I 0;’(%%"2‘7(:%9'{72530[“ © Copyright by INCREST. 1982

ON TOEPLITZ OPERATORS WITH LOOPS. 11

DOUGLAS N. CLARK

INTRODUCTION

Let T denote the Toeplitz operator associated with a rational function F(e';)
of el with the poles of F(z) lying off T = {z e C; |z] = 1}. Suppose that the bound-
ed components of CN\F(T) are denoted &, if the index of Ty — Al for Le &,
is negative; and /; if that index, for A e/; is positive. Label the index of T, — Al
as N;for A e Z;and v;for A €£;. The Z; and ¢, are called the Joops of F.

In [3], the following similarity theorem for T is proved.

THEOREM 1.  Suppose F has the further properties :

() The intersection of the closures of any two loops consists of a finite number
of points (called the multiple points of F).

(L) The boundary of each loop is an analytic curve except at the multiple points,
where it is piecewise smooth, with inner angle 6 # 0, rr, 2n. No distinct arcs of dF(T)
meet at angle @ = 0,

(IlY) No multiple point of F is the image F(z;,) of a point z, € T where F'(z;) = 0.

(IV) F never backs up. That is, if t; and T; are the Riemann mapping functions

from |z| < 1tof; and ,(Z’j, respectively ( a bar over a set denotes conjugate) then the
arguments

arg7; F(e") and arg Tj? F(e')
are monotone decreasing.
Then Ty is similar to

(1) YOT, @ V,OTF on Y OH., @Y ®H,

where H? is the vector H? space, based on a Hilbert space of dimension v.

The purpose of this paper is to improve upon Theorem 1 in such a way as
to show that similarity properties of T'r depend upon more than the geometry of
F(T), the index of T and the “backing up” of F.



110 DOUGLAS N. CLARK

The improved version of Theorem 1 involves first the removal of the condition
0 # 7, 2x, and the last sentence of (II). Specifically, (11) will be replaced by

(IV') The boundary of each loop is an analytic curve except at the multiple
points, where it is piecewise smooth, with inner angle 0 # 0.

The generalization is accomplished by overcoming the need for “‘nontangential
approach” of the d,(Z(e')), as proved for the case of Theorem 1 in [3, Lemma 1.2].
This same tangential approach was the main obstacle to generalization of (III), a
modification of which we now give.

Let 2, € 0F(T) be a multiple point of F, and let z, € T be an inverse image of
/2y under F, such that F(z) — 2, vanishes to order f; > 1 at z,. There are B, solutions
z = d(2) of F(d(%) = A, with d(}) — z, as 4 — A,. Suppose p, of them approach
7y from inside |z} < 1 as 1 — /, along y < ¢F(T). The numbers B, and p, will be
called, respectively, the f-order and p-order of the triple (4, 2y, 7).

{1y For all multiple points %y, we require
(a) For any arc y on ify, terminating at Ay, let z, be a preimage of Ay under F
such that

(2) some solution d(2) of F(d(2))=1 satisfies d())—z, and d(2) € T as 21— A, along ;.

Let z, be another preimage of 4, and let (By, p,), (B, p,) be the B- and p-orders of
(Aos 29, V) and (g, z;, ), respectively. Then one has the inequalities

Bi Bo B:

with equality holding in the right inequality if z, as well as z, satisfies (2).

(b) For an arc v lying on 0.%; and terminating at z,, we require the condition
of part (a) to hold with F(z) replaced by f(z) = F(Z™).

Our improved version of Theorem 1 is

THEOREM 2. Under conditions (I), (1), (XII') and (IV), Ty is similar to (1).

It will be shown that (III") holds whenever all the f-orders of all triples (4, z, y)
are odd, and therefore, (II1') is indeed a generalization of (I1I) (in which all f-orders
are ).

Because of the strengthening (I1') of (II), Theorem 2 includes the example
of the 2n-leaved rose (F(z) = a(z"*1—z~""1), n even). The similarity result for 7',
stated in [3, Example 1] is therefore correct as stated (but is a consequence of Theo-
rem 2 and not of Theorem 1).

After developing the machinery necessary to prove Theorem 2 (in Section
1 below), we also explore (in Section 2) converse techniques, which we use to con-
struct an example of a rational function F and a rational, orientation preserving
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homeomorphism ¢ of T such that T\ and Tkr., are not similar. This example shows
that similarity properties of 7' may depend upon more than F(T), N;, v; and the
backing up of F.

I am grateful to Kevin Clancey, who showed me how to eliminate the ‘“non-
tangential approach” requirement of Theorem 1 and to Frank Lether, who, using
high speed computing machinery, supplied me with the graph of the counterexample
(figure 1).

1. L, OPERATORS

In this section, we consider L,. operators in a setting somewhat more abstract
than that of [2] or [3], and we obtain the additional estimates necessary for the proofs
of Theorems 1 and 2.

Let d,(A), ..., d,(4) be n algebraic functions of modulus <1, for 1 e g, some
subset of the complex plane, and assume |[d;(4)] < 1 except at finitely many points
Ays - -5 4 Of g. Assume that any singularities of the d; on o lie among the 4, Let
I = {g/(4)} be a set of algebraic functions of modulus = 1 on ¢, also having all
their singularities on ¢ included among the 4.

Fix a point 4, in ¢ and an arc y of o, terminating at A,. By a grouping (around
z,) we will mean a set of d;’s and g;’s satisfying

d(ly) = gj(}“o) =z,eT.

In a grouping ®, the g; are called principal terms of G. If ® contains no g;, but some
d; that tend to z, tangentially as A — 2, on y, then those d; are called principal terms.

We assume that
1. each grouping contains at most one principal term;
2. for each grouping &, there is a positive integer 8 such that for all ¢, g, e G

and for Aey, we have
di(2) — di(P)) ~ cld — A8, |di(D)] < cld — Zo[VFt
1842 — &) ~ Cld — A8, 1gl()] < clh — Al F

where the symbol ~ has its usual meaning:

WA ~ k() if HmA(A)/k(L) = 1.
ti

->/0

For an example of groupings, in the context of this paper, the reader may
turn to the examples in §4.
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Let d,, ..., 6, be constants of modulus > 1, let p € H* and let 7(z) be a function
analytic in |z} < 1 which extends to a 1-to-1 map of T into ¢. Suppose 7’ exists on
T, is continuous and nonzero, except possibly at w; = 771(1,) and

) e ) ) a—1
[1(z) — A;j ~ ciz — ;1*i.a‘, Tz € iz — w,.g"

in a neighborhood of the w;. Define functions ¢y, ..., ¢, &, ..., &, by

IId —67'2) . _ el p . _
II0 — @A I — g 2 0 7DD E G = s
r

The operator L,.:H® — L? is defined for |zl =1 by

(Lyx)2) = oLy, clt@) X(@x(@) + Y, E@NX(E ()]
r

For a grouping ® containing, say, g, and d,, ..., d,, let
Lix = p&(1(2))x(8,(x(2))) = py(2)x(&:(1(2)))
Lix = pe (i(@2)x(d(x(2)) = pd2)x(d(x(2))).

Lemma 1.1. (a). For L, to be bounded in L? norm, it is necessary and sufficient
that, for w; = t7Y(4;),
1
C)) it o 2P . iy .
ipie)) = O((t — w)) ) near wy, |pe’)] = O(1) away from w;
hold with i = 1.

(b). For L;,i > |, to be bounded in L? norm, it is sufficient that, for every ae T,

) S Ipi(e)}® dr = O(h)

h - i h
a -1-;’ > argdi(r(e“)) >a- —2]—

with O(h) independent of 0 < a < 2.

(c). For L, to be bounded i > 1, it is sufficient that (4) hold.
(d). For L;,i > 1, to be compact, it is sufficient that

S Ip e di = o(h.

h [ //
a+ ,: > argdi(r(e"))aa‘%
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(€). For L, to be bounded, it is sufficient that for each grouping ® = {d,, . . ., d, 1,
I' n®}, where 4, = r(e'w“) and B are related to ® through property 2. of groupings,
p satisfies

B T ey

© lp(e)l = O — wy)
(where g = | 0N G|, the number of elements in I N G ).
Proof. (a). Define a variable 0 by e = g,(t(e")), and let e = @(e'?). We have

I pax(gy(t(eM)|F = S a2 x(Za(x(e))I* dt = S i @(e”)]? [x(e™)I* |¢"(e)] dO.

. e, — 10, -
Since |p'(e'%)] ~ c|6 — Oolﬁ/ 07! in a neighborhood of ¢ ° = g,(4,), part (a) follows.
(b). We apply Carleson’s Lemma [1, Theorem 1] with the measure p given by

y@w@:ymwammmn

Carleson’s Lemma states that the (pointwise) identity operator from H* to L*(du)
is bounded if and only if

(7N u(S) < Ch

/ /
for all “Carleson Rectangles” S == {z zl > 1 —h, a— fé— gargz € a—+ —21} .

Thus if (7) holds, we can conclude that
Clix|? = S Ix(@)!* du(z) = S (e x(d(x(e M2 dr = | L;x 1,
which will prove (b). But the measure of a given S is

®) u(S) = { s ste) d < S Ipzdr

h - it n
a-, < argd‘.(-:(e N<a-t 5

proving (b).

(c). We can assume the d,((e")) do not converge radially to d,(4,) (in the
radial case, the results of [2] apply). Since arg d(t(¢(2))) has a nonzero derivative
near z, == @ '(w,), and since

2 Blag—1

l0(2) — oz ~ clz — 2", 19D ~ clz — 2,07,
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#(S) in (b) becomes
| K(s) < S piloEP dp <

It — h
4=p5s argd (1(¢)) <a 7

a-+-chj2 a+chi2
< S oo doe) — S 29(E) 20'(e") dt = O(h)
a—-chi2 a—chj2
proving (c) for i > 1. Of course for i = 1, (c) follows from (a).

(d). Carleson’s Lemma, as used in (b), also states that if u(S) < A4h, then
IL;i £ CA, for a universal constant C. Thus if we write L; = L; =- L;’, where

Lix = pi-\‘(gi(r))l(l—a,l)
L' =L~ L

we have, in case (d), |L;| — 0 as ¢ —» 0 and L;’ is compact, as can easily be seen
by computing the Hilbert-Schmidt norm.

(e). By [2, (3.2)—(3.9)], L is bounded whenever each L;, / > 1 is bounded,
hence by (c), whenever (4) holds for i > 1. Since p, = p¢&, and p; = pc;, i > 1,
and since, by [2, Lemma 2.1], ;

ici] < C;l’ - H,OI—(P-FQ"))!OIII

lézi < Clt - wol—(I"HZ‘l)zolr‘
we have

1 %
-

. : - Ve, '3 . 2( & )
ZP;(C")I < C;p”t _ woi (p+g=Noyld __ O([l _ wol P .

if the hypotheses if () hold. This proves Lemma 1.1.

2. CONVERSE TECHNIQUES

The next two lemmas are proved in preparation for Lemma 2.3, our second
main lemma.

LEMMA 2.1. Let vy, denote the curves
7+(’7) = {1 — 7]—1(]ogq)—¢} ei(9+ (logn) ¥}

y_(n) = {1 — n " (logn) ™%} ei(O—(logn)‘ﬂj
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parametrized by 1 < 5 < oo, where f+ 1 > a > 1. Let B(z) denote the infinite
Blaschke product with zeros {y (1), v,(2), ...;y_(1), 7_(2), ...}. Then for z near

€', z between y, and y_, B(z) satisfies
9) |B(z)| < cle??— z|*
for every £ < 1.

Proof. The prescribed sequence satisfies the Blaschke condition, as proved
by Somadasa [4]. Further, if £ < 5 < k + 1, we can verify that '

() — y. Y — 7.y (] < cle®® — y ().

]
Therefore (9) holds for ze ., U y_. ' 7

Now connect y, and y_ at some points interior to |z} < 1 and let Q denote
the interior of the closed curve so formed. We have B,(2)= B(z)(e¥’—z)~°* e HY(Q)
and, by (9), B, e L*(y, U y_). Therefore B,(z) e H®(Q) and the lemma follows.

Lemma 2.2. If ® is a grouping with principal term D(=g, or d;) at A, and
if N > 0, there is an inner function B(z) such that
|BD)] 2 ¢c>0
Jor the principal term D,

(10) |B(d(x(@W) < clt — wl¥

.. . . w,
Jor the non principal terms d;,in a neighborhood of z==¢"°.

Proof. Assume z, = d(z(¢"?)) = 1. In case G = {dy, ..., d,1,} (with d,

approaching T tangentially at Aj) note that (since A, is an algebraic singularity of
the d;)

[y — 1| 2 cid — AM8, i=2,...,p+1
and, since d, — T tangentially,

1 — |dy(A)] € c|ld — Ap}¥8.
Therefore,
1— lclz(r(e"))]
do(e(e®) — 1]
and so if B(z) = exp[ —vl—iEJ then

z

- da(a(e)
|B(da(1(e")))] = exp — | ——2nn D 0
(@) = exp [I = ”] ¢>

and dj, ..., d, approach 1 nontangentially, so (10) holds for any N.
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In case © = {g;, dh, ..., d,.}, if all the dfz(e")) = 1 nontangentially as
t = w,, then the same B(z) as above works.

If some d; (say d,) tends tangentially to T, we observe that since the curve
z = dy(t(e")) lies inside some curve of the form

y={z:1— 1z < il —z*}

it is sufficient to take Somadasa’s Example 2 [4, p. 299], as described in Lemma 2.1,
The next lemma gives our “converse techniques” to Lemma 1.1.

LemMA 2.3. Assume I' contains exactly one g;, which maps ¢ one-to-one
onto T, and suppose each grouping contains a principal term.

(a). If the principal term of a grouping with Jy = 1(e") is ds, then L, bounded
implies (5) holds.

(b). For Ly to be bounded (resp. bounded below), it is necessary that (6) hold
at each w; (resp. necessary that

1
=5 TAptg) - e /(23

ol = c't — w]

(€). For L, to be bounded, it is necessary that L;, corresponding to the principal
term in each grouping, be bounded.

To prove (a), take a - : argz, in (5). Since d, — do(4;) tangentially,
1 — idy(2), < izy — do{A)] < clargdy() — argz,|

if 2 = 1(e") is close to 2,. Therefore in (5), e can conclude
argz, — h/2 < argd,(t(e")) < argz, < 1’2 = id(t(e") = 1 — &,

so that the inequality in (8) may be replaced by equality. _
To prove part (b), pick an inner function B, for each point e"® where some
di(z(e'")) = 1, so that

. Lt a- D]ey
[B“'o(di('t(e“)))[ <c't— W0¥ [_ peq ] o

near ¢ == w,. Let B ;HB“.O. Applying L, to an H? function of the form Bx, we get
for L;,

!

L,Bx = ¢;pB(d{t(e")))x(d(t(e"))).
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Regarding this operator as acting on x, with p;, = cipB((Z.), and examining the
integral in (5), we see that

S Ipd2dt = Slc.-l?lB(cE(r(e")))pP dr <

a-- 5 > argcﬂ(r(e"))} a— y

< cSlt — wol" Ipl2dt < ch S Ip2dt,

h — i h
at g :\rg{l‘.(z(c"))>a -5

since a — hj2 < argd(1(e")) < a + hj2 implies |t — w," < h. The last integral
tends to O since p = L, 1 e L% Therefore, each L;, restricted to BH?, is compact
(since the operator Bx — x from BH? to H*is an isometry) and Lil,,e is bounded

(resp. essentially bounded below). But
LB [ == | p B(g1)x(g) P == lpsx(g) IF =

— S ()2 x (et

(by the proof of Lemma 1.1 (a)). Therefore, L, i’ is bounded if and only if

-l—(aolﬂ—l

. - ) . i, e .
[p1(eM)] < clt — wy|? (and is essentially bounded below if and only if it is

1
. . . - (eg/B~1) .
bounded below, in which case [p,(e')] > clt — w,!* o ). Since p, = &p, part

(b) follows.

To prove part (c), we proceed as in part (b). By the result of part (b), L bounded
implies L, bounded and, by Lemma 1.1(b), each L,, for the grouping containing g;,
is bounded. Now pick a different grouping ® and proceed to pick B(z) as in Lemma
2.2 so that

|B(d(x(e"))] < |t — wol[ij+(p+q—1)] o8

for every d; (in every grouping) except the principal term d, of ® . By choice of
B, LiIB"gis bounded for every d; in ®, { > 2. Since Ly Lpu? is bounded, we have

lixll = I1Bx)| > cliLyBx| = clipoB(da(z(€))x(dot(e* M| = ¢’ llox(do(r(e" )]
which implies L, is bounded (on all of H?).

For our applications of Lemmas 1.1 and 2.3, we will actually need to consider
Lr operators from H?2 to L%(jz'|d?), the latter space having the norm

| = Slx(e")ﬂz’(e“)i ar.
Q
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1
Evidently, the same lemmas can be applied to L;. with p replaced by t". 2 p to yield

results about this situation. For example, (5) is to be replaced by

(i1) S et — 10,7 dr = o),
a+—;'—,> arg d—i(r(ei’): >a— _12'*

and (6) by

(12) ~20p2p + ) - 11ay)25)

lp(e")i = Ot —wy) °

3. PROOF OF THEOREM 2

This proof is identical to that of Theorem 1 (as given in {3, §2]) except for
modifications in the definition and boundedness proofs for the similarity operators,
and we shall just indicate those modifications.

Write

floy— 2 =
—aH L~ d@ LA — @I TL0 — P9 | TG~ [~ )

where [d;; <1 =[g;i <iel and [y;{/ < | < [;j. On a branch y of some d/; (an
arc on J/; terminating at a multiple point 4,) suppose the d; and g; are divided into
groupings as in §l. For any grouping let B, be the order of vanishing F(z) — A,
at z = z,, and let p, be the number of 4; in the grouping. For x € H% A e/;, define

Lop)2) = p2) X il 13
34 ]
where u,, ...,u, are v = max{—v;} vectors in some auxiliary Hilbert space,
I (A et;) is the eigenvector of Ty defined by

) =TI (2 — z) IL(1 = 672/ (1 — di(D)2),
j<v‘.
J#k
where z,, ..., z, are fixed (distinct) complex numbers of modulus <1, p,(1) =
= ﬁ;‘f’(z,\.)—l and p is to be defined. If 7; is the Riemann map from |z| < 1into one
of the £;, we must choose p so that x = (Lyx)(1;(z)) is bounded in L? norm, for
each j. Let p(7;(z)) € H? be an outer function with modulus

~ a2+ [2p+ 10,/ (26,)

13) lp(ziEe Nl = 1t — wy
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for e¢“ et (y)(lpl =1 at points e ¢7;7%(y) for any y), where the s are
neighborhoods of the multiple points {4;} on the 8/,.

To prove x — (Lgsx)(t;) is bounded in L? norm, we have only to check (6)
(i.e. (12)) in a neighborhood of 7;7! of a multiple point (the methods of [2] apply at
all other points). That is, if G = {dz, ..., d,, I 01 ®} is any grouping at i, with
satisfying property 2. (in which case § must be the f-order of (4;,2z,,7) by

[2, Lemma 1.3]), and if =no, is the inner angle of £, at 4,, (so that
() — t(Ag) ~cldA — lola"; Warschawski [6]) we must check that

— op/2 + [2(p + @) — N/(2B) < — /2 + (2py + D/ (2B,).
But this is equivalent to

R + @) — /B < 2py + D/By

which is the first inequality in (3) if g = 0 and (3) with equality replacing the second
inequality if g = 1.

Now write
F(z) — A =

=AW I =DM II (A — EM2) L (1~GiH2)/TL z — I) L (z — 4)]

where [D;| < 1 = |Gy < |E} and |[I'}] < 1 < [4,]. We want to prove that for each
(j, m), the operator L; ,, defined for polynomials p(%) by

. _S L_DMe—a)1la — P2 e )dr
g, mP =\ A4
II 0 = Dizp2) 11 — Gi(x2) [N 2w — Eilzy)
is bounded in L* norm. As in [3], it suffices to prove boundedness of the L, operator

with ©(z) = 1;(z), I = {G;} and p(e") the reciprocal of the p(e’) chosen above.
By Lemma 1.1(e) (i.e. (12)) and (13), we must verify that

— %/2 + [2(P + Q) — 1ag/(2B) < a1p/2 — (2py + 1ot/ (2By)-

But note that D) = Eia)‘l and G,(A) = gi(_ﬂ.) [2, §5] so that (number of i such
that D,(4,) = Z,) + p + g = . Thus we must prove

%/2 — (2po + Dto/(2ho) > — /2 + [2(8 — p) — 1]/(2) =

= a0/2 — (2p + 1)“0/(2ﬁ)3
or

(po + 1)/By < 20 + 1)/B

which is the second inequality in (3). The proof of Theorem 2 now follows the lines
of that of Theorem 1 [3].



120 DOUGLAS N. CLARK

REMARK. If all ; are odd, we must have 2p, + 1 = B, in (III) so the middle
term in (3) is = 1. Inequality (3) follows.

4. THE EXAMPLE
From now on, we confine ourselves to the case
Fo(2) = (1 + 29z

First we will analyze T with F= F,, and then with F= F o ¢, for a certain
rational, orientation preserving homeomorphism ¢ of T.

416

- f

T -1.6i
Fig. 1.
a. The function Fy. This function maps T to a “figure 8” as shown in figure
1, with both loops oriented positively. Indeed v, = v, = — 1. The only multiple
point of F, is A = 0; there are two preimages, z; =1 and z, = — i; F, has a zero

of order B, == B, = 2 at both points.

Let y be an arc lying on one of the four branches of F(T) with endpoint at 0,
and consider the functions {d;, g;} satisfying FO(E,.(),)) = Fy(g{2) = 4. There are
two groupings ®, and ®, corresponding to y (around the two preimages of 7 == 0}.
Both contain at most two elements (since F, is 4-to-1 and vanishes to order 2 at
z == z;, Z,) and one, G, say, contains g,. We claim that they both contain 1 element;
i.e. that |®,] = |€,| = 1. We prove

16 + 16, <2

ii. {Ggf 21
Since we already know |®,| = 1, this will prove the claim.

To prove i., note that for every 4 e/, Uf,, Fy(z) = A has at most two solutions
in |z} < 1. (Indeed, as f increases from 0 to 2n, F(e") travels around &£, U &/,
counter clockwise, exactly once; since £, has a pole at 0, the argument principle
applies.) Now to see i., just note that if 2 moves from y inside £, U7, g,(%) becomes
a d,(A) [2, Lemma 1.3].

To prove ii., let D = {z:z] < | and Fy(z)€/,u/,}. A simple computation
shows for z imaginary:

(14) Fy(2) is imaginary, Fy(z) 10 as 21 —i and Fy(z) 10 as z 1.
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(1 and | refer to going up or down the imaginary axis.) It foliows from (14) that
-1 belong to the closure of D and that the following four arcs: the two arcs of 6D
and the two arcs of T terminating at i [resp —i] are mapped to the four arcs of
Fy(T) terminating at 0. (0D cannot intersect T in more than isolated points, by
{2, Lemma 1.3].) This proves ii. .

Therefore, for the g;, p; and B; corresponding to ®; and the arc y, we have

ql=1’ ])1:03 181:2

g2=0, ppy=1, f=2
As a result, the inequalities (3) hold and Tpu is similar to r,er,, where 1, and
17, are the Riemann maps from |z| < | into £, and /..
b. The function F, - ¢. Here

o(z) = z%(z + 31)/(3iz — 1).

Since ¢ is the quotient of two finite Blaschke products ¢ maps T to T. Furthermore
@) =1, o(—i) = —i and ¢'(z) =0 on T only for z = —i, where ¢(z) +i=20
to order 3. Thus ¢ never backs up (or ¢’ would vanish at both end points of an
arc where ¢ backs up) and so ¢ is an orientation preserving homeomorphism of T.
F=F, ¢ maps T to F(T) and F'(z) = 0 at z = i, with F(z) — i = 0 to order
fy =2 and F(z) +i=0 to order ff, = 6.

Let y be an arc of Fy(T) terminating at 0, which is the image under F of an
arc of T terminating at z; = i. Since ¢ maps |z| < 1 inside |z| < 1 and |z] > 1
outside |z| < 1 in a neighborhood of i, we have

B=2q=1p, =0
(as in case a.).
In a neighborhood of z, == —i, ¢ is:
2-to-1 from {z| <1 to |z} < 1
I-to-1 from lz} < 1 to |z} > 1
2-to-1 from |z| > 1 to {z] > 1

1-to-1 from |z|] > 1 to |zl < 1.

Therefore y has, under F, = ¢, 3 preimages in |z| < 1 and 3 preimages in |z] > 1
terminating at —1i,

Ba=6, g=0, p, =3.
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Finally, we need to note that the preimage of y under F in |z; < 1 terminating
at —i meets T tangentially. This is true since y meets one of the arcs from
(15) Fy({e" | 3n/d — e < t < 3r/4}), Fy({e"|3n/4 <t < 3n/4 +¢))

1

at angle = and so Fy ' (which looks like 22 -—i near / = 0) must map y and the arc
from (15) into arcs meeting at angle 0. Therefore one of the three arcs in iz’ < 1
that F, < ¢ sends to y must meet T tangentially (and only one since the six preimages
of y meet at equal angles at —1).

Now suppose TFn"? is similar to T71 DT :

LTFOa(p = [Trl @ Trg][“

As L* must map eigenvectors of T j‘l ® Tj; to eigenvectors of T ’;’éow, and as the eigen-
vector k, for T,J with eigenvalue 7;(2) is the reproducing kernel for the jth compo-
nent of Lx(j=1,2), we have

(16) Lx)(1,(2)) = (Lx, ki,-(z)) = (x, L*k;j(_,)) =(x, P(Z)/';j(:)),

where /1, are the eigenvectors of T’y ., with h,(0) = 1. By (16),

(Lx)(2) = p(r XN Y e (A + X EA)x(E))]

where
h(z) = Z (1l —dizy' + Z (1 — giz) ™

L maps /7* into the Hilbert space of analytic functions in/, y ¢, with norm

2 . .
xfE =y S!x(r,-(e”)))2[r}(e")1df-
j=1
Similarity implies L is bounded and invertible. By Lemma 2.3(b), using the
arc y above and o, = 1,(B, p, 9) = (B4, P1, 1) = (2, 0, 1), this implies
L
lp()i = cie| *
(where we are assuming y is an arc of £, and 7,(1) = 0). Now Lemma 2.3(c) implies

that the principal term in the grouping around —i must be bounded. By Lemma 2.3(a)s
this means

a7 S | py(eM)2di= Oh).

J _t p
a+ 7’ » argd (r,(e")) >0~ Ll
: 2
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Since

. o . —p,+a,— e /B —1]4 L —13-1/4
0@ = [T )Tiepl =clt] 2 T T = ¢t

{|7j(e")] is bounded below by [5, Th.IX.8]), the left side of [17] is bounded below by

S ES

a4
—7/6 (=7/6)6+5 R
¢ 2] dt;cs [¢] dt=c g [¢[~2d¢
a—

p - p
a+l» argd_(z,(e')» a— i a - —
2 1 2

m[a-

(by the change of variable used with the proof of Lemma 1.1(c)), which cannot be
O(/). This contradicts the supposed similarity of Tron¢ and T,1 ST,

REMARK. It is not difficult to show, using the methods of Theorem 2, that
TFo”" is quasi-similar to fo @ T... Therefore, the conclusions of Corollaries 1 and 2
of [3] are valid for Tpoor,,.

This work was partially supported by NSF Grants. Part of the work was done while
the author was visiting the University of Virginia.
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