THE PRODUCT OF SPECTRAL MEASURES

W. RICKER

1. INTRODUCTION

The example of S. Kakutani [3] shows that the construction of the tensor product of two commuting spectral measures is not always possible. Accordingly, if S and T are commuting scalar operators on a space X (see [2]), then S+T and ST may not be of scalar type.

It was pointed out by C. Foiaş (for a discussion see [1]) that the tensor product of two commuting spectral measures always exists if they are interpreted as spectral distributions. Then the product is, of course, only a spectral distribution and not necessarily a spectral measure. Accordingly, the sum and the product of two commuting scalar operators are generalized scalar operators. As such, they admit a functional calculus for smooth functions only.

An alternative solution is possible if the operators S and T have extensions acting on a suitable larger space containing X. The technique of going to a larger space is often used in mathematical physics.

For example, the (unbounded) operator of differentiation in $L^2(\mathbf{R})$ does not admit any eigenfunctions. However, $L^2(\mathbf{R})$ can be considered as part of a larger space which accommodates the complete set of eigenfunctions, $x \to \exp(\mathrm{i}\lambda x)$, of the differentiation operator.

Or, let D be a self-adjoint, second order, non-singular differential operator with C^{∞} coefficients on [a, b], and let $Du = \psi$ be an associated Sturm-Liouville problem with appropriate boundary conditions. Let $u = m(\psi)$ be its solution for $\psi \in C[a, b]$. Then $m : C[a, b] \to C^1[a, b]$ is a Radon measure which does not have a density in the space $C^1[a, b]$. However, using the density of m with values in $C[a, b] \supseteq C^1[a, b]$, the Green's function for the problem can be constructed (see [9]).

In this note we apply this time-honoured technique to construct the tensor product of two commuting spectral measures P and Q. Let P have domain \mathcal{M} and Q have domain \mathcal{N} . We shall seek a space Y, containing X as a dense subspace, such that for each $E \in \mathcal{M}$ and $F \in \mathcal{N}$, the operators P(E) and Q(F) have unique continuous extensions $P_Y(E): Y \to Y$ and $Q_Y(F): Y \to Y$ respectively, and the so obtained

352 w. ricker

spectral measures P_Y and Q_Y have a tensor product. If S and T are scalar operators with resolutions of the identity P and Q respectively, they have continuous extensions S_Y and T_Y on to the whole of Y, then the operators $S_Y + T_Y$ and $S_Y T_Y$ are again of scalar type. Accordingly, the operators $S_Y + T_Y$ and $S_Y T_Y$ admit a rich functional calculus.

2. PRODUCT OF SPECTRAL MEASURES

Suppose that P and Q are given commuting spectral measures in X. In this section, the notion of an *admissible space* for P and Q is introduced. It is a space including X, in which the tensor product of P and Q can be constructed.

Let \mathscr{M} and \mathscr{N} be σ -algebras of subsets of the sets Ω and Λ respectively. Let $\mathscr{M} \otimes \mathscr{N}$ denote the algebra generated by the rectangles $\mathscr{M} \times \mathscr{N} = \{E \times F : E \in \mathscr{M}, F \in \mathscr{N}\}$ and $\mathscr{M} \otimes \mathscr{N}$ the σ -algebra generated by $\mathscr{M} \otimes \mathscr{N}$. Each $G \in \mathscr{M} \otimes \mathscr{N}$ is of the form

(1)
$$G = \bigcup_{i=1}^{n} (E_i \times F_i),$$

where the sets $E_i \times F_i \in \mathcal{M} \times \mathcal{N}$, i = 1, ..., n, are pairwise disjoint.

Let $\operatorname{sim}(\mathscr{M} \otimes \mathscr{N})$ denote the algebra of all simple functions based on $\mathscr{M} \otimes \mathscr{N}$. Assume that $\operatorname{sim}(\mathscr{M} \otimes \mathscr{N})$ separates the points of $\Omega \times \Lambda$. The closure of $\operatorname{sim}(\mathscr{M} \otimes \mathscr{N})$ with respect to the uniform norm is denoted by $\operatorname{sim}(\mathscr{M} \otimes \mathscr{N})$. There exists a unique compact Hausdorff space $(\Omega \times \Lambda)^{\wedge}$, containing $\Omega \times \Lambda$ as a dense subset, such that each member of $\operatorname{sim}(\mathscr{M} \otimes \mathscr{N})$ has a unique continuous extension to $(\Omega \times \Lambda)^{\wedge}$.

If $G \in \mathcal{M} \otimes \mathcal{N}$, then \widehat{G} denotes the closure of G in $(\Omega \times \Lambda)^{\wedge}$. Let $(\mathcal{M} \otimes \mathcal{N})^{\wedge} = \{\widehat{G} : G \in \mathcal{M} \otimes \mathcal{N}\}$ and let $\widehat{\mathcal{B}}$ be the σ -algebra generated by $(\mathcal{M} \otimes \mathcal{N})^{\wedge}$. If μ is an additive scalar-valued function of finite variation on $\mathcal{M} \otimes \mathcal{N}$, then the set function $\widehat{\mu}$, defined by $\widehat{\mu}(\widehat{G}) = \mu(G)$ for each $\widehat{G} \in (\mathcal{M} \otimes \mathcal{N})^{\wedge}$, is σ -additive on $(\mathcal{M} \otimes \mathcal{N})^{\wedge}$.

Let X be a locally convex Hausdorff space, X' its continuous dual, X^* its algebraic dual and L(X) the space of all continuous linear operators on X. The space L(X) will always have the topology of pointwise convergence. If we wish to consider X equipped with a locally convex Hausdorff topology τ , other than its original topology, we will denote it by (X, τ) . The identity operator is denoted by I. The adjoint of an operator $T \in L(X)$ is denoted by T'.

Let Ω be a set and \mathcal{M} a σ -algebra of subsets of Ω . A map $P: \mathcal{M} \to L(X)$ is called a *spectral measure* if,

- (i) $P(\emptyset) = 0$ and $P(\Omega) = I$;
- (ii) $P(E \cap F) = P(E)P(F)$ for each $E, F \in \mathcal{M}$,

and

(iii) $E \mapsto P(E)(x)$, $E \in \mathcal{M}$ is σ -additive for each $x \in X$.

A spectral measure P is said to be equicontinuous if $\{P(E): E \in \mathcal{M}\}$ is an equicontinuous part of L(X).

Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Define the set function $R: \mathcal{M} \otimes \mathcal{N} \to L(X)$ by setting

$$R(G) = \sum_{i=1}^{n} P(E_i)Q(F_i),$$

whenever $G \in \mathcal{M} \otimes \mathcal{N}$ has the representation (1). This definition is, of course, independent of the representation. Furthermore, R is finitely additive, $R(\Omega \times \Lambda) = I$ and $R(G \cap H) = R(G)R(H)$ for all $G, H \in \mathcal{M} \otimes \mathcal{N}$.

A locally convex Hausdorff space Y is said to be admissible for P and Q if the following conditions are satisfied:

- (i) Y is barrelled, X is continuously included in Y and X is dense in Y.
- (ii) For each $E \in \mathcal{M}$ and $F \in \mathcal{N}$, P(E) has a unique extension $P_Y(E) \in L(Y)$ and Q(F) has a unique extension $Q_Y(F) \in L(Y)$.
 - (iii) There exists a σ -additive measure $\mathcal{H}: \hat{\mathcal{B}} \to L(Y)$ such that

$$\mathscr{H}(\hat{G}) = R_{\Upsilon}(G) = \sum_{i=1}^{n} P_{\Upsilon}(E_i)Q_{\Upsilon}(F_i),$$

for every $G \in \mathcal{M} \otimes \mathcal{N}$ given in the form (1).

It follows, from (i), that Y' can be identified with a subspace of X' and that Y' separates the points of X.

PROPOSITION 2.1. The map $\mathcal{H}: \hat{\mathcal{B}} \to L(Y)$ is a spectral measure.

Proof. It is to be shown that if \hat{G}_1 , $\hat{G}_2 \in \hat{\mathscr{B}}$ then,

(2)
$$\mathscr{H}(\hat{G}_1 \cap \hat{G}_2) = \mathscr{H}(\hat{G}_1)\mathscr{H}(\hat{G}_2).$$

The multiplicativity of R_Y shows that (2) holds whenever \hat{G}_1 , $\hat{G}_2 \in (\mathcal{M} \otimes \mathcal{N})^{\wedge}$.

Let $\hat{G}_1 \in (\mathcal{M} \otimes \mathcal{N})^{\wedge}$. Denote by M_1 the system of all sets $\hat{G}_2 \in \hat{\mathcal{B}}$ such that (2) is valid. Clearly $(\mathcal{M} \otimes \mathcal{N})^{\wedge} \subseteq M_1$. Due to the σ -additivity of \mathcal{H} the collection M_1 is a monotone system. Consequently $\hat{\mathcal{B}} \subseteq M_1$. Now let \hat{G}_2 be an arbitrary element of $\hat{\mathcal{B}}$. Denote by M_2 the system of all sets $\hat{G}_1 \in \hat{\mathcal{B}}$ such that (2) is valid. Since $(\mathcal{M} \otimes \mathcal{N})^{\wedge} \subseteq M_2$ and M_2 is a monotone system it follows that $\hat{\mathcal{B}} \subseteq M_2$.

PROPOSITION 2.2. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Let Y be an admissible space for P and Q and let \widetilde{Y} be the completion of Y. Then \widetilde{Y} is an admissible space for P and Q.

Proof. It is clear that \widetilde{Y} is barrelled, X is continuously included in \widetilde{Y} and X is dense in \widetilde{Y} . Furthermore, for each $E \in \mathcal{M}$, the operator P(E) has a unique extension $P_{\widetilde{Y}}(E) \in L(\widetilde{Y})$, and for each $F \in \mathcal{N}$, Q(F) has a unique extension $Q_{\widetilde{Y}}(F) \in L(\widetilde{Y})$.

354 W. RICKER

By hypothesis there exists a spectral measure $\mathscr{H}: \widehat{\mathscr{B}} \to L(Y)$ such that $\mathscr{H}(\widehat{G}) = R_Y(G)$ for each $G \in \mathscr{M} \otimes \mathscr{N}$. Since \mathscr{H} is σ -additive and the space Y is barrelled, $\{\mathscr{H}(B): B \in \widehat{\mathscr{B}}\}$ is an equicontinuous part of L(Y). Each $\mathscr{H}(B) \in L(Y)$ has a unique extension $\widetilde{\mathscr{H}}(B) \in L(\widetilde{Y})$, and the family $\{\widetilde{\mathscr{H}}(B): B \in \widehat{\mathscr{B}}\}$ is an equicontinuous part of $L(\widetilde{Y})$.

Let $z \in \widetilde{Y}$ and let B_n be sets in $\widehat{\mathcal{B}}$, such that $B_n \supseteq B_{n+1}$, for every $n = 1, 2, \ldots$, and the intersection of the sets is empty. Let U be a neighbourhood of zero in \widetilde{Y} . Choose a neighbourhood W of zero such that $W + W \subseteq U$. By equicontinuity, there is a neighbourhood V of zero such that $\widetilde{\mathcal{H}}(B_n)(V) \subseteq W$ for all n. Since Y is dense in \widetilde{Y} , there exists $y \in Y$ with $z - y \in V$. As $\mathcal{H}(B_n)(y) \to 0$ in Y, there is a positive integer N such that $\mathcal{H}(B_n)(y) \in W$, whenever $n \ge N$. Hence, the identity

$$\widetilde{\mathscr{H}}(B_n)(z) = \widetilde{\mathscr{H}}(B_n)(z-y) + \mathscr{H}(B_n)(y) \in W + W \subseteq U,$$

valid for every $n \ge N$, shows that $\widetilde{\mathcal{H}}$ is σ -additive.

A family $\mathscr C$ of subsets of a set Ω , is said to be *compact* if it has the (countable) finite intersection property. That is, if the sets $C_n \in \mathscr C$, $n = 1, 2, \ldots$, have empty intersection, there exists a finite number of them having empty intersection.

Let $\mathscr A$ be an algebra of subsets of Ω . An additive, scalar-valued function μ defined on $\mathscr A$ is said to be $\mathscr C$ -regular if, for every $A \in \mathscr A$ and $\varepsilon > 0$, there exist sets $B \in \mathscr A$ and $C \in \mathscr C$ such that $B \subseteq C \subseteq A$ and $|\mu(E)| < \varepsilon$ for every $E \in \mathscr A$ such that $E \subseteq A \setminus B$. An additive map $\mathscr C : \mathscr A \to L(X)$ is said to be $\mathscr C$ -regular if, for every $x \in X$ and $x' \in X'$, the additive function

$$E \mapsto \left\langle \mathcal{S}(E)(x), \, x' \right\rangle, \ E \in \mathcal{A},$$

is \mathscr{C} -regular. An additive, scalar-valued function μ on \mathscr{A} or an additive map $\mathscr{S}: \mathscr{A} \to L(X)$ is called *regular*, if it is \mathscr{C} -regular for some compact family \mathscr{C} of subsets of Ω .

Lemma 2.3. Let μ be a bounded regular additive scalar-valued function defined on an algebra \mathcal{A} . Then μ is σ -additive on \mathcal{A} .

Proof. Since the variation of μ is again bounded and regular the result follows from 4(i) of [6].

LEMMA 2.4. Let $P: \mathcal{M} \to L(X)$ be a spectral measure, \mathscr{C} -regular with respect to some compact family \mathscr{C} . For every $A \in \mathcal{M}$, $\varepsilon > 0$, $x \in X$ and every equicontinuous subset $W \subseteq X'$, there exist sets $B \in \mathcal{M}$ and $C \in \mathscr{C}$ such that $B \subseteq C \subseteq A$ and

$$\sup\{|\langle P(E)(x), x'\rangle| : x' \in W\} < \varepsilon$$

for all $E \in \mathcal{M}$ such that $E \subseteq A \setminus B$.

Proof. The statement follows from Rybakov's theorem ([5], p. 121) and the fact that the gauge of the polar of W is a continuous semi-norm on X.

PROPOSITION 2.5. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Let Y be an admissible space for P and Q. If the operator valued measures $P_Y: \mathcal{M} \to L(Y)$ and $Q_Y: \mathcal{N} \to L(Y)$ are regular, then there exists a unique spectral measure $\mathcal{K}: \mathcal{M} \otimes \mathcal{N} \to L(Y)$, such that $\mathcal{K}(E \times F) = P_Y(E)Q_Y(F)$ for every $E \times F \in \mathcal{M} \times \mathcal{N}$.

Proof. By hypothesis there exists a spectral measure $\mathcal{H}: \hat{\mathcal{B}} \to L(Y)$ such that $\mathcal{H}(\hat{G}) = R_Y(G)$ for each $G \in \mathcal{M} \otimes \mathcal{N}$. Since Y is barrelled, \mathcal{H} is equicontinuous and it follows that $\{P_Y(E) : E \in \mathcal{M}\}$ and $\{Q_Y(F) : F \in \mathcal{N}\}$ are equicontinuous parts of L(Y). Lemma 2.3 and the Orlicz-Pettis lemma imply that P_Y and Q_Y are spectral measures. In particular, $R_Y: \mathcal{M} \otimes \mathcal{N} \to L(Y)$ is finitely additive and multiplicative.

Using Lemma 2.4, it can be shown as in Proposition 2.4 of [8], that the map

$$G \mapsto \langle R_{\mathbf{Y}}(G)(y), y' \rangle, \quad G \in \mathcal{M} \otimes \mathcal{N},$$

is regular for every $y \in Y$ and $y' \in Y'$. Lemma 2.3 then shows that R_Y is σ -additive on $\mathcal{M} \otimes \mathcal{N}$. Since, for fixed $y \in Y$, the set $\{R_Y(G)(y) : G \in \mathcal{M} \otimes \mathcal{N}\}$ is contained in the relatively weakly compact set $\{\mathcal{H}(B)(y) : B \in \widehat{\mathcal{B}}\}$, by the Theorem of Extension in [4], there exists a unique σ -additive measure $\mathcal{H}(\cdot)(y) : \mathcal{M} \otimes \mathcal{N} \to Y$, such that $\mathcal{H}(G)(y) = R_Y(G)(y)$ for every $G \in \mathcal{M} \otimes \mathcal{N}$.

If $M = \{A \in \mathcal{M} \underset{\sigma}{\otimes} \mathcal{N} : \mathcal{K}(A) \in L(Y)\}$, then M contains $\mathcal{M} \otimes \mathcal{N}$. It follows from the Banach-Steinhaus theorem that M is a monotone class. Hence, $M = \mathcal{M} \underset{\sigma}{\otimes} \mathcal{N}$. The multiplicativity of \mathcal{K} can be proved as in Proposition 2.1.

The condition that the measures $P_Y: \mathcal{M} \to L(Y)$ and $Q_Y: \mathcal{N} \to L(Y)$ are regular is weaker than the requirement that the original measures $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be regular.

LEMMA 2.6. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be regular, commuting spectral measures. Let Y be an admissible space for P and Q. Then $P_Y: \mathcal{M} \to L(Y)$ and $Q_Y: \mathcal{N} \to L(Y)$ are regular spectral measures.

Proof. Let \mathscr{C} be a compact family such that P is \mathscr{C} -regular. Since Y is admissible, Y' is a part of X' and $\{P_Y(E) : E \in \mathscr{M}\}$ is an equicontinuous part of L(Y).

Let $y \in Y$, $y' \in Y'$, $\varepsilon > 0$ and $A \in \mathcal{M}$. Since

$$V = \{z \in Y : |\langle z, y' \rangle| < \varepsilon/2\}$$

is a neighbourhood of zero in Y, there is a neighbourhood U of zero such that $P_Y(E)(U) \subseteq V$ for each $E \in \mathcal{M}$. Choose $x \in X$ such that $y - x \in U$, then for every

356 W. RICKER

 $E \in \mathcal{M}$,

$$|\langle P_{\mathbf{y}}(E)(y-x), y' \rangle| < \varepsilon/2.$$

As P is regular, there exist sets $B \in \mathcal{M}$ and $C \in \mathcal{C}$ such that $B \subseteq C \subseteq A$ and

$$|\langle P(E)(x), y' \rangle| < \varepsilon/2,$$

for each $E \in \mathcal{M}$ with $E \subseteq A \setminus B$. The regularity of P_Y follows.

3. A CONSTRUCTION

In this section, a way of constructing admissible spaces for P and Q by weakening the topology of X is discussed.

Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. A locally convex Hausdorff topology τ on X, weaker than the original topology on X, is said to be *admissible for P and Q*, if the completion of (X, τ) is barrelled and if $\{R(G): G \in \mathcal{M} \otimes \mathcal{N}\}$ is an equicontinuous part of $L((X, \tau))$.

Let τ be an admissible topology for P and Q. Denote by Z the completion of (X, τ) . For $G \in \mathcal{M} \otimes \mathcal{N}$, consider R(G) as a continuous linear operator from (X, τ) into Z. The operator R(G) has a unique extension $R_Z(G) \in L(Z)$. It follows that $\{R_Z(G): G \in \mathcal{M} \otimes \mathcal{N}\}$ is an equicontinuous part of L(Z). In particular, for each $E \in \mathcal{M}$ and $F \in \mathcal{N}$, there are unique extensions $P_Z(E) \in L(Z)$ and $Q_Z(F) \in L(Z)$ of P(E) and Q(F) respectively.

LEMMA 3.1. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Let τ be an admissible topology for P and Q. Then the maps $P_Z: \mathcal{M} \to L(Z)$ and $Q_Z: \mathcal{N} \to L(Z)$ are spectral measures.

Proof. The multiplicativity of P_Z and Q_Z follows from the multiplicativity of P and Q. The σ -additivity of P_Z and Q_Z can be proved in the same way that the σ -additivity of $\widetilde{\mathcal{H}}$ was proved in Proposition 2.2.

Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures and Y an admissible space for P and Q. Let τ be the topology that X inherits from Y. Then τ is an admissible topology for P and Q. Furthermore, the completion of (X, τ) is precisely \widetilde{Y} , the completion of Y (cf. Proposition 2.2). Hence, every admissible space for P and Q is a dense, barrelled subspace of the completion of (X, τ) , for some admissible topology τ for P and Q.

A locally convex space X is said to be weakly Σ -complete [9] if every sequence $\{x_n\}_{n=1}^{\infty}$ of its elements, such that $\{\langle x_n, x' \rangle\}_{n=1}^{\infty}$ is absolutely summable for each $x' \in X'$, is itself summable with the sum belonging to X. In [4], such a space is said to have the B-P property. Weakly sequentially complete spaces, in particular reflexive spaces, are weakly Σ -complete.

According to a theorem of Ju. B. Tumarkin [10], generalizing the well known result of C. Bessaga and A. A. Pełczyński, a space X is weakly Σ -complete if and only if it does not contain an isomorphic copy of the space c_0 .

THEOREM 3.2. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Let τ be an admissible topology for P and Q, and Z the completion of (X, τ) . If Z is weakly Σ -complete, then Z is an admissible space for P and Q.

Proof. It was noted that for each $E \in \mathcal{M}$ and $F \in \mathcal{N}$, the operators P(E) and Q(F) have unique extensions $P_Z(E) \in L(Z)$ and $Q_Z(F) \in L(Z)$ respectively.

For each $z \in \mathbb{Z}$ and $z' \in \mathbb{Z}'$, the map

$$\hat{G} \mapsto \langle R_{Z}(G)(z), z' \rangle, \quad \hat{G} \in (\mathcal{M} \otimes \mathcal{N})^{\wedge},$$

is bounded and finitely additive, hence, is σ -additive. That is, the map $m: (\mathcal{M} \otimes \mathcal{N})^{\wedge} \to L(Z)$ defined by $m(\hat{G}) = R_Z(G)(z)$, is weakly σ -additive for each $z \in Z$. Furthermore, as m is bounded and its range is contained in the weakly Σ -complete space Z, by the Theorem of Extension in [4], there exists a σ -additive map $\mathcal{H}(\cdot)(z): \hat{\mathcal{B}} \to Z$ such that $\mathcal{H}(\hat{G})(z) = R_Z(G)(z)$ for each $G \in \mathcal{M} \otimes \mathcal{N}$.

That \mathcal{H} is a spectral measure can be shown as in the proof of Proposition 2.5.

COROLLARY 3.3. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be regular, commuting spectral measures. Let τ be an admissible topology for P and Q, and Z the completion of (X, τ) . If Z is weakly Σ -complete, then there exists a unique spectral measure $\mathcal{K}: \mathcal{M} \otimes \mathcal{N} \to L(Z)$, such that $\mathcal{K}(G) = R_Z(G)$ for each $G \in \mathcal{M} \otimes \mathcal{N}$.

Proof. The statement follows immediately from Proposition 2.5, Lemma 2.6 and Theorem 3.2.

In the above corollary, it sufficies to assume that $P: \mathcal{M} \to L((X, \tau))$ and $Q: \mathcal{N} \to L((X, \tau))$ are regular.

Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Let Z' be a subspace of X' which separates the points of X such that $R(G)'(Z') \subseteq Z'$, for each $G \in \mathcal{M} \otimes \mathcal{N}$. Let $\tau = \sigma(X, Z')$ be the weakest topology on X making all the elements of Z' continuous. The maps $P: \mathcal{M} \to L((X, \tau))$ and $Q: \mathcal{N} \to L((X, \tau))$ are spectral measures. In this case, the completion Z of (X, τ) is $(Z')^*$ equipped with the topology $\sigma(Z, Z')$. The space Z is barrelled and weakly sequentially complete. For each $G \in \mathcal{M} \otimes \mathcal{N}$ the operator R(G) has a unique extension $R_Z(G) \in L(Z)$. Since R(G)' maps Z' into Z', the operator $R_Z(G)'$ can be interpreted as the operator dual to the restriction of R(G)' to Z', with respect to the duality of Z and Z'.

If, in addition, $\{R(G): G \in \mathcal{M} \otimes \mathcal{N}\}$ is an equicontinuous part of $L((X, \tau))$, then P_Z and Q_Z are σ -additive.

PROPOSITION 3.4. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. Let Z' be a subspace of X' such that Z' separates the points of X, $R(G)'(Z') \subseteq Z'$ for each $G \in \mathcal{M} \otimes \mathcal{N}$, and $\{R(G): G \in \mathcal{M} \otimes \mathcal{N}\}$ is an equicontinuous part of

358 w. ricker

 $L((X, \sigma(X, Z')))$. Then $\sigma(X, Z')$ is an admissible topology for P and Q and, consequently, the completion of $(X, \sigma(X, Z'))$ is an admissible space for P and Q.

Proof. The statement is a particular case of Theorem 3.2.

4. EXAMPLES

Given two commuting spectral measures P and Q, it is relatively easy to find subspaces Z' of X' which separate the points of X, such that $R(G)'(Z') \subseteq Z'$, for every $G \in \mathcal{M} \otimes \mathcal{N}$. However, it is usually more difficult to show that $\{R(G): G \in \mathcal{M} \otimes \mathcal{N}\}$ is an equicontinuous part of $L((X, \sigma(X, Z')))$, because the equicontinuity of $R: \mathcal{M} \otimes \mathcal{N} \to L((X, \sigma(X, Z')))$ does not follow from the equicontinuity of $R: \mathcal{M} \otimes \mathcal{N} \to L(X)$.

EXAMPLE 4.1. Let Ω be the set of positive integers and \mathcal{M} the σ -algebra of all subsets of Ω . Let $X = \ell^1(\Omega)$. For any $E \in \mathcal{M}$, define P(E) to be the operator of pointwise multiplication by the characteristic function of E. Then $P: \mathcal{M} \to L(X)$ is an equicontinuous spectral measure.

Let $Z'=c_0\subseteq X'$. Then for each $E\in\mathcal{M},\,P(E)':X'\to X'$ is again multiplication by the characteristic function of E. Hence, $P(E)'(Z')\subseteq Z'$ for each $E\in\mathcal{M},$ and it follows that $\{P(E):E\in\mathcal{M}\}$ is a subset of $L((X,\sigma(X,Z')))$. However, $P:\mathcal{M}\to L((X,\sigma(X,Z')))$ is not equicontinuous.

LEMMA 4.2. Let X be a locally convex Hausdorff space, $\{T_i : i \in \mathcal{I}\}$ a subset of L(X) and W' a subset of X'. Assume that W' separates the points of X, that $T'_i(W') \subseteq W'$ for each $i \in \mathcal{I}$, and that for each $w' \in W'$ there is a constant $\alpha > 0$, such that

(3)
$$\sup\{|\langle T_i(x), w'\rangle| : i \in \mathscr{I}\} \leqslant \alpha |\langle x, w'\rangle|,$$

for each $x \in X$. If Z' is the linear span of W', then $\{T_i : i \in \mathcal{I}\}$ is an equicontinuous part of $L((X, \sigma(X, Z')))$.

Proof. A subset $M' \subseteq Z'$ is equicontinuous for $(X, \sigma(X, Z'))$ if and only if there exist finitely many points $z'_1, \ldots, z'_k \in Z'$, such that M' is contained in the convex hull of $\{z'_j : 1 \le j \le k\}$. Hence, the family of operators $\{T_i : i \in \mathscr{I}\}$ is an equicontinuous part of $L((X, \sigma(X, Z')))$ if and only if for each $z' \in Z'$ there exists a constant $\gamma > 0$ and points $z'_1, \ldots, z'_k \in Z'$, such that

$$\sup\{|\langle T_i(x), z'\rangle| : i \in \mathscr{I}\} \leqslant \gamma \max\{|\langle x, z_j'\rangle| : 1 \leqslant j \leqslant k\},\$$

for each $x \in X$. This inequality follows from (3).

EXAMPLE 4.3. (S. Kakutani [3]). Let $\Omega = \Lambda$ be the Cantor set in [0,1]. Consider the linear manifold $C(\Omega) \otimes C(\Lambda)$ of $C(\Omega \times \Lambda)$ consisting of all finite sums

of the form

(4)
$$x(s, t) = \sum_{i=1}^{n} f_i(s)g_i(t), \quad (s, t) \in \Omega \times \Lambda,$$

where $f_i \in C(\Omega)$, $g_i \in C(\Lambda)$ for i = 1, ..., n. Define the norm of an element $x \in C(\Omega) \otimes C(\Lambda)$ by

(5)
$$||x|| = \inf \sum_{i=1}^{n} ||f_{i}||_{\infty} ||g_{i}||_{\infty},$$

where the infimum is taken over all representations of x in the form (4), and $\|\cdot\|_{\infty}$ denotes the supremum norm. Let X be the completion of $C(\Omega) \otimes C(\Lambda)$ with respect to the norm (5).

Let $\mathcal{M} = \mathcal{N}$ be the σ -algebra of all closed and open subsets of the Cantor set. Let $P : \mathcal{M} \to L(X)$ and $Q : \mathcal{N} \to L(X)$ be defined by letting

$$(P(E)(x))(s,t) = \chi_E(s)x(s,t), \quad (s,t) \in \Omega \times \Lambda,$$

for every $E \in \mathcal{M}$ and $x \in X$, and

$$(Q(F)(x))(s, t) = \chi_F(t)x(s, t), \quad (s, t) \in \Omega \times \Lambda,$$

for every $F \in \mathcal{N}$ and $x \in X$. As shown by S. Kakutani, P and Q are equicontinuous, commuting spectral measures such that the product $R : \mathcal{M} \otimes \mathcal{N} \to L(X)$ is not uniformly bounded, and so the extension of R to $\mathcal{M} \otimes_{\sigma} N$, with values in L(X), is impossible.

For $w \in \Omega \times \Lambda$ define $w' \in X'$ by w'(x) = x(w), for every $x \in X$. Let $W' = \{w' : w \in \Omega \times \Lambda\}$ and Z' be the linear span of W'. Then $R(G)'(W') \subseteq W'$ for each $G \in \mathcal{M} \otimes \mathcal{N}$ and it follows from Lemma 4.2 that $\{R(G) : G \in \mathcal{M} \otimes \mathcal{N}\}$ is an equicontinuous part of $L((X, \sigma(X, Z')))$. Furthermore, the spectral measures $P : \mathcal{M} \to L((X, \sigma(X, Z')))$ and $Q : \mathcal{N} \to L((X, \sigma(X, Z')))$ are regular with respect to the family of all compact subsets of the Cantor set. Hence, if Y denotes the completion of $(X, \sigma(X, Z'))$, Corollary 3.3 and Proposition 3.4 imply that there exists a spectral measure $\mathcal{K} : \mathcal{M} \otimes \mathcal{N} \to L(Y)$, such that $\mathcal{K}(E \times F) = P_Y(E)Q_Y(F)$ for every $E \times F \in \mathcal{M} \times \mathcal{N}$.

Let X be a locally convex Hausdorff space. Let \mathscr{I} be an interval of ordinal numbers. A family, $\{e_i : i \in \mathscr{I}\}$, of points in X is said to be a basis for X if the following conditions are satisfied:

(i) For every $x \in X$ there are unique scalars α_i , $i \in \mathcal{I}$, such that

$$x = \sum_{i \in \mathcal{I}} \alpha_i e_i = \lim_{J} \sum_{i=0}^{J} \alpha_i e_i.$$

360 W. RICKER

(ii) The associated coefficient functionals e'_i , $i \in \mathcal{I}$, given by $e'_i(x) = \alpha_i$, whenever x has the expansion (i), belong to X'.

For example, if X is a Banach space then any Schauder basis for X is a basis for X.

Lemma 4.4. Let $\{e_i: i \in \mathcal{I}\}$ be a basis for the locally convex Hausdorff space $X, W' = \{e_i': i \in \mathcal{I}\}$ be the associated coefficient functionals, and Z' be the linear span of W'. Let $P: \mathcal{M} \to L(X)$ and $Q: \mathcal{N} \to L(X)$ be commuting spectral measures. If $R(G)'(W') \subseteq W'$ for each $G \in \mathcal{M} \otimes \mathcal{N}$, and if for each $w' \in W'$ there is a positive constant α such that

$$\sup\{|\langle R(G)(x), w'\rangle|: G \in \mathcal{M} \otimes \mathcal{N}\} \leqslant \alpha |\langle x, w'\rangle|,$$

for all $x \in X$, then the completion of $(X, \sigma(X, Z'))$ is an admissible space for P and Q. Proof follows from Lemma 4.2 and Theorem 3.2.

EXAMPLE 4.5. (C. A. McCarthy [7]). Let $S_n = T_n = \{1, 2, ..., 2^n\}$ for n = 1, 2, ..., and X_n denote the projective tensor product of the spaces $C(S_n)$ and $C(T_n)$, n = 1, 2, ..., (cf. Example 4.3). Then X_n is a Banach space of dimension 4^n whose elements can be interpreted as matrices x with entries x(s, t), $(s, t) \in S_n \times T_n$.

Let Γ be the disjoint union of the sets $S_n \times T_n$, $n = 1, 2, \ldots$ Let X denote the space of all functions x on Γ such that, if x_n is the restriction of x to $S_n \times T_n$ (considered as an element of X_n) for every $n = 1, 2, \ldots$, then

$$||x|| = \left(\sum_{n=1}^{\infty} ||x_n||^2\right)^{1/2} < \infty.$$

If we identify X'_n with X_n , n = 1, 2, ..., then X' can be identified with X as a vector space.

Let Ω denote the disjoint union of the sets S_n , $n=1,2,\ldots$, and Λ denote the disjoint union of the sets T_n , $n=1,2,\ldots$. Let $\mathcal M$ be the σ -algebra of all subsets of Ω and $\mathcal N$ the σ -algebra of all subsets of Λ . Define equicontinuous, commuting spectral measures $P:\mathcal M\to L(X)$ and $Q:\mathcal N\to L(X)$ by letting

$$(P(E)(x))(s, t) = \chi_E(s)x(s, t), \quad (s, t) \in \Gamma,$$

for every $E \in \mathcal{M}$ and $x \in X$, and

$$(Q(F)(x))(s,t) = \chi_F(t)x(s,t), \quad (s,t) \in \Gamma,$$

for every $F \in \mathcal{N}$ and $x \in X$. It was shown by C. A. McCarthy that the product $R : \mathcal{M} \otimes \mathcal{N} \to L(X)$ is not uniformly bounded.

For each $n = 1, 2, \ldots$, let B_n denote the subset of X given by

$$\{\chi_{\{(s,t)\}}:(s,t)\in S_n\times T_n\}.$$

Define a collection $\{e_m : m = 1, 2, \ldots\} \subseteq X$ inductively as follows:

- (i) For n = 1, let $\{e_1, e_2, e_3, e_4\}$ be an enumeration of B_1 .
- (ii) For n > 1, let $\{e_{r+1}, \dots, e_{r+4^n}\}$ be an enumeration of B_n , where

$$r = \sum_{i=1}^{n-1} 4^i$$
.

The collection $\{e_m: m=1,2,\ldots\}$ is a Schauder basis for X. Let e'_m denote the element $e_m, m=1,2,\ldots$, considered as a member of X'. Then $W'=\{e'_m: m=1,2,\ldots\}$ is the collection of associated coefficient functionals. If Z' denotes the linear span of W', then the assumptions of Lemma 4.4 hold. Hence, the completion of $(X,\sigma(X,Z'))$ is an admissible space for P and Q.

Acknowledgement. The author thanks Professor I. Kluvánek for the theme of this note and valuable discussions.

REFERENCES

- COLOJOARĂ, I.; FOIAȘ, C., Theory of generalized spectral operators, Gordon and Breach Science Publishers, 1968.
- 2. DUNFORD, N.; SCHWARTZ, J. T., Linear operators. III, Interscience Publishers, New York, 1971.
- 3. KAKUTANI, S., An example concerning uniform boundedness of spectral measures, *Pacific J. Math.*, 4(1954), 363-372.
- 4. KLUVÁNEK, I., The extension and closure of vector measure, *Vector and operator valued measures and applications*, Academic Press Inc., 1973, 175-189.
- 5. KLUVÁNEK, I.; KNOWLES, G., Vector measures and control systems, North Holland Publ. Co., 1976.
- 6. MARCZEWSKI, E., On compact measures, Fund. Math., 40(1953), 113-124.
- McCarthy, C. A., Commuting Boolean algebras of projections, Pacific J. Math., 11(1961), 295-307.
- 8. OBERAI, K. K., Sum and product of commuting spectral operators, *Pacific J. Math.*, **25**(1968), 129-146.
- 9. THOMAS, E., The Lebesgue-Nikodym theorem for vector valued Radon measures, *Mem. Amer. Math. Soc.*, 139(1974).
- 10. Tumarkin, Ju. B., On locally convex spaces with basis, *Dokl. Akad. Nauk SSSR*, 195, 1278—1281; *Soviet Math. Dokl.*, 11(1970), 1672—1675.

W. RICKER
School of Mathematical Sciences,
The Flinders University of South Australia,
Bedford Park, 5042,
South Australia.

Received October 9, 1980.