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WEAKLY CLOSED IDEALS OF NEST ALGEBRAS

J. A. ERDOS and S. C. POWER

INTRODUCTION

Let &/ be a nest algebra of operators on a Hilbert space H. We obtain a
description of all weakly closed (two-sided) ideals of .7 ; more generally, we describe
all weakly closed (two-sided) &/-submodules of #(H}. In the course of the proof,
we identify the finite rank operators of any norm-closed .«&/-submodule of Z(H)
and show that such modules have the same closure in the weak, strong, ultraweak
or ultrastrong topologies. A simple and more direct proof of the main result, for
the special case of the Volterra nest algebra, is sketched at the end of Section 1.

Some of the properties of such ideals and modules are investigated. The predual
of any such weakly closed module is found. For certain cases, the perturbed modules
U + A (where A denotes the compact operators on H) are described in a fashion
analogous to the description of & + 2 in [3]. For any module % of this type, the
commutant C(s7, %) of & modulo % is described thus giving a description of the
first Hochschild cohomology spaces with coefficients in these modules. We find
that C(oZ, %) is of the form 4, @ % where %, is a subalgebra of the core of /.
For the case when % is an algebra, we show that ¥, ® % = AlgLat%. This appears
to be a new example of a reflexive algebra.

Throughout, & will denote a complete nest of projections on a Hilbert space H.
The nest algebra Algé of & is denoted by /. The terminology and notation concern-
ing nest algebras used in this paper are standard and may be found in [7, 2, 6]. All Hil-
bert spaces considered will be complex and the term projection will always mean ortho-
gonal projection. The rank one operator x — {x, ey f will be denoted by e ® f. The
terms module and ideal will be used to mean two-sided module and two-sided ideal.

1. MODULES AND IDEALS

Suppose that E ~> E is an order homomorphism of & into itself (that is, £ < F
implies that £ < F). Then the set
U ={XePH): (I - E)XE=0 for all Ec&}
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is clearly a weakly closed subset of #(H) and is easily seen to be an 2/-module;
for example, if 4 € &, X e % then (I — E)XAE = (I — E)XEAE = 0.

In this section it will be shown that every weakly closed subset of #(H) which
is an &/-module under operator multiplication is of the above form. To this end
we analyse the finite rank operators in %. For each E e &, define the projection E,. by

E.— N{F:F> E}.

Since & is complete, E,, is in & but E, need not be of the form F for any F in &.

LemMmAa 1.1. Let % be as above. Then a non-zero operator of rank 1,
e ® f, is in U if and only if, for some Ec &, E.f =fand (I — E)e = e.

Proof. If R=e ® f is of the given form, then R = E R(I — E) and so, for
Feé&

(I— F)RF = (I — F)E,R(I — E) F.
If FSE, (I—E)F=0 and, if F > E it follows from the definition of E, that
F > E, so that I — F) E, = 0. Thus, for all Fe &,
(I— F)RF=0
showing that Re%.
Conversely, if R=e¢ ® fe¥, let
E=V{Fe&:(I— F)e=e}

Then, if F > E, we have R( — F) # R and so RF = FRF # 0. That is, Fe ® f =
= Fe ® Ff # 0 and therefore Ff=f for all ¥ > E. Thus E.f=f and, since
(I — E) e = e the proof is complete.

If E_ is defined by
E_=V{F:F<E),

the above lemma may be restated as follows:
e ® fis in # if and only if, for some Fe &, Ef=j and (I - E_)e==ec.

Note that % = &, when the homomorphism is the identity. In this case E, = F,
and £_ = E_ so Lemma 1.1 reduces to Lemma 3.3 of [7].
The proof of the lemma below is modelled on the proof of Theorem 1 of [2].

LEMMA 1.2. Let Re¥ have rank n. Then R may be written as the sum
of n elements of U each having rank 1.
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Proof. Suppose R= ¥, x; ® y; belongs to %. Then (I — E)RE=0 for
i=1

all Ee & and so for any xe H
2 <x, Exl> (I—‘ E) yi == O.
=1

Thus, for any Ee &, either Ex;=0for 1 <i<n or {{—E)y,:1<i<n}is
a linearly dependent set (or both). Let

F=V{Eeé& :Ex; =0 for 1 <i<n}.

Then Fx; =0 (1 < i < n) and for all G e & with G > F, Gx; does not vanish for
some i. So, from above, {({ — G) y; : 1 < i < n} is a linearly dependent set. Hence,
for all G > F, the Grammian determinant

detl{d — G)y;, (I— G)y;)] = 0.

By taking the infimum over all G > F, it follows that

detl{(I — F) y;,, U — F) y;)] =0

and so {(I — Fy) y; : 1 < i < n} is linearly dependent.
After re-indexing, if needed, we have that

n

(I— F)y = Y a(l — Fy) y;

i=2

where o; are scalars. Thus

R=x @ [Fuy; + T — F)n] + Y i ®y: =
i=2

=% Q® [F*J’1 + Y ol - F*)J’i]‘}‘ Y xi®yi =
i=2 2

i=2

=x; ® Fy [yl - E “iyl":l + Y (x; + %ixy) @ yie

i=2

From Lemma 1.1, since Fx; = 0, the first term is a rank 1 element of %. An obvious
induction completes the proof.

Suppose now that ¥ is any norm closed subset of #(H) whichis an s/-module.
For each Ee &, let E be the projection onto

A{ranXE : X e v'}.



222 J. A. ERDOS and S. C. FOWER

Since ¥ is a module, Eis mvarlamt under &/ and so, by the reflexivity of complete
nests, Ee 6. Clearly, E E is an order homomorphism. Further, E > E is left
order continuous in the sense that

~

lim E = flim F]™ = F_,

EtF E4F

(recall that F_ = V{Ee & : E < F}). This follows easily since if x _ ranXE for
all £ < Fthen x |_ranXF_. Thus, if Ex = O for all E < Fthen F_x = 0 showing

that lim E > F_. The opposite inequality is trivial.
E1F

LEMMA 1.3. Let ¥ and E — E be as above and let
U= {Xe LH) : (I~ E)XE = 0)}.
Then U and ¥ contain the same set of rank 1 operators.

Proof. Let Re% have rank 1. Then, from Lemma 1.1, R=¢ ® f with
(I—E)e=eand E, f=f for some E ¢ &§. It is easy to see from the proof of Lemma 1.1
that we may choose F such that (/ — F)e # e for all F > E.

Now choose F > E so that, for some given ¢ > 0,

) le — (I — F_)e| < e

(If E # E, then take F= E,). Let G be the projection onto the closure of
{A(F— E)e : Ae o). It follows from the reflexivity of nests that Ge & and, as
(F — E)e # 0 we have that G > E. Since ¥ is a module,

X(F—E)e: Xe?}

is dense in the range of G. Using the definition of E,{, > E,andso,as E.f = f,
it follows that for some X in %7,

@ (X(F—E)e—fl <e.

Now

(I—F)e@®@(F—FE)ee;

this follows from Lemma 3.3 of [7] or from the special case of Lemma 1.1 above
(i.e. the case when % = 7). Therefore

Ry=X[I—F)e®(F—E)e]=
={—F)e®X(F—E)ee?".

It is clear from (1) and (2) that R, may be made arbitrarily close to R and, since ¢~
is norm closed, the Iemma follows.
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COROLLARY 1.4. % and V" contain the same set of operators of finite rank.

Proof. Immediate from Lemma 1.2.

The following theorem is the main result of this section.

THEOREM 1.5. Let ¥~ be an of-submodule of ¥(H) that is closed in any

one of the weak, strong, ultraweak or ultrastrong operator topologies. Then V" is
of the form

{(Xe L(H): (I — E) XE = 0}

for some left order continuous order homomorphism E — E of & into &.

Proof. Let o, be the unit ball of . It is proved in [2] that the finite rank
operators of o/ are strongly dense in &/,. Thus there exists a net (R,) of finite
rank operators of &/, converging strongly to the identity 1. Clearly (R,) converges
to [ also in the weak operator topology. Further, since the strong and weak topolo-
gies coincide on bounded sets with the ultrastrong and ultraweak topologies respec-
tively, it follows that (R,) converges to I in any of the four topologies mentioned.

Now let ¥ be the given module and let £ — E be the left order continuous
homomorphism determined by ¥~ as in the above discussion. Put

U= {XePH):(I— E)XE =0}.

Then, for any Xe%, XR, is a finite rank element of % and so, from Corollary 1.4,
XR, e Since ¥ is closed in one of the four topologies and (R,) — I in that
topology, it follows that X e ¥ and so ¥ = %.

COROLLARY 1.6. A norm closed of-submodule v of (H) has the same
closure 9 in any one of the weak, strong, ultraweak or ultrastrong topologies.
The module % is the closure, in any of these topologies, of the finite rank elements of ¥".

COROLLARY 1.7. Any ideal F of £ that is closed in any one of the weak,
strong, ultraweak or ultrastrong topologies is of the form

J={Xe%H) :(I— E)XE =0}

where E v~ E is a left order continuous order homomorphism of & into & such that
E < E for each E€&.

Proof. This is immediate from the theorem and the fact that # < & if and
only if £ < F for all Eeé.

REMARK. Every order homomorphism of & into & determines a weakly
closed .o/-module. Clearly the correspondence is not bijective since every module
is determined by a left order continuous homomorphism. Even the imposition

3 - 1789
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of left continuity does not produce a bijection as the following example shows:
let & be any continuous nest {i.e. £ = E_ for all Ee &) and define E = I for all
Ec&. Define E by 0 =0and E=Ifor Ee &N\{0}. It is easy to see that both homo-
morphisms are left continuous and both determine the =/-module Q(H) However
all one can show for the general case is that, if E = E and Evr> E determine the
same module % and are both left continuous then £ = F for all Fin & such that
F= F # 0. To see this, note than % contains every operator of the form

——(E E) X(I— E) for every Ee &. Thus (I — F)SF 0 for all Fe & and so
it follows that F E whenever F > E. Therefore, if 0 # F= F_

~

F—1limE < F
EtF

andso F = F by symmetry. It follows that for continuous nests there is a bijection
between weakly closed modules and left continuous homomorphisms satisfying

0=o.
In the sequel we shall always assume that the weakly closed module % is
given by the homomorphism E — E such that E is the projection onto

V {ranXE : X e %}.

Then E > E is left continuous and 0 = 0.
We now examine when the module is an algebra and determine the algebra

generated by any module.

LEMMA 1.8. The module determined by the homomorphism E — E is an algebra
if andonly if E < Efor all E€ &.

Proof. For any X, Ye 4,
XYE = XEYE - EXEYE = EXYE.
Thus, if the given condition is satisfied,
(I— EYXYE=0
and so XY e%. Sinc~e 9 is always a linear space, this shows that % is an algebra.

Conversely, if £ > E for some E € &, then, since the map is order preserving,
E > E. Since E is the projection onto V {ranXE : X € %} there exists X € % such that

(E— E)XE # 0.
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Hence, for some x € H, (E — E)XEx =y # 0 and (I — E)y = y. Similarly, since
E > E, there exists Y e and z e H such that (£ — E)YEz # 0 and Ez = z. Then

y®z=Ey®z)(I—E)e%
and also

(I — E)Y(y ® 2)XE # 0.

Hence Y(y ® z) X ¢ %. Thus, if E > E then % is not an algebra. This completes
the proof.

Note that thg condition £ < Eforall Ee & may be restated as: for all Ee &
either £ < E or E = E.

COROLLARY 1.9. If the module % determined by the homomorphism E > E
is an algebra then U is an ideal of the nest algebra AIgF where F = {Feé :

E < E}
Proof. Clearly % < Alg#. We must show that if Xe #(H) is such that

XE = EXE for Ec # then Xe¥. Let Ec6\%. Then E> E. Now E = Ee F
and so

(I — E) XE = (I — E)XE = 0.
Therefore, since EE = E,

(I — E)XE=0
and Xe.

In the following lemma the symbol E® denotes the result of applying the
homomorphism ~ to E, n times.

LemMMA 1.10. Let % be the module determined by the homomorphism E > E.

Then the weakly closed algebra generated by U is the module determined by E — E
where

ﬁz{E ﬁgsE

V{E®™ :n >0} if E>E.

Proof. Let %" be the module corresponding to the homomorphism £+ E.
Then, if E~A< E we have £ < Eandif E > E we have £ = Eand so by the defini-
tionof *, E = E=E. Thus, from Lemma 1.8, %" is an algebra and clearly % 2> %.

Now the weakly closed algebra %", generated by % is clearly a weakly closed
&f-submodule of ¥ (H). Thus ¥, = # . Suppose ¥, is determined by the homo-
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morphism E E. Clearly, since ¥, 2 %, E>E for any Ec&. Thus E > E.
Also, since Y is an order homomorphism,

v
v

E>E>E

But, since ¥, is an algebra, Lemma 1.8 shows that £ = E and so, repeating the
above argument

E 2 E‘(n)

for each n. Therefore E > £ and so # 12 .

THE VOLTERRA NEST. For the special case of the Volterra nest & =
= {E, : 0 < 7z < 1} where E, is the projection onto L?[0, ¢] (considered as a subspace
of H = L?0, 1]), a simple proof of Theorem 1.5 can be given. This proof is inde-
pendent of the description of the finite rank operators and does not use the results
of [2].

We give a very brief outline of this proof. Given any module %, it determines
a homomorphism E, — E, as above. Now, if % is weakly closed then ES(H) (I —
— FE,) < %; this is a routine argument using the definition of the homomorphism ~.
Now define T, € Alg & by

f(!-’r l) t+~}-< 1
n

(T.NH@) =
0 t+- -> 1.

Then ||T,|| <1 and T, — I strongly as n — co. If X satisfies (/ — E) XE, =0
for all E,e &, a calculation shows that
n—1 _
XT, =% E:XT,(Eiyi— Ei)
i=1 " “n n

and so X7, e%. Thus taking strong limits shows that X e . The same argument
works for the other topologies.

2. COMPACT PERTURBATIONS AND PREDUALS

In many respects the weakly closed modules discussed in Section 1 have pro-
perties similar to those of nest algebras. For example, if 4 is the 2/-module deter-
mined by the homomorphism E > E (which, according to our standing assumption,
is left continuous and satisfies 0 = 0) then the distance formula

dist(X, %) -= sup {|({ — E)XE|
Ec¢g
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follows from the generalization given in [5]. One can make use of this to obtain
analogues of the results in [3] on compact perturbation of nest algebras. In the
sequel, " denotes the set of all compact operators on H.

DEFINITION. Let % be the weakly closed module determined by the homo-
morphism E — E (& —» &). Define Q% to be the set of all 4 in #(H) such that

() I — E)AEexX

(ii) the map E — (I — E) AE is continuous from & with the strong topology
to #(H) with the norm topology.

Note that the topology induced on & by the strong operator topology coincides
with the order topology on & (that is the topology generated by the sub-base
{Ee€é :E > E}, {E€ &, E < E,} with E, ranging over &).

THEOREM 2.1. If the homomorphism E > E is continuous as a map from

(&, strong topology) to itself and determines the module U then
QU = U + KA.

Proof. Since the proof is along the same lines as the proof of Theorem 2.3]
of [3], full details will not be given here.

The fact that % + A is closed follows from Corollary 1 of Theorem 1.1 of [3
and Corollary 1.6 above. Now if X e Q%, since E — E is continuous, it follows
as in Proposition 2.2 of [3] that {(I — E) XE : E€ &} is a normcompact set of
operators. The argument given in the proof of Theorem 2.3 of [3] together with
the generalized distance formula shows that Xe% + . Thus Q% < % -+ A.

To prove the opposite inclusion, if X e % -+ ', condition (i) is clearly satisfied.
Also, since (I———E) AE =0 for all Ae%, it is clearly enough to show that

Er(I— E)KE is continuous (strong — norm) for any compact operator K. Now
if K= e ® fis any operator of rank 1 an easy calculation yields

I(I— EYXE — (I — F)KF|| < {|(E = FYell-Ifll +|(E — F) f]-lle]
showing the required continuity in this case. Now taking finite linear combinations
and then norm limits of these verifies condition (ii) in all cases.

COROLLARY 2.2. If the map E — Eis surjective then
QU = U + A .
{’roof. It follows easily from considering the order topology that in this case

E — E is continuous.

COROLLARY 2.3. If, for each Ee &\{I}, E # E, then for any weakly closed
A -submeodule U of ¥(H),

QU =% + X
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Proof. Since, in general, the module % is determined by a left continucus
homomorphism in this case the homomorphism must be continuous.

It is of interest to point out that the condition of Corollary 2.3 is satisfied
when each element of §\\{/} has finite rank. It is such nests that are connected with
quasitriangular operators in the “classical” case (see [6], Chapter 5).

A description of the predual of a nest algebra appears in [3] (Proposition A).
An analogous description of the predual of the module % appears below. A proof
could be given along the lines of the proof in [3]. However, the proof below using
the results of Section ! is shorter. Note that it includes Proposition A of [3] and
the proof for this case uses only the results of [2].

We use the following standard notation. The Banach space #(H),, consists
of all ultraweakly continuous linear functionals p on Z(H)and is identiﬁf:d with the

space ZLY(H) of trace class operators X (with norm || X}, = tr[(X*X )], via the
formula

p(T) = tr(XT), T e L(H).

T~HEOREM 24. Let U be the module determined by the homomorphism
Ev E and let

W ={XePH):({— E)XE, =0 for all E€&}.
Then p e L(H)y annihilates % if and only if p is of the form

p(T) = tr(XT)
where X is a trace class operator in W .

Proof. Recall that E, = A{i’ : F > E}. Thus, for any Y e #(H), and any
Ee &, we have that E,Y(/ — E)e%. Hence if p e Z(H), is identified with the
trace class operator X and p annihilates %, then for any Y e Z(H)

tr{(I — E)XE.Y] = tt{XE,Y(I — E)] =0

and thus (I — E) XE, = 0.
Conversely, if X e ¥ is trace class, let ¢ ® f be any rank 1 element of #.
Then, for some Fed, (I — F)e =e and F,f = f Therefore,

e@f=Fle®f) ([ — F)
and so

t[X(e ® /) = trlXFu(e @ N — F)] =

= t{(l — F)XFy(e ® /)] =0
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since X' e ¥ . Since the map 4 ~ tr(XA4) is linear and ultraweakly continuous, it
follows from Lemma 1.2 and Corollary 1.6 that, for all 4 e %,

tr(X4) = 0.
This completes the proof.

COROLLARY 2.5. (i) % is isomorphic to the dual space of L*(H) LW H)nW .
(i) LYH)/ LN H)n W is isomorphic to the dual space of U 0 K .

Proof. (i) This is an immediate consequence of Theorem 2.4 and elementary
duality.

(ii) Since Z'(H)is the dual space of £ (under the standard duality) it follows
that the dual of # n 4 is isomorphic to ¥Y(H)/# where & is the annihilator of
U N K in PYH). However, by Corollary 1.6 and the ultraweak continuity of func-
tionals in #*(H), this annihilator is equal to the annihilator of %, which is #*(H) n #".

3. COMMUTANTS RELATIVE TO WEAKLY CLOSED MODULES

Let % be the &/-module determined by the homomorphism E — E. (Recall
that, by assumption the homomorphism is left continuous and 0 = 0.) In this section
we shall give a description of the commutant of o/ modulo%; that is the set C(</, %)
defined by

C(A,U)={Xe L(H): XA — AX e for all Ae}.
The results determine the first Hochschild cohomology spaces with coefficients
in 4. We enlarge on this point at the end of the section.

Lemma 3.1. Let X e C(Z,%). Then
(i) if E > E,

(I — E)XE = 0,
(i) if E < E,
(I — EYXE = A, (E — E)
for some constant Ay, .
Gii)) if F> E> F » E,
Ap =2
where Lg, Ap are as in (ii).

Proof. For any E€ &, since Ee & and X e C(o/, %)

XE — EXe%.
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Thus
(I — E)(XE — EX)E=0.
IfE> E~, this reduces to (I — E)XE = 0 and proves (i).
If E < E, we have
(I — E)XE = (E — E)XE.
Now also I — Ee  so

(I — E)[X(I — E)— (I — E)X]E = 0.
Therefore
(I — E)X(E — E)y=(I — E)XE = (E — E)XE
and hence
(I — EYXE = (E — E)X(E — E).
Now for any A e o,
(I —-E)[X4 — AX]E=0

and since E and E are invariant projections of &,
(I — E)XE[(E — E)A(E — E)] — [(E — E)A(E — E)] (I — E)XE.

This means that (I — E)XE = (E — E)X(E — E) commutes with the compression
of &/ to the range of E — E. Since this compression in a nest algebra and the com-
mutant of any nest algebra is trivial, it follows that

(I — E)XE = A(E — E)

for some constant A, proving (ii). For (iii) multiply the above on either side by
E — F to give

(E — FYX(E — F) = 1,(E — F).
The same process on the result (ii) for F yields

(E — F)X(E — F)= Ag(E — F)
and (iii) follows.

Our aim is to show that C(/, %) is the direct sum of % and a certain subalgebra
%, of the core ¥. The nature of ¥, depends on the way Ay of Lemma 3.1 (ii) varies
with E. Part (iii) of Lemma 3.1 shows that Az has a constant value on [E;, £,]



WEAKLY CLOSED IDEALS OF NEST ALGEBRAS 23t

if the intervals (E‘l, E)) and (E,, E,) overlap (by convention, (F, G) = @ when
F 2 G). It follows easily that A is constant on each maximal connected component
of U {(E~, E) : Ee &}. However, it is possible to link points in different components.
by intervals of the form (E,, E,) and (Ez, E,). It is crucial that this link be overlapping
as the following contrasting cases indicate.

EXAMPLE. Let & be a finite nest {0 = Ey, E\, E,, ..., E,_y, E, = I}.

1. The map E; — Ei = E;_, determines an ideal % of strictly upper triangular
block matrices. For this case one can verify that the full core ¥ lies in C(s, %).
(Thus A can vary.)

2. The map E, - E, = E,_, determines an ideal % for which C(H,UNE =
= CI. (Thus A is constant.)

The above discussion motivates our next definition.

DerFNITION. The element F of & is ~ -connected to E (notation E = F or
F & E) if E< F and there exists a finite chain F=E, > E, > ... > E, with
E, <E ,,0<i<n—1)and E, < E.

Let §,={Eeé : E < E}. Clearly &,= U {(1::, E]:Ee &}, (where the
notation (E, E] is for order intervals on &). It is easy to verify that & is reflexive
and transitive on &, and that no element of the complement of &, is related to any
element (either by = or by ). For each F e &, we define the ~ -component y(E)
of E by

WE)={Fe&:FZ E}U{Feé :FS E}.

Clearly, &, is a disjoint union of ~ -components and it is easy to see that ~ -com-
ponents are intervals.

Note that if E= FE_ and E Z F, it follows that F ¥ G for some G < E;
(any G with E,, < G < E will serve — where E‘,, is as in the definition of ).
Thus for any ~ -component y, if P = infy and Pey then P # P_. Thus y may
be written either in the form (£, F] or (£, F) where E may be P or P_. Hence
we may write

Eo=\U"Yo
w€Q
where Q is some index set and {y,, : w € Q} are pairwise disjoint left open intervals
with end points E,, and F, (E, < F,). Let ¢, be the weakly closed algebra generated
by the projections {F,, — E,, : w € Q}. Then %, is a subalgebra of the core ¥ of &/
(where @ = &'').

In the case of a continuous nest (i.e., E == E_ for all E e &) the sets (E,,F,)
are precisely the maximal connected components of U {(E~, E) : Ee &}. The above
definition is required in order to deal with nests having an “atomic’ part for which
topological connectedness is not the concept appropriate to this situation.
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TaEorEM 3.2.
CL,U)=C, %

where the swin is a divect sum of vector spaces.

Proof. Suppose X e %, If E > E then (I — E) XE = 0. If E < E then (E, E]
is contained in a single ~ -component of &, and so, for some constant 4,

(I — E)XE = ME — E).
Thus, if 4 e, for all cases
(I — E)[XA — AX1E = (I — E)XEAE — (I — E)A(I — E)XE == 0.

This shows that X'e C(«/,%) and so the inclusion ¢, + % < C(«, %) foliows.
Now suppose X e C(o#,%). Then it follows from Lemma 3.1. that if 7y, is
any "-component of §, and E ¢ y,,, we have

(E — E)X(E — E)= J (E — E),

~

where , is a constant depending only on the ~ -component y,. Define X, by

Xﬁ?l = Z}'w(Fm - Em)'

Since |4, <|[ X, the series converges in the sirong operator topology and X, e % ,.
If E€é and E < E then E is in some component 7, of &, and £ > E,.
Thus

(I—E)(X — X)E=J}E—E)— 2,(E— E)=0.

Also, if £ > E then - 1;:) X,E = 0 and also, from Lemma 3.1, (I — E) XE=0.
Thus in all cases
([—E)y (X —X,)E=0

and X — X, €. Therefore Xe %, + .
To prove that the sum is direct, if T e ¢, then for each we @,

T(Fm - Ew) == Aw(lrw - Ew)
If also T e, choose £€v,. Then £, < E < £, and
0= (! — EYTE = j (E — E).

Thus 4, = 0 for each @ ¢ @ and therefore 7 = 0.

Remark. The first Hochschild cohomology space HY,.Z/) of &/ with
coefficients in the module .# is defined to be the difference space Z1(, 4){BY L, #)
where ZXf, .#) is the space of continuous derivations of ./ into.# and BY<, . %)
is the space of all derivations of the form ¢ — am — ma where m e. /.
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It is a fact that every continuous derivation of a nest algebra &/ into Z(H)
is spatial; that is, it is of the form A — XA — AX for some X ¢ ¥(H). In other
words H'(«f, L(H))=(0). This fact was first proved by Christensen [1]. (Note that [!]
also contains a proof of the fact that every derivation is continuous.) The proof
in {1] that AY«, L(H)) = (0) comes fom combining two results:

() H (A, &) = HY(Z, #) for any uliraweakiy closed subalgebra of Z(H)
containing o/ and

(i) H\(, o) = (0).

Recently, Lance [4] has given a simple proof that for every positive integer

n, H(, #(H)) = (0). For the reader’s convenience we give a version of this proof
for the case n = 1.

Suppose D:of — Z(H) is a continuous derivation. For each Eeé with
E_ # I, choose a unit vector ¢ in the range of 7/ — E_. Define Xy by Xgp =20
if En =0 and Xz = D ® n) & if En =n (note that { ® ne & by Lemma 3.3
of [7]). Then if 4 e o and En = 3,

XgAn = DA @ )¢ =
=ADE @M+ DAY (E@ L =
= AXgn + D(A)n.

Thus D(A) E = XyA — AX,;. Since || X || < || D]}, the family {X: E_ # I} forms
a bounded net as E increases in the set & == {E : E_ # I}. Since supE =1, it
EEF
follows easily that if X is the limit of a weakly convergent subnet,
D(A) = X4 — AX Aed.

Using this result and the fact that the commutant of any nest algebra is trivial

it follows from Thecrem 3.2 that for any (ultra)-weakly closed module %,
HY A, U) = C(A,U)|CI+ U = Ca/Cl,,

where 7, is the €, component of I
In the case when % 2 o we have that &, = @ and ¢, = (0). Thus we recover
Christensen’s result (actually a slight extension since % need not be an algebra) that

H\(oA, %) = (0).

4. THE INVARIANT LATTICE OF A MODULE

Let ¥ be any «Z/-submodule of #{H). Clearly the norm closure of ¥ and
the weak closure of ¥ have the same invariant subspaces as does ¥". Now, for
each Eec &, let E be the projection onto

V{ranXE : X e 7}.
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The results of Section 1 show that the weak closure of ¥~ is the module determined
by the homomorphism E +— E. Thus, for invariant lattices, we need only consider
weakly closed modules.

THEOREM 4.1. Let % be the module determined by the homomorphism E E.
Then P is an invariant projection for U if and only if, for some Ee &.

E<P<E

9

Proof. If E < P < E for some Ec & and X €% then, since XE = EXE we
have that XP = XEP = EXEP = PEXEP = PXP. Thus P is an invariant pro-
jection for %.

For the converse, suppose P € Lat% and define E by

E=V{F:F<P}.

The left continuity of E + E shows that E<P. Suppose that P & E. Then there

exists f in the range of P such that (I — E)f # 0. Now, there exists Fe & with

F>E(@d (U —F.)f#0 (fE=E_,lim(I— F)f#0 and F>E= F_ > E;
FlE

if E # E, take F = E,). Now, for any X ¢ Z(H), I:’X(I—— F_)Ye% and V{I?’X(I-—
— F_.)f:Xe $(H)} =ranF. Thus F < P which (since F > E) contradicts the
definition of E. Thus P < E and the theorem is proved.

COROLLARY 4.2. The von Neumann algebra generated by ¥ is equal to £ (H)
if and only if

I> V{E:E=0}.

Proof. Let w *() denote the generated von Neumann algebra. Since %
(non-zero) contains finite rank operators, it suffices, by a well known theorem (see [6]
Theorem 8.12) to show that # *(#%) is a transitive algebra; or equivalently that
Lat% n Lat%* = {(0), I}. Suppose then, that G is a projection in this intersection.
By Theorem 4.1, it follows that for some Ee &,G = E+ G, with G, < E — E and
also that, for some Fe &, G= (U~ F)+ G, with G, £ F — F. In particular,
I — F < E which implies that F=171 or E=1. But, if F=1 then G<I—1T
which, being non-trivial, is not in Lat%. Hence E = I. Also, since E<I— I:“, it
follows that F = 0 or E = 0. Butif £ = Othen E < Iand G < E which is impossible
for G e Lat%*. Hence F = 0. Thus, G e Lat¥w @) if and only if

G=(—F)+ G, =1+ G,

where F e & is such that F = 0, G, < Fand G, < ({ — i). 1t follows that all such
projections G are trivial if and only if I > Fwhenever F = 0. This completes the proof.

The theorem below enables us to describe a new class of reflexive algebras.
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IHEOREM 4.3, Let % be the module determined by the homomorphism
E > E. Then
Alglat¥ =%, + W

where €, is the weakly closed algebra generated by {F, — E, :w e Q} where F,
and E, are the end points of the ~ -components of & and W is the weakly closed
algebra generated by U.

Proof. Clearly Alglat# = AlgLat#". Also, since %, depends only on the
elements E of & such that £ < E, reference to Lemma 1.10 shows that Co = Cy
Thus we need only consider the case when #” == % is an algebra.

That Alglat#” =2 %, + # is obvious. Let T e AlgLat¥#". Then Theorem 4.1
shows that for all Ee & with £ < Eand any G < E — E, E ® G is invariant for T.
Thus (F — I:~“) T(E — E) leaves every subprojection of E — E invariant. This shows
that

(E — E)T(E — E) = A(E — E)

for some scalar ;. If £ and F are in the same ~ -component it follows as in
Lemma 3.1 that A; = A. The proof is now completed as in Theorem 3.2.

COROLLARY 4.4. If E ~> E determines an algebra W (that is, if E < E) then

G, ®W =C(A, W)

is a reflexive algebra.
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