e}, denote
the element e, m =1, 2, ..., considered as a member of X’. Then W’'=
= {e,, : m=1,2, ...} is the collection of associated coefficient functionals. If Z’
denotes the linear span of W’, then the assumptions of Lemma 4.4 hold. Hence, the
completion of (X, o(X, Z')) is an admissible space for P and Q.

Acknowledgement. The author thanks Professor I. Kluvanek for the theme of this note and
valuable discussions.
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