ON TOEPLITZ OPERATORS WITH LOOPS. II ### DOUGLAS N. CLARK ### INTRODUCTION Let T_F denote the Toeplitz operator associated with a rational function $F(e^i_t)$ of e^{it} with the poles of F(z) lying off $T = \{z \in C; |z| = 1\}$. Suppose that the bounded components of $C \setminus F(T)$ are denoted \mathcal{L}_i , if the index of $T_F - \lambda I$, for $\lambda \in \mathcal{L}_i$, is negative; and ℓ_i if that index, for $\lambda \in \ell_i$ is positive. Label the index of $T_F - \lambda I$ as N_i for $\lambda \in \mathcal{L}_i$ and ℓ_i for $\lambda \in \mathcal{L}_i$ and ℓ_i are called the loops of F. In [3], the following similarity theorem for T_F is proved. **THEOREM 1.** Suppose F has the further properties: - (I) The intersection of the closures of any two loops consists of a finite number of points (called the multiple points of F). - (II) The boundary of each loop is an analytic curve except at the multiple points, where it is piecewise smooth, with inner angle $\theta \neq 0$, π , 2π . No distinct arcs of $\partial F(\mathbf{T})$ meet at angle $\theta = 0$. - (III) No multiple point of F is the image $F(z_0)$ of a point $z_0 \in T$ where $F'(z_0) = 0$. - (IV) F never backs up. That is, if τ_j and T_j are the Riemann mapping functions from |z| < 1 to ℓ_j and \mathcal{Z}_j , respectively (a bar over a set denotes conjugate) then the arguments $$\arg \tau_i^{-1} F(e^{it})$$ and $\arg T_i^{-1} \overline{F}(e^{it})$ are monotone decreasing. Then T_F is similar to (1) $$\sum^{\oplus} T_{\tau_i} \oplus \sum^{\oplus} T_{T_i}^* \quad on \quad \sum^{\oplus} H_{-\nu_i}^2 \oplus \sum^{\oplus} H_{N_i}^2$$ where H_v^2 is the vector H^2 space, based on a Hilbert space of dimension v. The purpose of this paper is to improve upon Theorem 1 in such a way as to show that similarity properties of T_F depend upon more than the geometry of F(T), the index of T_F and the "backing up" of F. The improved version of Theorem 1 involves first the removal of the condition $\theta \neq \pi$, 2π , and the last sentence of (II). Specifically, (II) will be replaced by (II') The boundary of each loop is an analytic curve except at the multiple points, where it is piecewise smooth, with inner angle $0 \neq 0$. The generalization is accomplished by overcoming the need for "nontangential approach" of the $d_i(\bar{\tau}(e^{it}))$, as proved for the case of Theorem 1 in [3, Lemma 1.2]. This same tangential approach was the main obstacle to generalization of (III), a modification of which we now give. Let $\lambda_0 \in \partial F(\mathbf{T})$ be a multiple point of F, and let $z_0 \in \mathbf{T}$ be an inverse image of λ_0 under F, such that $F(z) - \lambda_0$ vanishes to order $\beta_0 \ge 1$ at z_0 . There are β_0 solutions $z = d(\lambda)$ of $F(d(\lambda)) = \lambda$, with $d(\lambda) \to z_0$ as $\lambda \to \lambda_0$. Suppose p_0 of them approach z_0 from inside |z| < 1 as $\lambda \to \lambda_0$ along $\gamma \subset \partial F(\mathbf{T})$. The numbers β_0 and p_0 will be called, respectively, the β -order and p-order of the triple (λ_0, z_0, γ) . - (III') For all multiple points λ_0 , we require - (a) For any arc γ on $\partial \ell_i$, terminating at λ_0 , let z_0 be a preimage of λ_0 under F such that - (2) some solution $d(\lambda)$ of $F(d(\lambda)) = \lambda$ satisfies $d(\lambda) \to z_0$ and $d(\lambda) \in \mathbf{T}$ as $\lambda \to \lambda_0$ along γ . Let z_1 be another preimage of λ_0 , and let (β_0, p_0) , (β_1, p_1) be the β - and p-orders of (λ_0, z_0, γ) and (λ_0, z_1, γ) , respectively. Then one has the inequalities (3) $$\frac{2p_1 - 1}{\beta_1} \leqslant \frac{2p_0 + 1}{\beta_0} \leqslant \frac{2p_1 + 1}{\beta_1}$$ with equality holding in the right inequality if z_1 as well as z_0 satisfies (2). (b) For an arc γ lying on $\partial \overline{\mathcal{L}}_i$ and terminating at \overline{z}_0 , we require the condition of part (a) to hold with F(z) replaced by $f(z) = F(\overline{z}^{-1})$. Our improved version of Theorem 1 is THEOREM 2. Under conditions (I), (III'), (III') and (IV), T_F is similar to (1). It will be shown that (III') holds whenever all the β -orders of all triples (λ , z, γ) are odd, and therefore, (III') is indeed a generalization of (III) (in which all β -orders are 1). Because of the strengthening (II') of (II), Theorem 2 includes the example of the 2n-leaved rose $(F(z) = a(z^{n+1}-z^{-(n-1)}), n$ even). The similarity result for T_F , stated in [3, Example 1] is therefore correct as stated (but is a consequence of Theorem 2 and not of Theorem 1). After developing the machinery necessary to prove Theorem 2 (in Section 1 below), we also explore (in Section 2) converse techniques, which we use to construct an example of a rational function F and a rational, orientation preserving homeomorphism φ of **T** such that T_F and $T_{F \circ \varphi}$ are not similar. This example shows that similarity properties of T_F may depend upon more than $F(\mathbf{T})$, N_i , v_i and the backing up of F. I am grateful to Kevin Clancey, who showed me how to eliminate the "non-tangential approach" requirement of Theorem 1 and to Frank Lether, who, using high speed computing machinery, supplied me with the graph of the counterexample (figure 1). # 1. L_{Γ} OPERATORS In this section, we consider $L_{I'}$ operators in a setting somewhat more abstract than that of [2] or [3], and we obtain the additional estimates necessary for the proofs of Theorems 1 and 2. Let $d_1(\lambda), \ldots, d_n(\lambda)$ be n algebraic functions of modulus ≤ 1 , for $\lambda \in \sigma$, some subset of the complex plane, and assume $|d_i(\lambda)| < 1$ except at finitely many points $\lambda_1, \ldots, \lambda_k$ of σ . Assume that any singularities of the d_i on σ lie among the λ_i . Let $\Gamma = \{g_i(\lambda)\}$ be a set of algebraic functions of modulus = 1 on σ , also having all their singularities on σ included among the λ_i . Fix a point λ_0 in σ and an arc γ of σ , terminating at λ_0 . By a grouping (around z_0) we will mean a set of d_i 's and g_i 's satisfying $$d_i(\lambda_0) = g_j(\lambda_0) = z_0 \in \mathbf{T}.$$ In a grouping \mathfrak{G} , the g_i are called *principal terms* of \mathfrak{G} . If \mathfrak{G} contains no g_i , but some d_i that tend to z_0 tangentially as $\lambda \to \lambda_0$ on γ , then those d_i are called *principal terms*. We assume that - 1. each grouping contains at most one principal term; - 2. for each grouping \mathfrak{G} , there is a positive integer β such that for all $d_i, g_i \in \mathfrak{G}$ and for $\lambda \in \gamma$, we have $$|d_i(\lambda)-d_i(\lambda_0)| \sim \mathrm{c} |\lambda-\lambda_0|^{1/\beta}, \quad |d_i'(\lambda)| \leqslant c |\lambda-\lambda_0|^{1/\beta-1}$$ $$|g_i(\lambda) - g_i(\lambda_0)| \sim c|\lambda - \lambda_0|^{1/\beta}, \quad |g_i'(\lambda)| \leq c|\lambda - \lambda_0|^{1/\beta - 1}$$ where the symbol \sim has its usual meaning: $$h(\lambda) \sim k(\lambda)$$ if $\lim_{\lambda \to \lambda_0} h(\lambda)/k(\lambda) = 1$. For an example of groupings, in the context of this paper, the reader may turn to the examples in §4. Let $\delta_1, \ldots, \delta_n$ be constants of modulus > 1, let $\rho \in H^2$ and let $\tau(z)$ be a function analytic in |z| < 1 which extends to a 1-to-1 map of **T** into σ . Suppose τ' exists on **T**, is continuous and nonzero, except possibly at $w_i = \tau^{-1}(\lambda_i)$ and $$|\tau(z) - \lambda_i| \sim c|z - w_i|^{\alpha_i}, |\tau'(z)| \leq |z - w_i|^{\alpha_i - 1}$$ in a neighborhood of the w_i . Define functions $c_1, \ldots, c_n, \zeta_1, \ldots, \zeta_m$ by $$\frac{\prod(1-\delta_i^{-1}z)}{\prod(1-d_i(\lambda)z)\prod_r(1-g_i(\lambda)z)} = \sum c_i(\lambda)(1-d_i(\lambda)z)^{-1} + \sum_r \xi_i(\lambda)(1-g_i(\lambda)z)^{-1}.$$ The operator $L_r: H^2 \to L^2$ is defined for |z| = 1 by $$(L_T x)(z) = \rho \left[\sum_i c_i(\tau(z)) x(\overline{d_i}(\tau(z))) + \sum_i \overline{\xi}_i(\tau(z)) x(\overline{g}_i(\tau(z))) \right].$$ For a grouping \mathfrak{G} containing, say, g_1 and d_2, \ldots, d_n , let $$L_1 x = \rho \bar{\xi}_1(\tau(z)) x(\bar{g}_1(\tau(z))) = \rho_1(z) x(\bar{g}_1(\tau(z)))$$ $$L_i x = \rho \overline{c}_i(\tau(z)) x(\overline{d}_i(\tau(z))) = \rho_i(z) x(\overline{d}_i(\tau(z))).$$ LEMMA 1.1. (a). For L_1 to be bounded in L^2 norm, it is necessary and sufficient that, for $w_j = \tau^{-1}(\lambda_j)$, (4) $$|\rho_i(e^{it})| = O((t - w_j)^{\frac{1}{2}(\alpha_j/\beta - 1)})$$ near $w_j, |\rho_i(e^{it})| = O(1)$ away from w_j hold with i = 1. (b). For L_i , i > 1, to be bounded in L^2 norm, it is sufficient that, for every $a \in T$, (5) $$\int_{a+\frac{h}{2} \geqslant \arg \overline{d_i}(\tau(e^{it})) \geqslant a-\frac{h}{2}} |\rho_i(e^{it})|^2 dt = O(h)$$ with 0(h) independent of $0 \le a \le 2\pi$. - (c). For L_i to be bounded $i \ge 1$, it is sufficient that (4) hold. - (d). For L_i , i > 1, to be compact, it is sufficient that $$\int\limits_{a+\frac{h}{2}\geqslant\arg d_i(\tau(e^{it}))\geqslant a-\frac{h}{2}}|\rho_i(e^{it})|^2\,\mathrm{d}t=\mathrm{o}(h).$$ (e). For L_{Γ} to be bounded, it is sufficient that for each grouping $\mathfrak{G} = \{d_2, \ldots, d_{p+1}, \Gamma \cap \mathfrak{G}\}$, where $\lambda_0 = \tau(e^{iw_0})$ and β are related to \mathfrak{G} through property 2. of groupings, ρ satisfies (6) $$|\rho(e^{it})| = O((t - w_0)^{-\frac{1}{2} + [2(p+q)-1] \alpha_0 l(2\beta)})$$ (where $q = |\Gamma \cap \mathfrak{G}|$, the number of elements in $\Gamma \cap \mathfrak{G}$). *Proof.* (a). Define a variable θ by $e^{i\theta} = \overline{g}_1(\tau(e^{it}))$, and let $e^{it} = \varphi(e^{i\theta})$. We have $$||\rho_1 x(\bar{g_1}(\tau(e^{it})))||^2 = \int |\rho_1|^2 |x(\bar{g_1}(\tau(e^{it})))|^2 dt = \int |\rho_1(\varphi(e^{i\theta}))|^2 |x(e^{i\theta})|^2 |\varphi'(e^{i\theta})| d\theta.$$ Since $|\varphi'(e^{i\theta})| \sim c|\theta - \theta_0|^{\beta/\alpha_0 - 1}$ in a neighborhood of $e^{i\theta_0} = g_1(\lambda_0)$, part (a) follows. (b). We apply Carleson's Lemma [1, Theorem 1] with the measure μ given by $$\int x(z) d\mu(z) = \int |\rho_i|^2 x(d_i(\tau(e^{it}))) dt.$$ Carleson's Lemma states that the (pointwise) identity operator from H^2 to $L^2(d\mu)$ is bounded if and only if $$\mu(S) \leqslant Ch$$ for all "Carleson Rectangles" $S = \left\{ z : |z| > 1 - h, \ a - \frac{h}{2} \le \arg z \le a + \frac{h}{2} \right\}$. Thus if (7) holds, we can conclude that $$C||x||^2 \geqslant \int |x(z)|^2 d\mu(z) = \int |\rho_i(e^{it})|^2 |x(d_i(\tau(e^{it})))|^2 dt = ||L_i x||^2,$$ which will prove (b). But the measure of a given S is (8) $$\mu(S) = \int |\rho_i|^2 \chi_S(\overline{d_i}(\tau(e^{it}))) dt \leqslant \int_{a - \frac{h}{2} \leqslant \arg \overline{d_i}(\tau(e^{it})) \leqslant a + \frac{h}{2}} |\rho_i|^2 dt$$ proving (b). (c). We can assume the $d_i(\tau(e^{it}))$ do not converge radially to $d_i(\lambda_0)$ (in the radial case, the results of [2] apply). Since $\arg \bar{d}_i(\tau(\varphi(z)))$ has a nonzero derivative near $z_0 = \varphi^{-1}(w_0)$, and since $$|\varphi(z) - \varphi(z_0)| \sim c|z - z_0|^{\beta/\alpha_0}, \qquad |\varphi'(z)| \sim c|z - z_0|^{\beta/\alpha_0 - 1},$$ $\mu(S)$ in (b) becomes $$\mu(S) \leqslant \int_{a-\frac{h}{2}\leqslant \arg \overline{d}_{i}(\tau(\varphi))\leqslant a+\frac{h}{2}} |\rho_{i}(\varphi(e^{it}))|^{2} d\varphi \leqslant$$ $$\leq \int_{a-ch/2}^{a+ch/2} |\rho_i(\varphi(e^{it}))|^2 d\varphi(e^{it}) = \int_{a-ch/2}^{a+ch/2} |\rho_i(\varphi(e^{it}))|^2 \varphi'(e^{it}) dt = O(h)$$ proving (c) for i > 1. Of course for i = 1, (c) follows from (a). (d). Carleson's Lemma, as used in (b), also states that if $\mu(S) \leq Ah$, then $||L_i|| \leq CA$, for a universal constant C. Thus if we write $L_i = L'_i + L''_i$, where $$L'_{i}x = \rho_{i}x(\overline{d}_{i}(\tau))\chi_{(1-\epsilon,1)}$$ $$L''_{i} = L_{i} - L'_{i}$$ we have, in case (d), $||L_i'|| \to 0$ as $\varepsilon \to 0$ and L_i'' is compact, as can easily be seen by computing the Hilbert-Schmidt norm. (e). By [2, (3.2)–(3.4)], L_{Γ} is bounded whenever each L_i , $i \ge 1$ is bounded, hence by (c), whenever (4) holds for $i \ge 1$. Since $\rho_1 = \rho \bar{\xi}_1$ and $\rho_i = \rho c_i$, i > 1, and since, by [2, Lemma 2.1], $$|c_i| \leqslant c |t-w_0|^{-(p+q-1)\,\alpha_0/\beta}$$ $$|\xi_i| \leqslant c|t-w_0|^{-(p+q-1)\alpha_0/\beta}$$ we have $$|\rho_i(\mathrm{e}^{\mathrm{i}t})| \leqslant c |\rho| |t-w_0|^{-(p+q-1)\alpha_0'\beta} = \mathrm{O}(|t-w_0|^{\frac{1}{2}\left(\frac{\alpha_0}{\beta}-1\right)})$$ if the hypotheses if (e) hold. This proves Lemma 1.1. ## 2. CONVERSE TECHNIQUES The next two lemmas are proved in preparation for Lemma 2.3, our second main lemma. Lemma 2.1. Let γ_{\pm} denote the curves $$\gamma_+(\eta) = \left\{1 - \eta^{-1} (\log \eta)^{-\alpha}\right\} e^{\mathrm{i}\{\theta + (\log \eta)^{-\beta}\}}$$ $$\gamma_-(\eta) = \left\{1 - \eta^{-1} (\log \eta)^{-\alpha}\right\} e^{i\{\theta - (\log \eta)^{-\beta}\}}$$ parametrized by $1 \le \eta < \infty$, where $\beta + 1 > \alpha > 1$. Let B(z) denote the infinite Blaschke product with zeros $\{\gamma_+(1), \gamma_+(2), \ldots; \gamma_-(1), \gamma_-(2), \ldots\}$. Then for z near $e^{i\theta}$, z between γ_+ and γ_- , B(z) satisfies $$|B(z)| \leqslant c|e^{i\theta} - z|^{\varepsilon}$$ for every $\varepsilon < 1$. *Proof.* The prescribed sequence satisfies the Blaschke condition, as proved by Somadasa [4]. Further, if $k \le \eta \le k+1$, we can verify that $$|[\gamma_{+}(\eta) - \gamma_{+}(k)]/[1 - \bar{\gamma}_{+}(k)\gamma_{+}(\eta)]| \le c|e^{i\theta} - \gamma_{+}(\eta)|^{\epsilon}.$$ Therefore (9) holds for $z \in \gamma_+ \cup \gamma_-$. Now connect γ_+ and γ_- at some points interior to |z| < 1 and let Ω denote the interior of the closed curve so formed. We have $B_1(z) = B(z)(e^{i\theta} - z)^{-\epsilon} \in H^1(\Omega)$ and, by (9), $B_1 \in L^{\infty}(\gamma_+ \cup \gamma_-)$. Therefore $B_1(z) \in H^{\infty}(\Omega)$ and the lemma follows. LEMMA 2.2. If \mathfrak{G} is a grouping with principal term $D(=g_1 \text{ or } d_i)$ at λ_0 and if N > 0, there is an inner function B(z) such that $$|B(D)| \ge c > 0$$ for the principal term D, $$|B(\overline{d}_i(\tau(\mathbf{e}^{it})))| \leqslant c|t - w_0|^N$$ for the non principal terms d_i , in a neighborhood of $z = e^{iw_0}$. *Proof.* Assume $z_0 = d(\tau(e^{iw_0})) = 1$. In case $\mathfrak{G} = \{d_2, \ldots, d_{p+1}\}$ (with d_2 approaching **T** tangentially at λ_0) note that (since λ_0 is an *algebraic* singularity of the d_i) $$|c_i'(\lambda) - 1| \ge c|\lambda - \lambda_0|^{1/\beta}, \quad i = 2, ..., p + 1$$ and, since $d_2 \to \mathbf{T}$ tangentially, $$1-|d_2(\lambda)|\leqslant c|\lambda-\lambda_0|^{2/\beta}.$$ Therefore, $$\frac{1-|d_2(\tau(e^{it}))|}{|d_2(\tau(e^{it}))-1|} \leqslant c$$ and so if $B(z) = \exp \left[-\frac{1+z}{1-z} \right]$, then $$|B(d_2(\tau(e^{it})))| = \exp -\left[\frac{1 - |d_2(\tau(e^{it}))|}{|d_2(\tau(e^{it})) - 1|}\right] \ge c > 0$$ and d_3, \ldots, d_p approach 1 nontangentially, so (10) holds for any N. In case $\mathfrak{G} = \{g_1, d_2, \dots, d_{p+1}\}$, if all the $d_i(\tau(e^{it})) \to 1$ nontangentially as $t \to w_0$, then the same B(z) as above works. If some d_i (say d_2) tends tangentially to **T**, we observe that since the curve $z = d_2(\tau(e^{it}))$ lies inside some curve of the form $$\gamma = \{z : 1 - |z| \le |1 - z|^{\alpha}\}$$ it is sufficient to take Somadasa's Example 2 [4, p. 299], as described in Lemma 2.1. The next lemma gives our "converse techniques" to Lemma 1.1. - Lemma 2.3. Assume Γ contains exactly one g_i , which maps σ one-to-one onto T, and suppose each grouping contains a principal term. - (a). If the principal term of a grouping with $\lambda_0 = \tau(e^{iw_j})$ is d_2 , then L_2 bounded implies (5) holds. - (b). For L_{Γ} to be bounded (resp. bounded below), it is necessary that (6) hold at each w_i (resp. necessary that $$|\rho| \geqslant c|t - w_i|^{-\frac{1}{2} + [2(p+q)-1]\alpha_i/(2\beta_i)}$$). (c). For L_r to be bounded, it is necessary that L_i , corresponding to the principal term in each grouping, be bounded. To prove (a), take $a = \arg z_0$ in (5). Since $d_2 \to d_2(\lambda_i)$ tangentially, $$1 - |d_2(\lambda)| \leq |z_0 - d_2(\lambda)| \leq c |\arg d_2(\lambda) - \arg z_0|$$ if $\lambda = \tau(e^{it})$ is close to λ_0 . Therefore in (5), we can conclude $$\arg z_0 - h/2 \leqslant \arg d_2(\tau(e^{it})) \leqslant \arg z_0 - h/2 \Rightarrow |d_2(\tau(e^{it}))| \geqslant 1 - h,$$ so that the inequality in (8) may be replaced by equality. To prove part (b), pick an inner function B_{w_0} for each point e^{iw_0} where some $d_i(\tau(e^{it})) \to 1$, so that $$|B_{w_0}(d_i(\tau(\mathrm{e}^{\mathrm{i}t})))| \leq c't - w_0|^{\left[\frac{1}{2} + (p+q-1)\right]\sigma_0',t}$$ near $t = w_0$. Let $B = \prod B_{w_0}$. Applying L_T to an H^2 function of the form Bx, we get for L_i , $$L_i Bx := c_i \rho B(d_i(\tau(e^{it}))) x(d_i(\tau(e^{it}))).$$ Regarding this operator as acting on x, with $\rho_i = c_i \rho B(\overline{d_i})$, and examining the integral in (5), we see that $$\int\limits_{|\rho_i|^2\mathrm{d}t} |\rho_i|^2\mathrm{d}t = \int\limits_{|c_i|^2|B(\overline{d_i}(\tau(\mathrm{e}^{\mathrm{i}t})))\rho|^2\,\mathrm{d}t \leqslant \\ a + \frac{h}{2} \ge \arg\overline{d_i}(\tau(\mathrm{e}^{\mathrm{i}t})) \ge a - \frac{h}{2} \\ \leqslant c \int\limits_{|a|} |t - w_0|^{2q/\beta} |\rho|^2\,\mathrm{d}t \leqslant ch \int\limits_{|a| + \frac{h}{2} \ge \arg\overline{d_i}(\tau(\mathrm{e}^{\mathrm{i}t})) \ge a - \frac{h}{2}} |\rho|^2\,\mathrm{d}t,$$ since $a - h/2 < \arg \overline{d_i}(\tau(e^{it})) < a + h/2$ implies $|t - w_0|^{\alpha_0/\beta} < h$. The last integral tends to 0 since $\rho = L_\Gamma 1 \in L^2$. Therefore, each L_i , restricted to BH^2 , is compact (since the operator $Bx \to x$ from BH^2 to H^2 is an isometry) and $L_1|_{BH^2}$ is bounded (resp. essentially bounded below). But $$||L_1 B x||^2 = ||\rho_1 B(g_1) x(g_1)||^2 = ||\rho_1 x(g_1)||^2 =$$ $$= \int |\rho_1(\varphi(e^{it}))|^2 |x|^2 \varphi'(e^{it}) dt$$ (by the proof of Lemma 1.1 (a)). Therefore, $L_1|_{BH^2}$ is bounded if and only if $|\rho_1(\mathrm{e}^{\mathrm{i}t})| \leqslant c|t-w_0|^{\frac{1}{2}|\alpha_0/\beta-1)}$ (and is essentially bounded below if and only if it is bounded below, in which case $|\rho_1(\mathrm{e}^{\mathrm{i}t})| \geqslant c|t-w_0|^{\frac{1}{2}(\alpha_0/\beta-1)}$). Since $\rho_1=\xi_1\rho$, part (b) follows. To prove part (c), we proceed as in part (b). By the result of part (b), L_{Γ} bounded implies L_1 bounded and, by Lemma 1.1(b), each L_i , for the grouping containing g_1 , is bounded. Now pick a different grouping \mathfrak{G} and proceed to pick B(z) as in Lemma 2.2 so that $$|B(\overline{d}_i(\tau(\mathrm{e}^{\mathrm{i}t})))| \, \leqslant \, |t\,-\,w_0|^{\left[\frac{1}{2}+(p+q-1)\right]\,\alpha_0^{\,\prime\,\beta}}$$ for every d_i (in every grouping) except the principal term d_2 of \mathfrak{G} . By choice of B, $L_i|_{BH^2}$ is bounded for every d_i in \mathfrak{G} , i > 2. Since $L_{\Gamma}|_{BH^2}$ is bounded, we have $$||x|| = ||Bx|| \ge c ||L_2Bx|| = c ||\rho_2B(\overline{d_2}(\tau(e^{it})))x(\overline{d_2}(\tau(e^{it})))|| \ge c' ||\rho_x(\overline{d_2}(\tau(e^{it})))||$$ which implies L_2 is bounded (on all of H^2). For our applications of Lemmas 1.1 and 2.3, we will actually need to consider L_{Γ} operators from H^2 to $L^2(|\tau'|dt)$, the latter space having the norm $$||x||^2 = \int_0^{2\pi} |x(e^{it})|^2 |\tau'(e^{it})| dt.$$ Evidently, the same lemmas can be applied to L_{Γ}^{*} with ρ replaced by $|\tau'|^{\frac{1}{2}}\rho$ to yield results about this situation. For example, (5) is to be replaced by (11) $$\int_{a+\frac{h}{2} \ge \arg \bar{d}_i(\tau(e^{it})) \ge a-\frac{h}{2}} |\rho_i(e^{it})|^2 dt = O(h),$$ and (6) by (12) $$|\rho(e^{it})| = O(t - w_0)^{-\frac{\alpha_0}{2} + [2(p+q) - 1]\alpha_0/(2\beta)}.$$ #### 3. PROOF OF THEOREM 2 This proof is identical to that of Theorem 1 (as given in [3, §2]) except for modifications in the definition and boundedness proofs for the similarity operators, and we shall just indicate those modifications. Write $$f(z) - \lambda =$$ $$= a(\lambda) \prod (1 - d_i(\lambda)z) \prod (1 - e_i(\lambda)z) \prod (1 - g_i(\lambda)z) \int_{i=1}^{m} (z - \gamma_i) \prod_{i=1}^{n} (z - \delta_i)$$ where $|d_i| < 1 = |g_i| < |e_i|$ and $|\gamma_i| < 1 < |\delta_i|$. On a branch γ of some $\partial \ell_j$ (an arc on $\partial \ell_j$ terminating at a multiple point λ_0) suppose the d_i and g_i are divided into groupings as in §1. For any grouping let β_0 be the order of vanishing $F(z) - \lambda_0$ at $z = z_0$, and let p_0 be the number of d_i in the grouping. For $x \in H^2$, $\lambda \in \ell_i$, define $$(L_{0f}x)(\lambda) = \rho(\lambda) \sum_{k \leqslant \nu} \rho_k(\lambda)(x, h_{\bar{\lambda}}^{(k)}) u_k$$ where u_1, \ldots, u_{ν} are $\nu = \max\{-\nu_i\}$ vectors in some auxiliary Hilbert space, $h_{\lambda}^{(k)}$ ($\lambda \in \ell_i$) is the eigenvector of T_f defined by $$h_{\lambda}^{(k)}(z) = \prod_{\substack{j \leq \nu_i \\ j \neq k}} (z - z_j) \prod (1 - \delta_i^{-1} z) / \prod (1 - d_i(\lambda) z),$$ where z_1, \ldots, z_{ν} are fixed (distinct) complex numbers of modulus <1, $\rho_k(\lambda)=$ = $\overline{h_{\lambda}^{(k)}}(z_k)^{-1}$ and ρ is to be defined. If τ_j is the Riemann map from |z|<1 into one of the ℓ_j , we must choose ρ so that $x \to (L_{0f}x)(\tau_j(z))$ is bounded in L^2 norm, for each j. Let $\rho(\tau_j(z)) \in H^2$ be an outer function with modulus (13) $$|\rho(\tau_i(e^{it}))| = |t - w_0|^{-\alpha_0/2 + [2\rho_0 + 1]\alpha_0/(2\beta_0)}$$ for $e^{it} \in \tau_j^{-1}(\gamma)$ ($|\rho| = 1$ at points $e^{it} \in \tau_j^{-1}(\gamma)$ for any γ), where the γ 's are neighborhoods of the multiple points $\{\lambda_i\}$ on the $\partial \ell_i$. To prove $x \to (L_{0,f}x)(\tau_j)$ is bounded in L^2 norm, we have only to check (6) (i.e. (12)) in a neighborhood of τ_j^{-1} of a multiple point (the methods of [2] apply at all other points). That is, if $\mathfrak{G} = \{d_2, \ldots, d_p, \Gamma \cap \mathfrak{G}\}$ is any grouping at λ_0 with β satisfying property 2. (in which case β must be the β -order of (λ_0, z_0, γ) by [2, Lemma 1.3]), and if $\pi\alpha_0$ is the inner angle of ℓ_i at λ_0 , (so that $\tau_i(\lambda) - \tau_i(\lambda_0) \sim c|\lambda - \lambda_0|^{\alpha_0}$; Warschawski [6]) we must check that $$-\alpha_0/2 + [2(p+q)-1]\alpha_0/(2\beta) \leqslant -\alpha_0/2 + (2p_0+1)\alpha_0/(2\beta_0).$$ But this is equivalent to $$[2(p+q)-1]/\beta \le (2p_0+1)/\beta_0$$ which is the first inequality in (3) if q = 0 and (3) with equality replacing the second inequality if q = 1. Now write $$F(z) - \lambda =$$ $$= A(\lambda) \prod (1 - D_i(\lambda)z) \prod (1 - E_i(\lambda)z) \prod (1 - G_i(\lambda)z) / [\prod (z - \Gamma_i) \prod (z - \Delta_i)]$$ where $|D_i| < 1 = |G_i| < |E_i|$ and $|\Gamma_i| < 1 < |\Delta_i|$. We want to prove that for each (j, m), the operator $L_{j, m}$ defined for polynomials $p(\lambda)$ by $$L_{j,m}p = \int A^{-1} \frac{\prod (z - \Delta_i) \prod (1 - \Gamma_i \overline{z}_m)(1 - \overline{z}_m z)^{-1} p(\tau_j) d\tau_j}{\prod (1 - D_i(\tau_j)z) \prod (1 - G_i(\tau_j)z) \prod (z_m - E_i(\tau_j))}$$ is bounded in L^2 norm. As in [3], it suffices to prove boundedness of the L_{Γ} operator with $\tau(z) = \tau_j(z)$, $\Gamma = \{G_i\}$ and $\rho(e^{it})$ the reciprocal of the $\rho(e^{it})$ chosen above. By Lemma 1.1(e) (i.e. (12)) and (13), we must verify that $$-\alpha_0/2 + [2(P+Q)-1]\alpha_0/(2\beta) \le \alpha_0/2 - (2p_0+1)\alpha_0/(2\beta_0).$$ But note that $D_i(\lambda) = \overline{e}_i(\overline{\lambda})^{-1}$ and $G_i(\lambda) = g_i(\overline{\lambda})$ [2, §5] so that (number of i such that $D_i(\lambda_0) = \overline{z}_0 + p + q = \beta$. Thus we must prove $$\alpha_0/2 - (2p_0 + 1)\alpha_0/(2\beta_0) \ge -\alpha_0/2 + [2(\beta - p) - 1]\alpha_0/(2\beta) =$$ $$= \alpha_0/2 - (2p + 1)\alpha_0/(2\beta),$$ or $$(2p_0 + 1)/\beta_0 \le (2p + 1)/\beta$$ which is the second inequality in (3). The proof of Theorem 2 now follows the lines of that of Theorem 1 [3]. REMARK. If all β_i are odd, we must have $2p_0 + 1 = \beta_0$ in (III') so the middle term in (3) is $\equiv 1$. Inequality (3) follows. ### 4. THE EXAMPLE From now on, we confine ourselves to the case $$F_0(z) = (1 + z^2)^2/z$$. First we will analyze T_F with $F = F_0$, and then with $F = F_0 \circ \varphi$, for a certain rational, orientation preserving homeomorphism φ of T. a. The function F_0 . This function maps T to a "figure 8" as shown in figure 1, with both loops oriented positively. Indeed $v_1 = v_2 = -1$. The only multiple point of F_0 is $\lambda = 0$; there are two preimages, $z_1 = i$ and $z_2 = -i$; F_0 has a zero of order $\beta_1 = \beta_2 = 2$ at both points. Let γ be an arc lying on one of the four branches of F(T) with endpoint at 0, and consider the functions $\{d_i, g_i\}$ satisfying $F_0(\overline{d_i}(\lambda)) = F_0(\overline{g_i}(\lambda)) = \overline{\lambda}$. There are two groupings \mathfrak{G}_1 and \mathfrak{G}_2 corresponding to γ (around the two preimages of $\lambda = 0$). Both contain at most two elements (since F_0 is 4-to-1 and vanishes to order 2 at $z = z_1, z_2$) and one, \mathfrak{G}_1 say, contains g_1 . We claim that they both contain 1 element; i.e. that $|\mathfrak{G}_1| = |\mathfrak{E}_2| = 1$. We prove - i. $|\mathfrak{G}_1| + |\mathfrak{G}_2| \le 2$ - ii. $|\mathfrak{G}_2| \geqslant 1$ Since we already know $|\mathfrak{G}_1| \ge 1$, this will prove the claim. To prove i., note that for every $\lambda \in \ell_1 \cup \ell_2$, $F_0(z) = \lambda$ has at most two solutions in |z| < 1. (Indeed, as t increases from 0 to 2π , $F_0(e^{it})$ travels around $\partial \ell_1 \cup \partial \ell_2$ counter clockwise, exactly once; since F_0 has a pole at 0, the argument principle applies.) Now to see i., just note that if λ moves from γ inside $\ell_1 \cup \ell_2$, $g_1(\lambda)$ becomes a $d_i(\lambda)$ [2, Lemma 1.3]. To prove ii., let $\mathfrak{D} = \{z : |z| < 1 \text{ and } F_0(z) \in \ell_1 \cup \ell_2\}$. A simple computation shows for z imaginary: (14) $F_0(z)$ is imaginary, $F_0(z) \downarrow 0$ as $z \downarrow -i$ and $F_0(z) \uparrow 0$ as $z \uparrow i$. (\uparrow and \downarrow refer to going up or down the imaginary axis.) It follows from (14) that $\pm i$ belong to the closure of \mathfrak{D} and that the following four arcs: the two arcs of $\partial \mathfrak{D}$ and the two arcs of T terminating at i [resp -i] are mapped to the four arcs of $F_0(T)$ terminating at 0. ($\partial \mathfrak{D}$ cannot intersect T in more than isolated points, by [2, Lemma 1.3].) This proves ii. Therefore, for the q_i , p_j and β_i corresponding to \mathfrak{G}_i and the arc γ , we have $$q_1 = 1$$, $p_1 = 0$, $\beta_1 = 2$ $$q_2 = 0$$, $p_2 = 1$, $\beta_2 = 2$. As a result, the inequalities (3) hold and T_{F_0} is similar to $T_{\tau_1} \oplus T_{\tau_2}$, where τ_1 and τ_2 are the Riemann maps from |z| < 1 into ℓ_1 and ℓ_2 . b. The function $F_0 \circ \varphi$. Here $$\varphi(z) = z^2(z + 3i)/(3iz - 1).$$ Since φ is the quotient of two finite Blaschke products φ maps **T** to **T**. Furthermore $\varphi(i) = i$, $\varphi(-i) = -i$ and $\varphi'(z) = 0$ on **T** only for z = -i, where $\varphi(z) + i = 0$ to order 3. Thus φ never backs up (or φ' would vanish at both end points of an arc where φ backs up) and so φ is an orientation preserving homeomorphism of **T**. $F = F_0 \circ \varphi$ maps **T** to $F_0(T)$ and F'(z) = 0 at $z = \pm i$, with F(z) - i = 0 to order $\beta_1 = 2$ and F(z) + i = 0 to order $\beta_2 = 6$. Let γ be an arc of $F_0(\mathbf{T})$ terminating at 0, which is the image under F of an arc of \mathbf{T} terminating at $z_1 = \mathbf{i}$. Since φ maps |z| < 1 inside |z| < 1 and |z| > 1 outside |z| < 1 in a neighborhood of \mathbf{i} , we have $$\beta_1 = 2$$, $q_1 = 1$, $p_1 = 0$ (as in case a.). In a neighborhood of $z_2 = -i$, φ is: 2-to-1 from $$|z| < 1$$ to $|z| < 1$ 1-to-1 from $$|z| < 1$$ to $|z| > 1$ 2-to-1 from $$|z| > 1$$ to $|z| > 1$ 1-to-1 from $$|z| > 1$$ to $|z| < 1$. Therefore γ has, under $F_0 \circ \varphi$, 3 preimages in |z| < 1 and 3 preimages in |z| > 1 terminating at -i, $$\beta_2 = 6$$, $q_2 = 0$, $p_2 = 3$. Finally, we need to note that the preimage of γ under F_0 in |z| < 1 terminating at -i meets T tangentially. This is true since γ meets one of the arcs from (15) $$F_0(\{e^{it} \mid 3\pi/4 - \varepsilon < t < 3\pi/4\}), \quad F_0(\{e^{it} \mid 3\pi/4 < t < 3\pi/4 + \varepsilon\})$$ at angle π and so F_0^{-1} (which looks like $\lambda^{\frac{1}{2}}$ —i near $\lambda=0$) must map γ and the arc from (15) into arcs meeting at angle 0. Therefore one of the three arcs in |z|<1 that $F_0 \circ \varphi$ sends to γ must meet **T** tangentially (and only one since the six preimages of γ meet at equal angles at —i). Now suppose $T_{F_0,\varphi}$ is similar to $T_{\tau_1} \oplus T_{\tau_2}$: $$LT_{F_0,\varphi}=[T_{\tau_1}\oplus T_{\tau_2}]L.$$ As L^* must map eigenvectors of $T^*_{\tau_1} \oplus T^*_{\tau_2}$ to eigenvectors of $T^*_{F_0 \circ \varphi}$, and as the eigenvector k_{λ} for $T^*_{\tau_j}$ with eigenvalue $\bar{\tau}_j(\lambda)$ is the reproducing kernel for the jth component of Lx(j=1,2), we have (16) $$(Lx)(\tau_j(z)) = (Lx, k_{\tilde{\tau}_j(z)}) = (x, L^*k_{\tilde{\tau}_j(z)}) = (x, \rho(z)h_{\tilde{\tau}_j(z)}),$$ where h_{λ} are the eigenvectors of $T_{F_{\alpha} \circ \varphi}$ with $h_{\lambda}(0) = 1$. By (16), $$(Lx)(\lambda) = \rho(\tau_i^{-1}(\lambda)) \left[\sum_i \bar{c}_i(\lambda) x(\bar{d}_i(\lambda)) + \sum_i \bar{\xi}_i(\lambda) x(\bar{g}_i(\lambda)) \right]$$ where $$h_{\lambda}(z) = \sum_{i} c_{i}(1 - d_{i}z)^{-1} + \sum_{i} \zeta_{i}(1 - g_{i}z)^{-1}.$$ L maps H^2 into the Hilbert space of analytic functions in $\ell_1 \cup \ell_2$ with norm $$||x||^2 = \sum_{j=1}^2 \int |x(\tau_j(e^{it}))|^2 |\tau'_j(e^{it})| dt.$$ Similarity implies L is bounded and invertible. By Lemma 2.3(b), using the arc γ above and $\alpha_0 = 1, (\beta, p, q) = (\beta_1, p_1, q_1) = (2, 0, 1)$, this implies $$|\rho(\mathrm{e}^{\mathrm{i}t})| \geqslant c|t|^{-\frac{1}{4}}$$ (where we are assuming γ is an arc of ℓ_1 and $\tau_1(1) = 0$). Now Lemma 2.3(c) implies that the principal term in the grouping around -i must be bounded. By Lemma 2.3(a) this means (17) $$\int_{a+\frac{h}{2} > \arg \overline{d}_1(\overline{\tau}_1(e^{it})) > a-\frac{h}{2}} |\rho_1(e^{it})|^2 dt = O(h).$$ Since $$|\rho_1(e^{it})| = |c_1(\bar{\tau}_j(e^{it}))\tau_j'(e^{it})\rho| \ge c|t|^{-(p_2+q_2-1)\alpha_0/\beta_2-1/4} = c|t|^{-1/3-1/4}$$ $(|\tau'_j(e^{it})|)$ is bounded below by [5, Th.IX.8]), the left side of [17] is bounded below by $$c\int_{a+\frac{h}{2}} |t|^{-7/6} dt \ge c\int_{a-\frac{h}{2}} |t|^{(-7/6)6+5} dt = c\int_{a-\frac{h}{2}} |t|^{-2} dt$$ $$a + \frac{h}{2} \ge \arg \overline{d}_1(\overline{\tau}_1(e^{it})) \ge a - \frac{h}{2}$$ (by the change of variable used with the proof of Lemma 1.1(c)), which cannot be O(h). This contradicts the supposed similarity of $T_{F_0 \circ \varphi}$ and $T_{\tau_1} \oplus T_{\tau_2}$. REMARK. It is not difficult to show, using the methods of Theorem 2, that $T_{F_0,\phi}$ is quasi-similar to $T_{\tau_1} \oplus T_{\tau_2}$. Therefore, the conclusions of Corollaries 1 and 2 of [3] are valid for $T_{F_0,\phi}$. This work was partially supported by NSP Grants. Part of the work was done while the author was visiting the University of Virginia. #### REFERENCES - CARLESON, L., Interpolation by bounded analytic functions and the Corona problem, Ann. of Math., (2) 76(1962), 547-559. - 2. CLARK, D. N., On a similarity theory for rational Toeplitz operators, J. Reine Angew. Math., 320 (1980), 6-31. - 3. CLARK, D. N., On Toeplitz operators with loops, J. Operator Theory, 4 (1980), 37-54. - Somadasa, H., Blaschke products with zero tangential limits, J. London Math. Soc., 41 (1966), 293-303. - 5. TSUII, M., Potential theory in modern function theory, Maruzen Co. Ltd, Tokyo, 1959. - 6. WARSCHAWSKI, S. E., On a theorem of L. Lichtenstein, Pacific J. Math., 5 (1955), 835-839. DOUGLAS N. CLARK Department of Mathematics, University of Georgia, Athens, GA 30602, U.S.A. Received November 13, 1980; revised June 11, 1981.