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STONE-WEIERSTRASS THEOREMS FOR SEPARABLE
C*-ALGEBRAS

JOEL ANDERSON dnd JOHN W. BUNCE
1. INTRODUCTION

Suppose A4 is a C*-algebra and B is a C*-subalgebra of A. In this context,
the classical commutative Stone-Weierstrass theorem asserts that if B separates the
pure states of 4, then B = 4. The main results of this paper are as follows. Assume
A is separable and unital.

1) If B separates the pure states of 4 and for each state /' on B, n(B)" contains
a regular maximal abelian subalgebra, then B = 4.

2) If B separates the factor states of 4 and each factor state on B extends to a factor
state on A, then B = A.

See [1], [4], [7], [9], [10], and [12] for other Stone-Weierstrass theorems for non-
commutative C*-algebras.

If A is a nonunital C*-algebra, let A denote the C*-algebra obtained by adjoin-
ing an identity to 4. As noted in [12], if B separates the pure states of 4 and zero,
then C*(B, 1) separates the pure states of A. We may thus assume that 4 has a unit.
Moreover, if B separates the pure states of 4, then B contains the unit of A[12,
Lemma 1]. We therefore assume throughout that 4 is unitaland 1€ B < A.

The paper is organized as follows. In Section 2 we collect some results that
will be needed in the sequel. Section 3 contains the main results and in Section 4 we
present some miscellaneous related facts.

If A is a C*-algebra, then we use S(4), P(4), and F(A) to denote the states on
A, the pure states on A4, and the factor states on A, respectively. If fe S(4), then
n,, #y, and 1, denote the cyclic representation arising from f, the Hilbert space on
which 7n4(4) acts and the cannonical cyclic vector. If S is a set of operators on a
Hilbert space, then W*(S) denotes the von Neumann algebra generated by S and
if  is a vector, then [Sy] denotes the closed subspace generated by elements of S
acting on #7. Finally maximal abelian subalgebras of von Neumann algebras are
always assumed to be self-adjoint.
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2. PRELIMINARY RESULTS

Probably the best partial solution to the Stone-Weierstrass problem for
C*-algebras is due to Sakai [13, 4.7.6] or [12]. Since it will be used repeatedly, we
begin by recording it. Throughout 4 and B shall denote fixed unital separable
C*-algebras with 1€ B < A.

SAKAI'S STONE-WEIERSTRASS THEOREM. Suppose B separates P(4), t : A — B(#)
is a representation of A on a separable Hilbert space and 4 is a maximal abelian
subalgebra of n(A)'. If ® is a linear norm one map of n(A) into W*(n(A), .#) such
that &(n(b)) = n(b) for all b in B, then ®(n(a)) = n(a) for all a in A.

We now present some corollaries to Sakai’s theorem. Some have appeared
elsewhere and, no doubt, the rest are known to many experts.

COROLLARY 1. If B separates P(A), n: A — B(H) is a representation of A
on a separable Hilbert space and .4 is a maximal abelian subalgebra of n(A)', ther
M is a maximal abelian subalgebra of n(B) .

Proof. Fix a projection P in n(B)’ n .#’ and define @ on n(A4) by
®(n(a)) = Pa(a)P + Prrn(a)Pt

where P+ =1 — P. As .# is maximal abelian in n(A4), #' = W*(n(A), 4/) and
so @ maps n(4) into W#*(n(A), #). Since P e n(B)’, ®(n(b)) = n{b) for b in B. Clearly
& has norm one, so Sakai’s theorem applies and @(n{a)) = n(a) for ain 4. It follows
that Pe n(A4) and so o(BY N A" = n(A)Y n A = M.

For a von Neumann algebra R, let Z(R) denote the center of R.

COROLLARY 2. If B separates P(A) and w : A — B(H#) is a representation of A,
then Z(n(B)") & Z(n(4)").

Proof. First suppose # is separable. If z € Z(n(B)"’) = Z(n(B)'), then z belongs
to every maximal abelian subalgebra of n(B)" and so by Corollary 1 z belongs to
every maximal abelian subalgebra of n(4)’. Hence z € Z(n(A4)") = Z(n(4)""). Now
suppose 7 is an arbitrary representation and write 7 = Y, @ n, where each =,
acts on a separable Hilbert space. If ze Z(n(B)"), then z = Y| @ z, where each
z, € Z(m,(B)""). By the first part of the proof, z, € Z(n,(4)"') for each o and therefore
z e n(A)’, so that ze Z(n(4)").

Note that since A** may be identified with n,(4)", where m, denotes the uni-
versal representation of 4 and B** may be identified with n,(B)", the corollary
shows that if B separates P(4), then Z(B**) = Z(A**).

COROLLARY 3. If B separates P(A) and f € F(A), then f| B € F(B).
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Proof. Suppose fe F(4) so that n,(4)” is a factor. If we write g=f|B, then
7, is equivalent to a subrepresentation of n;|B. By Corollary 2, n(B)"” is a factor

and so [5, 5.3.4, 5.3.5] the weak closure of each subrepresentation of n,| B is a factor.
Hence g € F(B).

The following corollary is a special case of a result due to Effros [7, Theorem
11.1]. Let r : S(4) — S(B) denote the restriction map.

COROLLARY 4. If B separates P(A) and there is an affine map D : S(B) — S(A)
such that r o D is the identity, then B = A.

Proof. As D is affine on S(B), a standard argument (for example a slight va-
riant of the proof of Lemma 6.7 in Chapter III of [15]) shows that D extends to
a linear map (also denoted by D) of B* into A* such that .D is continuous with
| D] < 2. Since D maps S(B) into S(4), the adjoint map D* : A** — B** is positive
and self-adjoint. As ro D is the identity, D*(b) = b for all b in B and since D* is
weak*-continuous, D* is a projection of 4** onto B** which has norm one by the
Russo-Dye theorem (see [3, p. 211]). Fix a separable representation n : A — B(#)
and let 7 denote its unique normal extension to 4**. By [1, Lemma IIL.4] there is
a projection ¢ in B¥** n Z(A**) such that g4** is the ultra-weak closure of kern.
Define @ : n(4) — n(B)’ by ®(n(a)) = a(D*(a(l — ¢q))). It follows that & is a
well-defined norm one map with @(n(b)) = n(b), for b in B. By Sakai’s theorem,
n(A)" = n(B)”. Thus, every representation that is cyclic for 4 is cyclic for B.
But this is impossible unless B = A [1, proof of IIL7].

3. THE MAIN RESULTS

In this section the theory of decomposition of states shall be used to obtain
our main theorem (Theorem 5). This theory has a long history and important contri-
butions have been made by many authors including Choquet, Ruelle, Sakai and
Skau. For further details and references see [3, p. 451—454]. We shall employ the
theory of orthogonal measures first exposed by Skau [14]. We shali also refer to the
slightly different expositions found in [15, IV Section 6] and [3, Sections 4.1 and
4.2].

Throughout this section we continue to assume that 4 and B are separable
unital C*-algebras with 1 € B < 4. We say that a Borel subset S of S(A4) is a set
of agreement for B if the restriction map r is injective on S and if n,(4)" = n(B)"
for each fin S. We now recall some facts and introduce some notation. If u is a
probability measure on the Borel subsets of S(4), let f, denote the resultant of u
given by the formula

fila) = S a(f) du(f)

S(4)



366 JOEL ANDERSON and JOHN W. BUNCE

where a(f)= f(a) and let {r,, #,, 1,} denote the cyclic representation of A thatarises
from f,. Also if ¢ € L*(S(4), p), then the formula

K@) m, (@)1, 1,) = S o(1)a(f) du(f)

S(4)

defines an element K, () in 7,(4)". If u is an orthogonal measure, then K, is a #-iso-
morphism of L*(S(A4), u) onto an abelian von Neumann algebra in n,(4)’. The
range of K, is denoted by #,. Conversely, if f€ S(4) and 4 is an abelian von Neu-
mann algebra in ny(4)’, then there is 2 unique orthogonal measure y on S(4) such
that /" = A4, and f = f,.

THEOREM 5. If S < S(A) is a set of agreement for B and v is an orthogonal
measure on S(B) with v(r(S)) = 1, then there is an orthogonal measure p on S(A)
such that

i) The resultant f, on A extends f, .
i) If {r,,#,, 1,} is regarded as a subrepresentation of {rn,|B, #,,1,} so that
l,=1,and #, S K, then #,= H, and 1,|B = n,.
i) A, = N, and w(A)" = WH(r(B), N,).
iv) If P(A) = S, then the representation w, : A — B(#,) is the unique repre-
sentation of A such that n, extends n, and N, S n,(A)'.

Proof. Since A and B are separable, S(4) and S(B) are Polish spaces and since
r is continuous it is a Borel mapping. As r|S is injective, its range T=r(S) is a Borel set
and r|S is a Borel isomorphism of S onto T'[2, Theorem 3.3.2]. For a Borel subset
E of S(A) write

HE) = v(r(En S)).
Since r|S is a Borel isomorphism and v(I') = 1, this formula defines a Borel pro-
bability measure u on S(4). Note that if ¢ is an integrable Borel function on S(A4),
then

*) S<p(f) (f) = oo ) ).
5 T
in particular if b is in B, then

1.0 = Sa(f) du(f) = Sz?(g) dv(g) = £(b)

A T

and f, extends f,. (We use the symbol b to denote both the function b induces on
S(A) and the analogous function on S(B).) We next show p is an orthogonal measure.
Fix a Borel subset E in S(4) and let p, and ¢, denote the resultants of u| £ and
HIS(A)\E, respectively. If p, and g, denote the resultants of v|r(E) and v|S(B)\r(E),
then it follows from (*) that p, = p,IB and ¢, = ¢,iB. If ¢ is a positive functional
on A such that t < p, and ¢ < q,, then 0 < ¢|B < p,, g, and since v is orthogonal
tiB = 0. But 1€ B, so t(1) = 0 and therefore t = 0. Hence u is an orthogonal mea-
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sure. Since f, extends f,, we may regard 7, as a subrepresentation of m,[B with
1,=1, and 2, S #,. Note that under this identification we have n,(b)1, = =,(b)],
for all b in B. We next use direct integral theory to show n,(4)" < W*(n,(B), /).
First note that by [15, IV 8.31 and its proof] there is a unitary operator U mapping

H, onto

@
g Hdu(f)

S

such that for a in 4 and ¢ in L¥(S, p)

® ®
Un(@ U*=S 7@ du(f) and  UK,(p) U* =S o(f) du().
$
Thus, for each a in 4, Un,(a) U™ is a decomposable operator and U4, U* is the dia-
gonal algebra associated with this direct integral decomposition. Fix a dense sub-
sequence {b,} in B and let R denote the von Neumann algebra generated by the
diagonal algebra and the decomposable operators of the form

Uny(b,) U* — S@ 7,(b2) dp(f).
S

Clearly R = UW*(n(B), #,) U*. By [6, Theorem 1 (ii), p. 171] R contains every
decomposable operator

[©]
S (1) duf)

such that x(f)e {nyb,):n=1,2,...}" = n(B)” for almost all f. Since S is
a set of agreement for B

Ur(@)U* = S@ /(@) du(f)
$
has this form for every a in 4. Thus, Un (A) U* < UW*(n(B), #/,) U*.
We assert that A, #, = #,. Fix a projection P in 4/, and let E denote the
Borel subset of S(4) such that K, (xg) = P, where ¥ E denotes the characteristic

function of E. If b, ¢ are in B and we write F = r(£), then

_ o~
(Pr,(B) 1, 1,(0)1,) = S 1 ()R du( )=

N

— ng<g)?%<g) dn(g) = (K(x Pru(®) 1, (0 1,) =
ra
= (K2 ) 70) 1 1, (0)1,).
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Thus, if Q denotes the projection of #, onto J#,, then QPQ|#, = K xp) and QPQ
is a projection. It follows that QPQ*PQ = 0 and Q commutes with P. Hence
P#, < H#, and our assertion follows. Now note that

Hy=In (A1) € [WHm,(B), ¥ )1,] =,

so that 3, = s, and Q = 1. Moreover if E is a Borel subset of S(4) the calculation
above shows that K, (x,.) = K (x,). Since r|S is a Borel isomorphism, A", = 4.
It only remains to show iv). Suppose p : 4 — B(3#,) is a representation of A such
that p extends =, and A, S p(A)'. Select a maximal abelian subalgebra .# of p(4)’
that contains A4, and define ® on p(4) by P(p(a)) = n,(a). We have kerpn B=
= kerm, 0 B so by [1, Lemma I11.4] kerp = kern, and & is a well-defined #-isomor-
phism. By iii) we have

n,(A) € W= (B), &,) = W*(p(B), ¥',) = W*(p(B), &)

and so by Sakai’s theorem p = 7,

THEOREM 6. If B separates P(A), fe€ S(B) and 4 is a maximal abelian sub-
algebra of ny(B), then there is a representation n : A — B(# ;) such that
1) n extends mg,
i) A < n(AY,
i) n(d)" = W*(rn(B), )
and
1v) m is the unique representation of A that satisfies i) and ii).

Proof. Since A4 is separable, P(4) is a Borel subset of S(4) [11,4.3.2]) and since
B separates P(4), P(4) is a set of agreement for B and r(P(4)) = P(B) {5,11.1.7].
Write v for the orthogonal measure on S(B) with A", = .#. Since .# is maximal
abelian in 7.(B)"”, v is supported by P(B) [14]. Thus, Theorem 5 applies and the
theorem follows.

COROLLARY 7. If B separates P(A), fe S(B) and n : A — B(H,) is a represen-
tation that extends n; then n is the unique representation that extends n; if and only if
n(4)” = n(B)".

Proof. If = is the unique representation that extends =, then by Theorem 6
n(4) contains every maximal abelian subalgebra of n(B)" and so n(4)" = n(B)".
If =(4)" = n(B)", p: A —» B(#) is arepresentation of A that extends , and ./
is a maximal abelian subalgebra of p(4)’, then by Corollary 1 .# is maximal abelian
in n(B) = n(4)’ and so p = = by part iv) of Theorem 6.

THEOREM 8. If B separates P(A) and for each f in S(B) there is a unique repre-
.Sentation ?cf : A = B(H) that extends my, then B = A.



STONE-WEIERSTRASS THEOREMS 369

Proof. It suffices to show there is a map D : S(B) — S(4) satisfying the hypo-
theses of Corollary 4. For f in S(B) define D(f) on A4 by

D(f) (a) = (%f(a) lf, 1/)'

As 7, extends g, r(D(f))=f. We need to show that D is affine. Fix g and 4 in S(B),
0 <t<1,and write f = tg + (I — 1) h. As tg < f, there is an element b’ in n (B)’
such that 0< b’ <1 and 1g(b) = (n(b)b'1,, b'1 ;) for b in B. By Corollary 7, the range
projection @ of b’ lies in 7 ;(4). We may then identify m, with Qn|Qs#, so that
1, = (1/Y0)b'1,. Since Q€ 7t ,(4)', O |QH, is arepresentation of A that extends

ng, and therefore

1D(g) (a) = (% (@) b'1 ,, b1 ).
A similar argument shows that
(1 ~ ) D) (@) = (i) b1, b1 ),

with (6”)% & ()2 = 1. Therefore,
tD(g) + (1 — 1) D(h) = D(f).

Recall that a maximal abelian subalgebra .# of a von Neumann algebra R
is said to be regular if R is generated by the unitaries U in R that normalize .# in
the sense that U4 U* = /4.

ProPOSITION 9. If B separates P(A), f€ S(B) and n,(B)' contains a regular
maximal abelian subalgebra, then there is a unique representation m : A — B(HK ;)
that extends 7.

Proof. Suppose # is a regular maximal abelian subalgebra of n,(B)" and select
by Theorem 6 a representation n : 4 —» B(#,) that extends n, and such that n(4)’
contains./#. If Uis a unitary in n (8)’ that normalizes .# and we write p(a)=Un(a) U*,
then p is a representation of A that extends n,. Moreover # = U#U* < p(4),
and so by part iv) of Theorem 6 p = n. Hence U € n(A4)" and since n,(B)" is generated
by such unitaries n(4)’ = n(B)’. By Corollary 7 = is the unique representation
that extends =.

We say that a C*-algebra C is regular if n(C)” contains a regular maximal
abelian subalgebra for each f in S(C).

THEOREM 10. If B is a regular C*-algebra and B separates P(A), then B = A.

Proof. By Theorem 8 it suffices to show that for each fin S(B) there is a unique
representation extending n,. Fix f in S(B) and select an orthonormal basis {n,}
for ¥, with n, = 1,. Let w, denote the vector state on n,(B)" defined by w,(X) =

12—-1529
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= (Xn,, n,) and write g = Z 27w,. The state g induces a normal represeatation
{8,,,1,} of n #(B)" such that 1, is a cyclic and separating vector for R==6(r ;(B)").
Moreover if we write p = 8o 7y, then {p,#,, 1,} is the cyclic representation of B
arising from gon, and p(B)"” = R. Since B is regular R contains a regular maximal
abelian subalgebra .#,. By Tomita’s theorem [11, 8.13.14] there is an isometric
involution J such that JRJ = R’ and .# = J.#,J is a regular maximal abelian sub-
algebra of R'. By Proposition 9 there is a representation p : A — B(s#,) that extends
p and such that p(4)” = R = p(B)". It follows that for every subrepresentation
{pq, o} of p there is a representation p, : 4 — B(#,) that extends p, and such
that py(4)” = po(B)”. Since 1 [2f < gomy, m, is unitarily equivalent to a subrepre-
sentation of p and there is a representation © : 4 - B(#,) extending n, and such
that n(4)"” = n(B)". By Corollary 7 = is the unique representation that extends 7.

We do not know of an example of a von Neumann algebra that does not
contain a regular maximal abelian subalgebra. Many von Neumann algebras do
contain such algebras (see, for example {8, p. 332] or [16]). It is straightforward
that every type I von Neumann algebra contains a regular maximal abelian sub-
algebra and therefore type I C*-algebras are regular. We do not know of any other
examples of regular C*-algebras although it seems likely that many others exist.

We now turn to a consideration of the factorial Stone-Weierstrass problem.
If A is abelian, then F(4) = P(A). Thus, it is possible that the correct generalization
of the Stone-Weierstrass theorem should require that B separate F(4). The content
of our next theorem is that the only obstacle in the way of establishing this weaker
version is showing that factor states extend to factor states.

ProrosSITION 11. If B separates ¥(A), then F(A) is a set of agreement for B.

Proof. As A is separable F(4) is a Borel subset of S(4)[11, 4.8.3] and since
B separates F(4), the restriction map r is injective on F(4). Fix f in F(4), a unit
vector % in # , and a unitary U in n(B)" and define f; and f, on 4 by

@) = @@n,n, fila) = (n(a) Uy, Up).

As n and Un are unit vectors f; and f; are states on 4 and since U e n (B, r(f) =
= r(f;). Moreover, f; and f, give rise to representations that are unitarily equivalent
to subrepresentations of n, and so f; and f, are factor states [5,5.3.4,5.3.5]. Thus,
Jfi = f and since n was arbitrary U € n(4)’. Therefore n,(4)" = n(B)" and F(4)
is a set of agreement for B.

We remark that if B separates F(A) the proof given above also shows that if

7 is any representation of 4 with n(4)” a factor, then n(4)’ = n(B)"”. It can also
be shown that disjoint factor representations of A restrict to disjoint factor repre-
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sentations of B. Thus, by analogy with [5,11.1.1] we may say that 1f B scparatesl
F(4), then B is ultrarich in A.

THEOREM 12. If B separates F(A) and each factor state on B extends to a factor
state on A, then B = A.

Proof. By Proposition 11, F(A) is a set of agreement for B. Our addltlona]
assumption means that »(F(4)) = F(B). Fix f in S(B) and let v denote the central
measure for f. If Z denotes the center of n,(B)”, then by [15, IV 6.29,6.32] v is the
orthogonal measure associated with Z and v is concentrated on F(B). Hence Theorem
5 applies and there is a representation 7 : 4 - B(#’;) that extends 7, = =,.and such
that n(4)" < W*(n(B), Z) = n(B)". The theorem now follows from Corollary 7
and Theorem 8.

Recall that a maximal abelian subalgebra . of a von Neumann algebra R
is said to be semiregular if the unitaries in R that normalize .# generate a factor.

ProrosiTION 13. If B separates P(4), fe F(B) and n(B)" contaznsamaxzmal
abelian subalgebra 4 such that either

i) . is a semiregular maximal abelian subalgebra of nx(BY,
or
ii) there is an injective fuctor R such that .//z’ S R < n(BY

then f extends to a factor state on A.

Proof. Suppose .# is a semiregular subalgebra of ny(B)’ and letn : 4 — B(#,)
denote a representation of A4 that extends n, and is such that .# < n(4). As in
the proof of Proposition 9, it follows that the unitaries that normalize .# belong to
n(A)" and therefore there is a factor R such that .# & R < n(4)’. As.# is maximal
abelian the center of m(4)’ is contained in .# and therefore lies in the center of R,
As this latter algebra consists of the scalar multiples of the identity n(4)" is a factor
and f extends to a factor state on 4. Now suppose # S R < n,(B), where R is an
injective factor and let w : 4 — B(5# ;) be as before. We have then

(B S R S M' = W¥ay(B),.H).

Since R’ is injective, there is a norm one projection mapping B(# ;) onto R'. This

projection restricts to a map @ on n(A4) that satisfies the hypotheses of Sakai’s theo-

rem. Thus . ‘
n(d)' S R, M < Rc<n(4)

and as above f extends to a factor state on 4.

' Again there does not seem to be an example known of a factor that does not
cbnt_ain a semiregular maximal abelian subalgebra. Regarding ii) of Proposition 13:
One of Kadison's Baton Rouge problems was: Is each self-adjoint element in a
II, factor contained in some hyperfinite subfactor ? In ii) we are asking whether
every: factor contains just one maximal abelian subalgebra contained in an injective
factor. If so, and if B separates F(A4), then B = A. :
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4, MISCELLANEOUS RELATED RESULTS

We continue to use 4 and B to denote separable unital C*-algebras with
le Bc A

ProPoSITION 14. If B separates F(A) and n : A — B(#) is a representation
with 3¢ separable, then n(A)' = W*(n(B), Z), where Z denotes the center of n(4)".

Proof. By the central decomposition of representations [S, Chapter 8] there
is a measurable field x — n(x) of factor representations of 4 such that

n= SQ 7(x) du(x)

for some measure u. Moreover the diagonal algebra for this direct integral decompo-
sition is Z. By the proof of Proposition 11 we have that for each x, n(x)(4)"' =
= 7(x) (B)". The proof is now completed by arguing as in the proof of part iii) of
Theorem 5.

COROLLARY 15. Suppose B separates F(A), f€ S(B), and n,: A— B(#,) is a
representation of A that extends m,,i=1,2. If Z; denotes the center of m(A)",
i=1,2 and Z, commutes with Z,, then n, = n,.

Proof. Since Z, and Z, commute, there is a maximal abelian subalgebra .#
of ny(B)’ that contains both Z, and Z,. Let n : A — B(s#) denote a representation
of 4 that extends 7, and is such that .# < n(4)’. By Proposition 14 we have that

n(4)" = WHny(B), Z) = W*(n(4),4).

Define &; : n(A4) = n,(4)” by Pfn(a)) = n(a), i = 1,2. As in the proof of part
iv) of Theorem 5 we have that kerr = kern;, i = 1,2 and so &; is a well-defined
»-isomorphism for i = 1,2. Hence by Sakai’s theorem n, = © = n,.

ProPOSITION 16. If B separates P(A) and each factor state on B has a unique
state extension to A, then B = A.

Proof. Fix f in F(B). By Theorem 6, there is a representation 7 : 4 — B(#y)
that extends n;. Let U be a unitary operator in 7(B)’ and let x be a unit vector in
;. Then b — (my(b)x, x) is a factor state on B and has a — (n(a)x, x) and a -
— (n(a)Ux, Ux) as state extensions to 4. Hence (U*n(a)Ux, x) = (n(a)x, x) for all x
in o and a in A. Thus U€ n(4)’ and = (B)” = n(4)” and fextends to a factor state
on 4. By Theorem 12 B = 4.

Proposition 17. If B separates F(A) and if disjoint representations of A restrict
to disjoint representations of B, then B = A.
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Proof. Fix f in F(B). By Theorem 6 there is a representation n: A — B(5¢)
that extends n;. As in the proof of Proposition 16, it is enough to show n(4)” =
= n,(B)". By Proposition 14 n(4)" = W*(n{(B), Z) where Z denotes the center of
7(A)" so it suffices to show Z is trivial. Suppose Z is not trivial so that = has disjoint
subrepresentations p; and p,. By our hypothesis, p;|B and p,|B are also disjoint.
On the other hand these restrictions are subrepresentations of the factor represen-
tation 7, and are therefore not disjoint [5,5.3.4,5.3.5). Hence Z is trivial and B = A.

We conclude by mentioning a fact which is apparently unpublished folkiore.
Let K denote the compact convex set of linear functionals f on A such that f = f*,
f(B)=0and ||fl < 2. If B # A, then by the Hahn-Banach theorem K # {0} and
so has a nonzero extreme point . By [5, 12.3.4], there are unique positive functionals
f*and f~ such that f = f* — f~ and ||fll = [|f " + [/~ |l Asfis extreme, |f}j =2
and so f* and f~ are states on A. Write 7, and n_ for the representations of A4 that
these states induce and n = n,_®n_.

ProrosiTiON 18. With the notation as above, if B separates P(A) then n(B)"
is a factor.

Proof. If z denotes the central support of 7 in B**, then by [11, 3.8.13] we
need only to prove that z is a minimal central projection in B**. Now by Corollary 2
zis in the center of A** and it therefore follows that if z were not minimal then f
would not be an extreme point of K.
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