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SUBALGEBRAS OF REFLEXIVE ALGEBRAS

D. W. HADWIN and E. A. NORDGREN

1. INTRCDUCTION

An algebra o/ of operators on a Hilbert space is reflexive if the only operators
that leave invariant all of the invariant subspaces of .« are the operators belonging
to &. In other words if

Lat &/ = {P : P = P* = P* and (1 — P)AP =0 for every 4 in &/}
and

Alg(Latef) = {T : Lato/ < LatT},

then & is reflexive precisely when o = Alg(Late?). An operator T is reflexive
if the weakly closed unital algebra o7 (T') generated by T is reflexive. In [23] D. Sarason
proved that all commutative weakly closed unital algebras of normal or of analytic
Toeplitz operators are reflexive. The reflexive operators on a finite-dimensional
space were characterized by J. Deddens and P. A. Fillmore [8], and all isometries
were shown to be reflexive by Deddens [6]. K. Uchiyama [27] has shown that a
C., contraction with unequal defect indices is reflexive, and P. Y. Wu [29] has shown
that finite defect C,, contractions are reflexive. Recently, R. Olin and J. Thomson
[19] have shown that all subnormal operators are reflexive.

Before Olin and Thomson’s work, W. Wogen [28] extended Deddens’ result
[6] by showing that all quasinormal operators (T and T*T commute) are reflexive,
thereby answering a question of Deddens [7]. Moreover, Wogen [28] proved that
if T is quasinormal, then every unital weakly closed subalgebra of »7(T) is reflexive.
Call an algebra o super-reflexive if every unital weakly closed subalgebra of =7
is reflexive, and call an operator T super-reflexive if &/(T') is. Then Sarason’s results
[23] can be reformulated as the unilateral shift and every commutative von Neumann
algebra are super-reflexive.

In this paper we study some properties of algebras that, in the presence of
reflexivity, imply super-reflexivity. Our main results show that some of these pro-
perties are preserved under direct integrals. Using a result of E. Azoff, C. K. Fong,
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and F. Gilfeather [3] that says that a direct integral of reflexive algebras is reflexive,
we are able to prove that, under certain conditions, a direct integral of super-reflexive
algebras is super-reflexive. This leads to conditions under which a direct integral
of reflexive operators is reflexive. It is not known whether the dircct sum of two
reflexive operators must be reflexive. It is also unknown whether the reflexivity
of an operator T implies that of T2

Along with various applications of our results on direct integrals we include
some other results on reflexivity. We show that the characterization by Deddens
and Fillmore [8] of reflexivity for operators on a finite-dimensional space can be
extended to arbitrary algebraic operators on an arbitrary Banach space. Finally,
we consider analogues of our results on super-reflexivity for algebras 7 suchthat
either o == /" n Alg(LateZ) or & = &' nAlg(Lats?), where o/’ denotes the
commutant of /. Rosenthal {20] and Sarason [24] have asked whether the latter
relation holds for all singly generated algebras: Azoff [2] has shown that even the
former relation does not hold in general.

Throughout, let H denote a Hilbert space, and let B(H) denote the set of
(bounded linear) operators on H. If T € B(H), & < B(H), and #n is a positive inte-
ger or co, then H™ denotes a direct sum of # copies of H, T denotes a direct
sum of n copies of T acting on H® and ™ = {S® : Se &}. If {H,} is a se-
quence of pairwise orthogonal subspaces of H such that H=H, @ H. ® ..., and
if ¥, < B(H,) forn=1,2, ..., then

S DL ®D .. ={S,DS:® ...eBH):S,e¥, for n:-:1,2, ...

Note, for example, that & @ & is not the same as @ If & < B(H), then /()
denotes the weakly closed algebra generated by & and 1,and &’ = {T' e B(il) : ST=
== TS for every S in &} is the commutant of &. If & < B(H) and fe fi, then
Cyc(&, f) denotes the smallest subspace of H that contains f* and is invariant for
every S in &. We write Cyc(S, f) if & = {S}, and S|Cyc(S, f) is called a cyclic part
of S. Also &% = {§* : S e &}. The set of complex numbers is denoted C.

2. PROPERTIES C, D, D(»)

In [28] Wogen defined an operator T to have property C if, for each positive
integer n, each cyclic part of T is unitarily equivalent to a cyclic part of T. More
generally, a subset & of B(H) has property C if, for each positive integer » and each
fin H™ there is a vector g in H and a unitary operator U: Cyc(¥®™, f) » Cyc(¥, g)
such that

U*[S|Cyc( &, U = S™iCye(#', f)

for every S in .&. It is obvious that a subset & of B(H) has property C if and only
if o7(&) does. Here are some other elementary facts concerning property C.
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ProposITION 2.1. (1) A direct sum of unital algebras has property C if and
only if each summand has property C,
Q) if &, = &, = B(H) and &, has property C, then so does &, ,
(3) a direct sum of operators with property C has property C,
@) if & < B(H), then & has property C precisely when for each f and g in
H there exists h in H such that
412 + | gl = | 4k ]2

Jor every A in S(&),

(5) if ¥ < B(H)and there is a unitary operator U : H® — H such that U*SU =
= S for every S in &, then & has property C,

(6) the unilateral shift operator has property C,

(7) the algebra of scalar multiples of the identity operator has property C.

Proof. Statement (7) is obvious, and the proofs of statements (4) and (2) are
straightforward. Statement (3) follows immediately from (1) and (2), and statement
(5) follows immediately from (4). Statement (6) is in [23]. We give a proof of state-
ment (1). Suppose «7; < B(H,) for each i in some index set 7/, let H be the direct
sum of the H;’s, and let o/ be the direct sum of the weakly closed unital algebras
of (i e I). First suppose each «f; has property C and fe H®. Write f as the direct
sum of vectors f; (i€ J) where each f; is in H{? . For each i in /, property C (via (4))
implies the existence of /1; in H, such that

WA R+ AP = [ AP

for all A; in &7,. It follows that if /4 is the direct sum of the /s and if 4 ¢ &, then
I AfIF + || Agl? = | A1]%, and consequently (4) implies &/ has property C. Conver-
sely, suppose &/ has property C, and suppose je I and f,ge H; « H. Since &/
has property C, there exists an /2 in H satisfying the preceding equation for all 4
in &Z. Since 1€ o/, for every i, it follows that e H;, and thus «/; has property C.

REMARKS 2.2. (a) A 2 X 2 complex matrix has property C if and cnly if it
is normal.

(b) For cach positive integer #, let J, denote the n X n nilpotent Jordan
block, and let {n,} be an unbounded sequence of positive integers. Let 7 be the
direct sum of the J, ’s. If 1 < m < n, then J,, is unitarily equivalent to a cyclic part
of J,. It follows that 7% is unitarily equivalent to the restriction of T to some
invariant subspace. It easily follows that T has property C.

We next consider another property, which, for lack of imagination, we call
property D. Suppose &7 is a unital subalgebra of B(H) that is closed in the weak
operator topology. Let & be the set of linear functionals ¢ on & of the form

p(A) = (e, i) + (e, fo) + ... + (de,, f,) where e1,f1,....¢e,,f,€ H.
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The weak operator topology on &7 is the weak topology on 7 induced by the func-
tionals in 4. A basic result from the duality theory of topological vector spaces
[21, Th. 3.10] asserts that every linear functional on & that is continuous in the
weak operator topology is an element of 4. The algebra o7 has property D if every
functional ¢ in 4 can be written in the form ¢(A) = (A4f, g) for vectors f, g in H.
The functional ¢ does not completely determine the vectors £, g; e.g., if 1is a non-zero
complex number, then we can replace the pair f, g by Af, (1/A)g. In particular,
we can always choose f and g so that |fl! = fg|. It is clear that if @(A) -= (A4f, g)
for every A in &7, then 1 p{ < if} [g!l. Suppose r = 1. The algebra o7 has property
D(r), if, for each ¢ in & and each s > r, there are vectors f, g in H such that ¢(A4) ==
= (Af, g) forevery Ain <7 and [flilig! < s"¢ . A set & < B(H) has property D
(resp. D(r)) if () does.

Since the sets of strongly and weakly continuous linear functionals on B(H)
coincide (see e.g. [1, 1.2.E)), the definition of property D would remain the same if
“weakly™ were replaced by “strongly”. Another consequence of this fact is that
a strongly closed algebra (or even convex set) of operators is weakly closed (see also
[20, Th.7.1]).

LEMMA 2.3, If M is a weakly closed subspace of B(H) and ¢ is a weakly conti-
nuous linear functional of norm 1 on M, then for every ¢ > O there is a weakly conti-
nuous extension of @ to B(H) having norm less than 1 + e.

Proof. This is an immediate consequence of the following lemma.

LemmA 2.4. Let Y be a Banach space and let 7 be a topology on Y that is
smaller than the norm topology and that makes Y into a locally convex topological
vector space in which the (norm) unit ball is 7 -compact. If M is a 7 -closed subspace
of'Y and if @ is a T -continuous linear functional of norm 1 on M, then, for every & >0,
there is a T -continuous linear extension of ¢ to Y having norm less than 1 +- .

Proof. Choose m in M of norm 1 such that @(m) > 1/(1 -+ &), and let B be
the closed ball of radius 1/(1 + &) centered at m. The ball B is Z -compact, and if
A == kere, then A is 7 -closed and we claim that 4 does not intersect B. For if
xe Bn M, then

je()! = em) — je(x — m); > 1/(1 +-&) —jjx —m! = 0.

By the Hahn-Banach theorem [21, Th. 3.4(6)], there is a constant y and a & -conti-
nuous linear functional ¥ on Y such that Rey(x) < y < Rey(y) for all x in 4 and
3 in B. Since A is a subspace, it follows that y/'A = 0. i.e., kerp > kery. Thus
y > 0 and Y(m) # 0. If & -= (p(m)/Y{m)Y, then @ is T -continuous, ker® > kero,
®(m) = @(m), and consequently & is an extension of ¢.
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It remains to show that || ®|| < 1 + &. Let u be a unit vector in Y. Then there
is an o in C and a y in ker® such that « == am —+ y. Since B does not intersect ker®,
it follows that the distance from m to ker® exceeds 1/(1 4 ¢). Hence || < 1 + &.
The norm inequality now follows from

@) = |ajp(m) < 14 &.

The following basic proposition shows some relationships between properties
C, D, D(r) and super-reflexivity.

ProrosiTiON 2.5. (1) A reflexive algebra with property D is super-reflexive.

(2) An algebra with property C has property D(1).

3) If &, = &y = B(H) and ¥y has property D (resp. D(r)), then so does &,.

@) If s/, and &, are unital weakly closed algebras, o/, = o, = Alg(Latse/,),
and if s has property D, then o = <.

(5) If o is a unital weakly closed algebra and Alg(LatsZ) has property D, then
<A is super-reflexive.

(6) A direct sum of unital algebras has property D(r) if and only if eacl summand
has property D(r).

Proof. Statement (3) follows from Lemma 2.3, and statement (5) follows imme-
diately from (4) and (1). The proof of statement (6) is similar to the proof of Pro-
position 2.1 (1). To prove (4) suppose &/, # &7,. It follows from the Hahn-Banach
theorem and the fact that &/, has property D that there are vectors f, g in H such
that (Af, g) = 0 for every A in &, but, for some T in oZ,, (Tf, g) # 0. This implies
g1 Cyc(eZ,f). Since T e Alg(Lates,), it follows that g t T(Cyc(#4, f)). In parti-
cular (Tf, g) = 0, a contradiction.

We now prove (1). Suppose 7, is a unital weakly closed subalgebra of 7.
Clearly, Alg(Lats/,) = Alg(Late/) = . It follows from (3) that Alg(Latsz,) has
property D, and, by (4), &7, = Alg(LateZ,). Thus 7, is reflexive. This proves (1).

To prove (2) suppose &/ has property C and ¢ is a weakly continuous functio-
nal of norm one on 7. Let s > 1. Extend ¢ to a functional on B(H) that is weakly
continuous and of norm less than s using Lemma 2.3. Thenthere exist 17, ..., f1,, &1,

n

.., &n such that ¢(4) = (Af} ,g;) for all A in B(H). Let T be the finite rank

j=1
m

operator defined by Th =Y, (h, g)f; . If “tr” denotes the trace, then it follows

=1
easily that ¢(A4) = trdT, anld it is well known that the norm of ¢ is just the trace
norm of T. Let T have polar decomposition 7' = UP, where U is a partial isometry
and P is positive, and let {e,, ...,e,} be an orthonormal basis for the range
of P consisting of eigenvectors of P. Thus Pe;=te; for j=1,2,...,n and

"

o= Y t;. Let f; = #}2Ue; and g; = 1}¢; for j= 1,2, ...,n. Then for 4 in
j=
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m

B(H), we have ¢(4) = Y, (4f;, &) and
j=1

m . 1/2 n 1/2
’!tp!i=(}]§;f,~!l2) (z ) <

=1

Let M = Cyc(; (fy, ..., [,)). Since o7 has property C, there is a vector [
in H and a unitary operator V : M — Cyc(«Z, f) such that A" M == V=4V for all
A in . Clearly we may assume V(f,, ...,f,) = f. Let g be the image under ¥ of
the projection of (g,,..., g,) onto M. It follows from the preceding paragraph that
for 4 in o/, p(4) = (A"(f1, .. . f2)s (81 - - -, &) = (4f, g) and |ifl[lgi < s. This
completes the proof.

REMARKS 2.6. (a) The ideas in the proof of the preceding theorem were used
by Sarason, whose proof in [24] that every unital weakly closed commutative algebra
of normal operators is reflexive was based on an idea of Goodman [9] that shows
that every commutative von Neumann algebra has property D. It was first formally
stated by W. Wogen [28] that a reflexive algebra with property C is super-reflexive.
Recently, R. Olin and J. Thomson [19] proved that every subnormal operator has
property D(+) for some fixed r.

(b) Proposition 2.1(6) and Proposition 2.5(2) imply that the algebra of
analytic Toeplitz operators has property D(1). A proof of this can also be based on
duality theory (see [19]). Rosenoer has shown that every compression of the unila-
teral shift to the orthogonal complement of an invariant subspace has property D.

3. DIRECT INTEGRALS

Before we consider more examples of operators or algebras with one or more
of the properties of the preceding section, we wish to discuss the relationships between
these properties and direct integrals. Throughout this section we assume that #
is separable.

Suppose (X, .#Z, u) is a complete sigma-finite measure space. Define L3y, H)

as the set of all measurable functions f: X — H such that S;}f(.\-)f? du(x) 1s fimte,

X
and define L*(u, B(H)) as the set of all measurable (relative to the weak operator
topology) and essentially (norm) bounded functions ¢ : X — B(H), where two
functions are identified if they agree almost everywhere. The space L*(u, H) becomes

a Hilbert space if we define an inner product by (f, g) = S(f(x), g(x)du(x). Each

X
@ in L*(u, B(H)) induces an operator M,, on L*(u, H) defined by (M, f)(x)==@(x)f(x).
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Suppose that &, = B(H) for every x in X. The direct integral of the &£.’s
®
over X, denoted by S & du(x), is the set

x
{M, : ¢ e L®(u, B(H)), p(x) e ¥, a.e.}.

The most important result of this section shows that if every &, has property D(r),
then so does the direct integral of the & ’s.

REMARKS 3.1. (a) It is possible to have &, % O for every x in X, but

@
S FLdu(x) = 0.
X
(b) There are more general direct integrals than the ones we have defined
here, but the more general ones are isomorphic to direct sums of the type we have
just defined. Thus the preceding results on direct sums make the results of this section
valid for the more general types of direct integrals.

As with many theorems about direct integrals, one of the key ideas used here
i1s von Neumann's principle of measurable selection. The version of this result we
use is much stronger than the one von Neumann originally proved [18]. Let ¥ be
a complete separable metric space, and let (X, .#, ;) be a complete sigma-finite
measure space as above. The following is in [12] and [22].

THEOREM 3.2. Give X X Y the product Borel structure, let E be a measurable
subset of X X Y, and define EY to be {x € X : (x, y) € E for some y in Y}. Then E¥e.Z,
and there is a measurable function from EY into Y whose graph is included in E.

The following is a consequence of Theorem 3.2 (see [12]).

THEOREM 3.3. Let E be a subset of X X Y and define E, to be {y € Y : (x,v)c E}
Jor each x in X. Suppose each E. is closed. Then E is measurable if and only if there
is a sequence of measurable functions ¢, on EY such that {p(x) :n=1,2,...}is
dense in E, for every Xx.

Suppose, for each x in X, that & is a strongly closed subset of the closed unit
ball of B(H). The family {&,}.ecx is measurable [3)if and only if there are functions
@15 @sy - - . in L=(u, B(H)) such that ¢,(x), @s(x), ... is strongly dense in &, for
almost every x in X. If Y'is taken to be the unit ball of B(H) with the strong operator
topology, then Y is a complete separable metric space (see [1] or [25]). Theorem 3.3
then implies that measurability for {#,}.ex amounts to the existence of a null set
Nin X such that if E = {(x, 4) : x ¢ Nand 4 € &,}, then E is measurable in XX Y. A
family {&7,}xexof weakly closed unital algebras is measurable if {Ae o/, | A|<1}iex
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Is measurable. A family {s/,} of weakly closed algebras is artainable (3] if
there are functions ¢, , @,, ... in L®(u, B(H)) such that o7, = &7(¢,(x), @u(x), ...)
for almost every x in X. It is shown in [3] that attainable families of unital weakly
closed algebras are in fact measurable, that direct integrals of such families are
weukly closed, and the direct integral of an attainable family of reflexive algebras
is reflexive. They use a stronger measure-theoretic hypothesis than ours, but the
principle of measurable choice quoted above makes their results valid in our context.
Our notion of direct integral of unital algebras does not quite coincide with that of
[3], since ours always contain the “diagonal algebra™.

The measurability of families of algebras plays a central role in the theory
of direct integrals of algebras. Since many of the properties of algebras that concern
us here are inherited by subalgebras, we can often omit the assumption of measur-
ability. The key idea is contained in the following lemma, and an illustrative example
is contained in the corollary.

Lemma 3.4. If L*(u, H) is separable and {of }xex is a family of weakly closed
unital subalgebras of B(H), then there is a measurable family {B.} of unital weakly
closed subalgebras of B(H) such that 3, = s, for almost every x in X and

[C] @
S Bdu(x) = S 7. du().

X p.¢

Proof. Since L*(u, H)is separable, we can choose a sequence {¢,} in L*(u, B(H))
so that {M‘,,"} is weakly dense in the direct integral of the «7,'s. For each x in X, let
A== S (Py(x), Pu(x), ...). Clearly, #, c &/, a.e.; thus the direct integral of the
#,’'s is contained in the direct integral of the o7 ’s. The reverse inclusion follows
from the fact that the direct integral of the #’s is weakly closed and contains {AL,"}.

COROLLARY 3.5. If {&,}vex isa (not necessarily measurable) family of super-
reflexive algebras in B(H), then S® &7 du(x) is reflexive.
%
We are concerned with situations in which the direct integral of super-reflexive

algebras is super-reflexive. The following two theorems are therefore of prime interest.
Note the absence of any measurability assumptions in the corollaries.

THEOREM 3.6. Suppose r 21 and {7 }vex is a measurable family of unital
weakly closed algebras in B(H) and that almost every </, has property D(r). Then

®
8 &7 du(x) has property D(r).

X



SUBALGEBRAS OF REFLEXIVE ALGEBRAS 11

Proof. Choose ¢, , @, ... in L®(u, B(H)) so that {¢,(x), @a(x), ...} is weakly
dense in the unit ball of &7, for almost every x in X. Let & be the direct integral of
the «7.’s, and let @ be a weakly continuous linear functional on /. Then there are
vectors £, 81, f25 & - .. in L3, H) such that w(A4) = Y, (4f:, g) for every 4 in o/

i=1
For each v in X, define a weakly continuous linear functional w, on &7, by

o) = 3, (A7), 8.

It follows from the choice of the ¢,’s that the mapping x — [, | = sup{ o (@ ()|
:k > 1} is measurable.

We next show that |w|= S|iwx[1d,u(x). Suppose 4 = M, € &/ where
x

¢ L=(i, B(H)). Then

()] = Swm(x)) dut)

< Sncoxn lo) 1 dux) <

< ( Snwxn dn(x)) 1Al

X

Thus {lw|i < Swa]! du(x). Conversely let Y be the closed unit ball of B(H), and

X
consider the sets

E ={x,A)eXX Y:Ade A}
and

E = {<x, XX Y Y (i), g0 = uwxn} .

The measurability of {s7.} together with Theorem 3.3 implies the existence of a
null set &V in X such that £,\(N x Y) is measurable in XX Y. The measurability
of each of the functions (x, A) — (Af«(x), g:x)) and the measurability of the mapping
x - Jo.|l imply E, is also measurable in X X Y. Thus if E= E, nE,, then
EN(NX Y) is measurable. Since the unit ball of &7, is weakly compact and since
w, is weakly continuous, {|w,| = w,(A) for some 4 in the unit ball of =/,. Thus the
projection of EN\(N X Y)on Xis X\ N, and by Theorem 3.2, there is a measurable
function ¢ on X\ such that w{p(x)) = ||w,|. Hence M,e«,[|M,|| <1, and

o(M,) = Sncoxﬂ du(x), which establishes ||w|] = Sl] w. | du(x).

i
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To see that <7 has property D(r), take s > r and consider the subset F of
X X H > H defined by

F={(x,u,t):ju?="0¢2<s o and oleix)) =: (@ ()u, v) for all k}.

Since &7, has property D(r) a.c., there exists a null set ¥, such that FN\(N,X HxX H)
is measurable and its projection on X is X\ N,. By Theorem 3.2, there exist a.e.
defined functions fand g such that (x, f(x}, g(x)) e F a.e.. Thus

Sf!fﬂﬁ’ du = Sf’g 2du < Ss{fcoxif du(x) = s, 0,

e X X

$o fand g are in L¥u, H), and | f; ' g. <s w . Also, if M, e &/, then

o(M,) == wa(fp(-\')) du(x) = \ (@(X)f(X), g(x)) = (M, [, 8).

X

-~

Hence 7 has property D(r).

COROLLARY 3.7. Suppose L*u, H) is separable, r = 1, and, for almost every x

@ v

F
in X, &, < B(H) and &, has property D(r). Then S & Ap(x) has property D{r).
4

Proof. Imitate the proof of Corollary 3.4.

THEOREM 3.8. If r=1 and {4, cex is a measurable family of unital weakly
closed algebras such that, for almost every x in X, o, is reflexive and has property
@
D), then S &7 Au(x) is super-reflexive.
o . .
Proof. The a]gebrax 7 du(x) is reflexive by [3]. It has property D by Theorem

X
3.6 and is therefore super-reflexive by Proposition 2.5(1).

THEOREM 3.9. If r 2 1, LY, H) is separable, for almost every x in X, <7, is

@
a reflexive subalgebra of B(H) with property D(r), r/zeng o du(x) is super-refiexive.

X

CoROLLARY 3.10. (Sarason {[23]). Every commutative von Neumiann algebra
is super-reflexive.
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CoRrOLLARY 3.11. (Wogen [28]). Every quasinormal operator is super-reflexive.

CoROLLARY 3.12. If Ly, H) is separable, and, for almost every x in X, s, is
@
a unital weakly closed algebra of analvtic Toeplitz operators, then S & du(x) is

x
super-reflexive and has property D(1).
Remark 3.13. Using Proposition 2.1(4) and the techniques used in proving

Theorem 3.6, one can also show that a direct integral of a measurable family of
unital weakly closed algebras with property C has property C.

4. WEAK AND ULTRAWEAK TOPOLOGIES

R. Olin and J. Thomson [19] have shown that whenever T is a subnormal
operator the weak operator topology on /(7)) coincides with the ultraweak operator
topology. We will show how property D occasionally provides a technique for
showing that these topologies agree. Recall that the ultraweak (c-weak, weak™)
topology on B(H) is the weak* topology when B(H) is regarded as the dual space
of the Banach space of trace class operators. A useful way of viewing the ultraweak
topology is obtained by noting that a net {7T,} in B(H) converges ultraweakly to
an operator T if and only if the net {T°} converges weakly to T¢.

The theory of direct integrals of ultraweakly closed operator algebras proceeds
much like the theory for weakly closed algebras. Call a family {&/,}.ecx of unital
ultraweakly closed algebras attainable if there are functions ¢, @,, ... in
L=(u, B(H)) such that &7, is the unital weakly closed algebra generated by
{@1(x), @(x), ...} for almost every x. This is equivalent to requiring {2/} to be

@
attainable in the sense of the preceding section. Tt follows from [3] thatS @ du (x)

e
is weakly closed, and hence we see that the direct integral of an attainable family

of unital ultraweakly closed algebras is ultraweakly closed.

We say that an ultraweakly closed unital algebra o/ has property D, if every
ultraweakly continuous linear functional ¢ on o/ has the form ¢(4) = (4f, g)
for some f, g in . If in addition r > 1 and, for every s > r, f and g can be chosen
so that @(A4) = (Af, g) for every A in « and {f|[(lgll < s {|¢[, then we say that o
has property D,(¥).

The following proposition shows some of the relevant facts concerning property
D, and property D_(r).
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ProposITION 4.1. (1) If « is an ultraweakly closed unital algebra with property
D, (resp. D,(r), r = 1), then every ultraweakly closed unital subalgebra of <7 has
property D, (resp. D,(r)).

(2) A direct sum (resp. direct integral) of a family (resp. measurable family)
of unital ultraweakly closed algebras with property D (r), v =1, has property D (¢).

(3) If & is a weakly closed algebra with property D, , then the weak and ultra-
weak topologies coincide on 7.

(4) If a direct sum of an infinite collection of unital ultraweakly closed algehbras
has property D, , then it has property D (r) for some r = 1.

Proof. (1). Imitate the proof of Proposition 2.5 (3). Note that the analogue
of Lemma 2.3 follows from Lemma 2.4 and the fact that the unit ball of B(H) is
ultraweakly compact.

(2). Imitate the proof of Theorem 3.6.

(3). The weak and ultraweak topologies are, by hypothesis, generated by the
same family of linear functionals.

(4). Suppose 7 is the direct sum of the «7’s and 7 has property D, . By {2),
we need show only that each &7, has property D (r) for some r. Assume the contrary.
Then there is an increasing sequence {k,} such that =/, does not have property
D,(2") for n = 1,2, ... . Hence for each positive integer n, there is an ultraweakly
continuous linear functional ¢, on &, such that jjg,! < 1/2" and ||f, gl = 1
whenever f, g € H and ¢,(A4) = (4f, g) for every A in &7, . Define a linear functional
pon by o4y ® A4, ®...)=Y, (p,,(Akn). Clearly (pnis ultraweakly continuous.

ff=f®L®...andg=g, ®g. ®... and ¢(A4) = (A4f, g) for cvery 4 in 7,
then ¢,(4) = (Afk", g,c") for every A4 in = and every positive integer. Thus
ka" fl jigknf! = 1 for every n, a contradiction. °
COROLLARY 4.2. Suppose r =1, n is a positive integer, and { s, }cex is a mea-
surable family of weakly closed algebras such that s/ has property D () for aliost

@
every x in X. Then the weak and ultraweak topologies agree oin S o du(x).
¥

CoROLLARY 4.3. For each positive integer n the weak and ultraweak topologics
agree on the algebra of all decomposable operators on L¥u, C™).

An operator T is n-normal if T is unitarily equivalent to an # X n operatocr
matrix with commuting normal entries; equivalently, if T is unitarily equivalent
to a decomposable operator on L2(u, C™) for some sigma-finite measure space (X, pt).

COROLLARY 4.4. If n is a positive integer and T is an n-normal operator, then
the weak and ultraweak topologies agree on s#(T).



SUBALGEBRAS OF REFLEXIVE ALGEBRAS 15

5. EXAMPLES AND APPLICATIONS

Suppose & is a norm closed unital subalgebra of B(H), fe H, and || [} = 1.
Define mapping p,; : &/ — Cyc(oZ, f) by p(A4) = Af for every A in . If py is
one-to-one, then f'is called a separating vector for &/, and if p, is onto, then f'is a
relatively strictly cyclic vector for «f. The algebra o7 is strictly cyclic if o/ has a
relatively strictly cyclic unit vector f with Cyc(#, ) = H (the vector f is called a
strictly cyclic vector for «f). Strictly cyclic algebras were introduced by A.
Lambert [13, 14, 15].

More generally, suppose M is an invariant subspace of o/ and define
Py s | M by p, (A)=A| M for every Ain of. Call M separating if P, is one-
-to-one. If M is separating and & | M is norm closed, then p has a bounded inverse
p;,‘ 1 | M — of. It does not, however, follow that p .! is weakly continuous even

if o | M is weakly closed. To see that, consider the example where o7 is B(H)'®
onHOH® ... and M=H®0@ .... Since a net {47} in o/ converges
weakly to 4 if and only if 4, — A ultraweakly, weak continuity of p;l‘ would
imply that the weak and ultraweak topologies agree on B(H), which is obviously false
(they have different continuous linear functionals). On the other hand, if & and

& | M are both ultraweakly closed and M is separating, then p;l‘ is ultraweakly

continuous. This follows from the fact that a weak® continuous linear mapping
between the duals of two Banach spaces that is one-to-one and onto has a weak®
continuous inverse (because the weak™® continuity implies that the mapping is the
dual of a bounded linear operator between the original Banach spaces, so the open
mapping theorem applies). The following theorem shows how these ideas relate to
property D.

THEOREM 5.1. Supposc & is a unital norm closed subalgebra of B(H).

(1) If o has a relatively strictly cyclic separating unit vector f, then s is weakl 'y
closed and s has property D (|| ,of‘l D

(2) If & has a separating invariant subspace M such that «f and o/ | M are
weakly closed and if ¢ | M has property D (resp. D(r)), then o has property D
(vesp. D(rllo'ID)-

(3) If o has a separating invariant subspace M such that o/ and 4| M are ultra-
weakly closed, and if o/\M has property D, (resp. Dy(r)), then ¢ has property D,
(resp. Dy(rlipD)-

Proof. (1) The open mapping theorem implies that p! is continuous ; thus &
is strongly (hence weakly) closed. Suppose p is an ultraweakly continuous linear
functional on . It follows from the open mapping theorem that p o pf—l is a conti-
nuous linear functional on Cyc(&, f). Hence there is a vector gin Cyc(«#, 1) such
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that p o pf"(/z) = (h, g) for every h in Cyc(«/, ). Hence p(A) = (Af, g) for every A
in &, and

ifllgl="g"= pop " < plip;'l.
Thus &/ has property Dﬂ({;p/?"'

(Va4

The proofs of (2), (3) follow in a similar fashion.

CoROLLARY 5.2. If &7 is a unital weakly closed strictly cyclic commutative
subalgebra of B(H), then o/ has property D, (r) for some r > 1.

Proof. By {15, Section 2], any strictly cyclic vector for <7 is separating.

CorCLLARY 5.3. If T is an algebraic operator, then /(T) has property D (r)
for some r = 1.

COROLLARY 5.4. If o is reflexive and </ has a strictly cyclic separating
vector, then < is supei-reflexive.

COROLLARY 5.5. If & is a unital weakly (resp. ultraweakly) closed subalgebra
of B(H) with property D(r) (resp. D,(r)) for some r =1, and if M is a Hilbert space
and p : o7 — B(M) is a unital weakly (resp. ultraweakly) continuous algebra howor-
Phism, then the graph of p,ie., {A @ p(d): Ae &} < B(H @ M), has property
D(plir) (resp. D,(lpllr)).

REMARKS 5.6. (a) The fact that the vector f be both strictly cyclic and separat-
ing is important in the preceding theorem. For example, B(H) has a strictly cyclic
vector but no separating vectors and B(H) does not have property D (e.g., B(H)
is reflexive but not super-reflexive).

(b) In [10] it was shown that the commutant of a quasianalytic unilateral
weighted shift (see [26, p. 103]) intersects the commutant of a non-zero compact
operator only in the scalars; therefore a quasianalytic shift does not satisfy the
hypothesis of Lomonosov's theorem. However, such shifts are reflexive [26, Pro-
position 37] and strictly cyclic by definition. Thus, by Corollary 4.4, every quasi-
analytic shift is super-reflexive.

(c) Note that if o satisfies the hypotheses of the preceding theorem, then /%
satisfies the conclusions.

There are some situations in which it is possible to use Theorem 5.1 to show
that, for certain classes of operators, there is an r > 1 such that every operator in
the class has property D(r). The technique involves finding, for each operator T
in the class, a relatively strictly cyclic separating unit vector [ for &/(T) with
I pf‘“l? < r. Obviously, this technique requires the existence of a lot of relatively
strictly cyclic separating vectors, so the technique has limited application. It does
work well for 2x2 matrices and (slightly more generally) for operators satisfying
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a polynomial equation of degree 2. However, the technique breaks down in the
3 X 3 case and the analogous results do not even hold in the 4 x 4 case (see
Theorem 5.9).

PropostTiON 5.7. If T € B(H) and T satisfies a polynomial equation of degree
not exceeding 2, then T has property D()/10).

Proof. If the degree of the minimal polynomial of T is less than 2, then T

is a scalar and has property D(l). We next consider the case when o(T) = {1}
is a singleton. In this case &Z(T) = (T — 1), so we may assume T2 = 0. Then,

by [11, Theorem 1} T has an operator matrix of the from [g i] relative to

H= kerT @ (kerT)*. Suppose O<r< 1, and choose a unit vector g in (kerT)<L
so that ||Cg|l = r||Cll = r{iT|l. Let =0 @ g. Then 1 is a relatively strictly cyclic
separating vector for /(7). Furthermore, p; () =1 and if h = (Cg/ ||CglD B0,
then prY(h) = T'/||Cgll. Since {f,/} is an orthonormal basis for Cyc(«/(T),f),
we can estimate || p7 'l as follows. If a, b € C, then

Il pri(af + bh) = llal + (bT)/1Cgli li<lal +- 16} ITIl/ICg ]l <
< laf A+ 1bifr < fiaf + bhII(T + 1/r#)V2.

Since 0 < r < 1 was arbitrary, it follows from Theorem 5.1(1) that T has property
D(}/2).
Next suppose o(T) has two points. We can assume that ¢(7") = {0, 1} (since
&/(T) is generated by an operator with this property). In this case T has an operator
. 1 A .
matrix of the form {0 O]relatlve to A = ker(T — 1) @ (ker(T — 1))L. We can

assume that 4 # 0 (otherwise T is normal and has property D(1)). Suppose0 < r < 1
and choose a unit vector g in (ker(T — 1))+ so that ||Ag!| > r{i4]. Let f= (V2
(Ag/llAgll @ g). Then f is a relatively strictly cyclic separating vector for «Z(T).
Let u = (Ag/liAgl) @ 0 and v =0 @ g. Then {u, v} is an orthonormal basis for
Cyc((T),f). A simple computation shows that

LpF )l = V2 1T/ | Agl) < V2ir
and

lpr (o)l = ||l/2 — pt Wi < l/z_ + 2/r.

Estimating the norm of p;* as above, we obtain
o7 I < V20 - (U 1.

Since 0 < r < 1 was arbitrary, we conclude that T has property D(l/IO).
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Since a 2-normal operator is a direct integral of 2 X 2 matrices, Theorem 3.6
implies the following corollary.

COROLLARY 5.8. Every 2-normal operator has property D(Y 10). More generally,
if (X,u) is a sigma-finite measure Space, then any commutative subset of

(M, : @ € L=(1t, BIC®))} has property D(}10).

REMARK. If n is a positive integer, let

1 n on
T,=10 —1 1
0 0 0

If, for each positive integer n, f, is a relatively strictly cyclic separating unit vectorin
C® for T, , then i]pf—‘ il — oo as n = oo. Moreover, for each n, there is a relatively
n

strictly cyclic separating unit vector g, for 7 such that sup ;jp;‘ " < oo.
n '1

THEOREM 5.9. There is no positive number r = 1 such that every 4 X4 matrix
has property D(r). There is no r > 1 such that every operator T with T* = 0 has pro-
perty D(r). There is a 4-normal operator that does not have property D.

Proof. Suppose n is a positive integer and let

0 n 0 0

r—|0 0 & o0

0 0 0 1

0 0 0 0
Assume that r > 1 and T, has property D(r) for n == 1, 2, ... . Consider the linear
functional ¢, defined on #(T,) by ¢,(a;;)) = ay; + a5, . Cleatly, (¢, <2 for
n=1,2, ... ;thus there are vectors f, , g, in C¥ with ! f, ! = 1, "g," <3r such that

9.(4) = (4f,, g, for every 4 in «/(T,). Fix n and write f, = (s, t,u, ©) and
g, = (W, x, ¥, z). By computing ¢(T%) for k = 1, 2, 3, we obtain the equations

ntw -+ nPux - vy = n?
wuw + nfox =0
nirw = 3.

Since the absolute values of ¢, ¥ and » are no greater than 1 and those of , x and
¥ are no greater than 3, these equations imply (respectively)
Wi3r 2w |x' = 1 — Brln) — Br/nd)
‘uw] < 3rfn

wl = lwel =1,
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The latter inequalities imply

1 — @r/n) — @Br/n?) < |ul |w| 3r < 9¢¥n .

It is clear that this last statement cannot hold for all positive integers n. This con-
tradiction shows that there is no r > 1 such that every T, has property D(r). For
each positive integer n let S, = (1 -+ T)/n®, and let S=S5, @ S. @ .... It is
clear that S is a compact 4-normal operator, and it follows from the Riesz functional
calculus that

(S) = (S @ AS) D ... =A(T) D AT) D ....
It follows from Proposition 4.1(4) that &/(S) does not have property D, . However,

it follows from Corollary 4.4 that the weak and ultraweak topologies agree on
2(S). Thus «£(S) does not have property D. This completes the proof.

REMARKS 5.10. (a) Applying reasoning similar to that in the proof of the pre-
ceding theorem to the matrices

0 n® 0 0
0 0 i 0 n=12,...,
0 0 0 n
1 0 0 0

it is possible to construct a reflexive 4-normal operator that does not have property D.

(b) An example of a commutative reflexive algebra of 12 x 12 matrices that
is not super-reflexive can be constructed as follows. In [2, Remark 4.4] E. Azoff
gave an example of a commutative algebra &, of 6 X 6 matrices such that 27§
is not reflexive. Let & be a maximal commutative algebra containing =7,. Since
Alg(Lat #@) < () = o (e.g., see Lemma 4.3 in [2)), it follows that o/®
is reflexive but not super-reflexive. In particular, this means that </® does not have
property D.

A characterization of reflexivity for operators on a finite-dimensional space
was obtained by Deddens and Fillmore [8]. The following theorem shows that an
easy argument extends their result to algebraic operators. The obvious analogue
of this result holds on an arbitrary Banach space. Suppose T e B(H) and T is an
algebraic operator and o(7T) = {4, , 45, ..., 4,}. Then H is an algebraic direct sum
of closed invariant subspaces M, , M,, ..., M, for T such thato(T|M,) = {4}
for 1 € k < n. It is easily shown [20, Proposition 9.7] that T is reflexive if and only
if the operators T|M,, T|M,, ..., T|M, are reflexive. Hence it suffices to consider
the case when T is nilpotent. Although the characterization of reflexive nilpotent

matrices in [8] is stated in terms of the Jordan canonical form, it is clearly equivalent
to the following.
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THEOREM 5.11. Suppose T is a nilpotent operator on H of index n (=2). Then
T is reflexive if and only if dim(kerT"~2)1 > 2.

Proof. If dim(kerT"~?)L < 2, then the proof in [8] carries over directly to
show that T is not reflexive. On the other hand suppose dim(ker7* 2)t>2, and
suppose A € Alg(LatT). Choose linearly independent vectors f,, fu, f, in (kerT"~2)L
with f; € (kerT" ¥)L. Suppose g;,g.. ..., g. € H. Let M be the smallest invariant
subspace of T that contains f,, /5. /5, 81, g2« - - .. & - Since Tis nilpotent, M is finite-
dimensional. Also 4'M e Alg(LatT:M). Since {1, f.. fs € M, we conclude that TiM
is nilpotent of index » and M © ker(T M )" "2 has dimension greater than 2. Thus,
by [8), T'M is reflexive. Hence there is a polynomial p such that p(T'M) = A M.
In particular, p(T)g; = Ag; for 1 < i < k. Thus {p(T) : p a polynomial} intersects
every strong neighborhood of A. Hence A € 2/(T). Therefore, T is reflexive.

Note that it follows from Corollary 5.3 and Proposition 2.5 that every re-
flexive algebraic operator is super-reflexive.

6. HYPOREFLEXIVITY

A commutative algebra &7 of operators is hvporeflexive if o/ = /" 0 Alg(Lats?)
and an arbitrary algebra is dc-reflexive if o — &/ nAlg(LateZ). Note
that if ¥ < o7, then A" nAlg(Lat¥) ¢ &' n Alg(Lat «/) always holds, but
#’ n Alg(Lat9) « &/ n Alg(Late?) does not generally hold (e.g., when &7 -= B(H)).
An operator T is hyporeflexive (resp. de-reflexive) if 2/(T) is. The results on super-
reflexivity in the preceding sections carry over directly for dc-reflexivity. We list
here some of the important analogues, but we leave the proofs to the interested
reader.

THEOREM 6.1. (1) If &/ is a unital weakly closed dc-reflexive subalgebra of
B(H) that has property D, then every unital weakly closed subalgebra of o is dc-re-
[flexive.

(2) A direct integral of a measurable family of unital weakly closed de-reflexive
subalgebra of B(H) is dc-reflexive.

Although we cannot prove the analogue of (1) in the preceding theorem for
hyporeflexivity, we can still say something about hyporeflexive algebras.

THEOREM 6.2. (1) A direct integral of a measurable family of weakly closed
unital hyporeflexive subalgebras of B(H) is hyporeflexive.

(2Q) A weakly closed unital hyporefiexive subalgebra of a commutative reflexive
algebra is reflexive.

(3) If & is a unital weakly closed commutative subalgebra of B(H) such that
&' n Alg(Lat<?) has property D, then &7 is hyporeflexive.
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@) If r21,(X, ) is a sigma-finite measure space, if ¢, , @y, ... € L=(u, B(H)),
and if' & (@,(x), Po(X), ...) is hyporeflexive and has property D(r) a.e., then d(Mq,l ,
M,, . .. .) is hyporeflexive.

Proof. The proofs of (1) and (2) are left to the reader.

(3). This follows from Proposition 2.5 (4).

(4). Let o = &!(M(p1 , Mq,Z , -..)and let # be the direct integral of the.oZ(¢,(x),
@o(x), ...)s. It follows from [3) that Alg(Late/) = Alg(Lat %) and Alg(Lat o) n &/’ =
c Alg(Lat#) n &/’ = Alg(Lat #) n4’. It follows from (1) that the latter algebra
is #4; and it follows from Theorem 3.6 that ## has property D(r). Thus, by Propo-
sition 2.5(3), Alg(Lat /) n &’ has property D(r). It follows from (3) that s
is hyporeflexive.

We conclude this section with two examples of hyporeflexive operators. Note
that Brickmann and Fillmore [4] proved that every operator in a finite-dimensional
space is hyporeflexive.

ProrosiTioN 6.3. (1) Every algebraic operator is hyporeflexive.
(2) Every 2-normal operator is lyporeflexive.

Proof. (1). Imitate the proof of Theorem 5.11.
(2). Use Proposition 5.7, Theorem 6.2 (4), and the hyporeflexivity of 2 x 2
matrices {4].

6. QUESTIONS AND COMMENTS

(1) Properties D, D(r) (resp. D, , D,(r)) can be defined for weakly (resp. ultra-
weakly) closed linear manifolds in B(H) in the obvious way. There is also a notion
of reflexivity for submanifolds of B(H). A linear submanifold & of B(H) is reflexive
{sce [16]) provided T € & whenever T e B(H) and Tf e (¥f) forevery fin H, and
& is hereditarily reflexive (see [16]) if every weakly closed submanifold of & is re-
flexive. Note that for unital algebras of operators the two notions of reflexivity
coincide, but it is not clear that every super-reflexive algebra is hereditarily reflexive.
Loginov and Sulman [16, Theorem 2.3] proved that a reflexive linear manifold in
B(H) is hereditarily reflexive if and only if it has property D. This leads to the ques-
tion of whether every super-reflexive algebra has property D. It is therefore worth
knowing if the operator in Remark 5.10 (a) is super-reflexive.

(2) We noted before that Sarason and Rosenthal have asked whether every
operator is hyporeflexive and that Azoff [2] has given an example of a commutative
algebra of 6 x 6 matrices that is not dec-reflexive. We have used property D(r) to
show that every 2-normal operator is hyporeflexive (Proposition 6.3(2)), but our
proof breaks down for n-normal operators when n > 4. Is the difficulty in our proof
or is there really an n-normal operator that is not hyporeflexive? A related question
is whether every unital weakly closed subalgebra of a singly generated algebra is
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hyporeflexive. A negative answer to this latter question would be implied by the
existence of a reflexive operator that is not super-reflexive. Thus, determining whether
the operator of Remark 5.10(a) is super-reflexive would either provide an answer
to this latter question or to the last question in (1) above.

(3) The von Neumann algebras with property D were characterized in [16].
It was also shown in [16] that an algebra &7 has property D if, for each f;, f; in H
there is an f'in H and operators A,, A, in the commutant of &7 such that 4;f == f;
for i = 1, 2. In particular if &7 is strictly cyclic, then &7 has property D (16, Theo-
rem 3.7, Corollary 2.4]); this implies our Corollary 5.2.

{(4) Characterizing the reflexive algebras of n X n matrices is a difficult (it
not impossible) task. Perhaps it is easier to characterize the super-reflexive algebras
of n X n matrices. Finite-dimensionality reduces the problem to finding the maximal
super-reflexive algebras of n X » matrices. What are the maximal algebras (linear
manifolds) with property D? Call two linear submanifolds .#; , .#,of B(H)equivalent
if there are invertible operators 4, B in B(H) such that 4.4, == .#/,B. It is clear that
equivalence preserves property D. This reduces the probiem of finding ail manifolds
with property D to the problem of finding which equivalence classes have property D.

(5) If & is a unital weakly (resp. ultraweakly) closed algebra with property D
(resp. D,), then does there exist an r > 1 such that ./ has property D(+) (resp. D,())?
At first glance it seems that some application of the open mapping theorem is in
order, but the set of weakly continuous linear functionals seem to have no com-
pleteness properties. Note that Proposition 4.1(4) implies that an ultraweakly
closed unital algebra that has property D, and whose center contains infinitely many
projections has property D,(r) for some r > 1.
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