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SOME INVARIANTS FOR SEMI-FREDHOLM SYSTEMS
OF ESSENTIALLY COMMUTING OPERATORS

MIHAI PUTINAR

The aim of this paper is to give a sequence of integers associated in a natural
way to a matrix (77;;) of essentially commuting operators on a Banach space, which
is semi-Fredholm and satisfies some condition (e.g. there is a right or left essential
inverse matrix (S;;), such that all the commutators [S;;, S;,1.[S;;, T,,] are compact).
These numbers are invariant for compact or small norm perturbations of the 7;'s
and we will study their properties.

The invariants will be computed as indices of some Fredholm complexes
associated with the matrix 4 = (T;). A Fredholm complex is an extension of the
notion of complex of Banach spaces with finite dimensional cohomology and the
index is a generalization of the Euler characteristic of such a complex. To do the
construction of complexes we isolate the properties of . in a universal framework:

Consider the polynomial ring A = C[X,;] with mn generators, 1 < i < m,
I <j < n, and consider also the map given by the matrix X = (X,)):

X A" - A",

Tt turns out that the kernel of X has a finite, free, minimal resolution. This resolution
specializes in our concrete situation to a Fredholm complex. The same procedure
applied to some operators obtained from 4 by twisting with symmetric powers will
give an entire sequence of Fredholm compiexes associated with 9 whose indices
will be denoted by ind, 7, pe Z.

The first section contains the algebraic preliminaries, namely the construction
of the complexes and of certain homotopies. These complexes are obtained by mixing
Koszul complexes corresponding to each line in the m X n-matrix with the symmetric
algebra with m generators, in a manner which reminds Spencer complexes [16].
Let us remark that one of these complexes appears in [4], related to some problems
in algebraic dimension theory.
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In § 2 we use a notion of essential Fredholm complex of Banach spaces which
is a particular case of the notion of Fredholm complex of vector bundles of G.
Segal [14]. For a natural definition of the numerical index of such a complex, we
obtain stability results. This invariant and its properties agree in particular cases
with the indices of [2], [S] or [17].

The third section contains the definition of the indices associated to a semi-
-Fredholm system of essentially commuting operators, the stability theorem for
the invariants and some of their properties. The theory for systems with one line is
better understood 2], [5], [17] and we add some results.

In § 4 the problem of independence of ind,Z for a right invertible matrix in
an essentially commutative algebra is considered, using K-theory. An universal
construction over the Stiefel manifold V,, ,_, of m-frames in C"is made and the
main result of this section is that the elements corresponding in K}V, ,..,,) to the
complexes used to compute the indices, generate the ring K*(V,, ,_,). Moreover,
the relations between these generators are found, which turns out to be useful for
proving other properties of the indices. For example, all the sequence (ind, 7 ),ez
is determined by every m-consecutive part of it, or by indy7, indy(J minus a row),
indg(" minus two rows),... . This part is relatively independent from the rest of
the paper and may be of independent interest.

The last part contains applications to elliptic (on the right or on the left)
systems of pseudodifferential operators on a compact manifold. Also systems with
right or left invertible symbol of Toeplitz operators are illuminating examples for
our constructions.

1. ALGEBRAIC PRELIMINARIES

Let 4 be a corﬁmutative, unital, C-algebra and a = (a,, ..., a,) a n-tuple of
elements of A. The Koszul complex K (a) associated to a can be defined as follows:
K, (a) = A?[Y, 4], pel

(L.1) d,: K, (a) » K,_,(a)

A ) -
5 A oAY)=Y (=1 A LAY, AL AY
¢l,(aY,l A ,p) /gn D a,jaY,1 A A ; A A i

where we make the convention I < i} < ... < i, < n
If there are elements by, ..., b, A such that a;b, + ... 4+ a,b, =1, then
the maps
e K@) - K,41(a), pel
(1.2)

gflaY, n ... AY, "baY/\Y. A ... NY
(a¥, l"’)=k§1 waton Y, :

give a trivial homotopy for K (a).
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We have denoted by A'[Y, A] the exterior algebra with » generators Y,, ..., Y,
and with coefficients in A.
There is a dual notion, that of cochains Koszul complex:

KP(a) = AP[Y, A}, 67: KP(a) » K"*(a),

o*aY, ~ ... NY )= i aa¥, N Y, A .. AY, .
t =3 1 »

If the ideal generated by q,, ..., a, coincides with A, then there exists a trivial
homotopy for K*(a), similar with (1.1).

Let now K, be m complexes, | < i < m, of A-modules, which differ only by
their boundary operators @;, ==: 0, . We shall suppose

1.3) 0,0, + 80, =0, 1<i,j<m

the compositions being made in all possible combinations.

Let S° be the symmetric algebra with m independent generators X, ..., X,,,
with coefficients in 4. We shall identify S? with the set of homogenous polynomials
of degree p.

We shall define the complex K, = K(K,, ..., K,):

17" "m

14 ... 2K@S8DKE, S K @ 82K, @85 ...

where the tensor products are on 4 and the operators D, D' work as follows:

‘ oy o; p a; qi—l ]
1.5 Dxx'.. X "=VoxX*...Xx7 .. . X'°,
(1.5) ( L ’n) ,;1 Y i 'p
xekK,, 1 i <...<i,<m 73 + ... +oc,-p=h and all oz,-j>0;
@ o m @, a,.
.5y D(X,* ... X, = aaXX,* ... X",
1 P k=1 i P
where xe K_p_pn, 1 < iy < ... <iy < m, “i1+ —{-oz,-p:/z, &, > 0.

It is easy to prove that K| is a complex.

PROPOSITION 1.1. Assume, with the above notations, that there are the homo-
topy operators e, on the complexes K, respectively, with the following properties:

e0;+0ie;=1, 1<i<m,
(1.6) eiaj + 0jei = 0, 1 < l,] < m, I#_],

eiej—{-ejei:O, lgl,]Sm.
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Then the complex K, is homotopy-trivial.
Proof. Let us define the maps, also of degree +-1:

€, =ee0y ...6,0,, €y==ee,5...8,0n, ..., €,==¢€,
-t
el":-elagez...amem, 92263(‘363... (A'mem, seey ,In--

With this one we shall define the homotopy operators for K :

D By Oy b .
o SRK D@ Ky ST @K, e S ® Ky

A SRS @K K, S @K, ...

- 7} «. o,
(.7 EGX," ... X,y =¥ 3xX. . X, "X,
1 1 ‘p

L4 k3i,
the conventions for the indices being those in (1.5),
(L7 EGX, " X% = & xXt . X",
1 P P i

the indices being like in (1.5)’, except the case x e K_,.
First we verify the homotopy relations on the terms $°® K, and S°® K. ,;:

”n
(e, ... €0, ... 8, + DE)x = e;Cye,Cy ... €,0,x + D (2 exX; ) =z
K=1

Co e €0, - 0100040, ... e,0,% +

= €,0,800; ... €,Cpx + Y, G160, X == €06,
%
o X w00y A Gre)ely oL e iy L

A
b amemx = (emen: K ('mgm)x ==Xy

8y ... 008, ... 0 - E'D)x==0e.80e, ... 0 ,X +

k=1
A PN A
= (C,0; -+ €;01)Coy ... Cppx + ... + e, 0 x =

m
+ E’( ¥y akxXk) = ;6,005 ... Cpiyx + ... + e,0,x ==

= (04ey + €;05)04€5 ... OpepX + ... T €0, x = ... = (0,8, + €,.0,.)x =x.
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For the terms on the left of S°® K, one verifies the homotopy relations as
follows:

EDGX .. X = B[ oxXt . x0T X )=
E e K P) = Z i iy e X s Xl )=

J=1

p--1 ; a; —1 ®; LD ;
-l = -~ v Y -~ - 1
(]8) uj;_'l k%"i eka,-jXX,'11 S X,'jj N Xiprk -+ eipdip.XXil I Xi p+
- P
o % i
-+ Z e,‘afpxX,-ll e X,'prk.

k>i
14

. o4; o +1 .
The term ) 1i),'pxX,. '... X, P7t | if it appears, does not change the sum, because
" 1 r—-1

i
& 0 0.
p1p

o o, o, a
(1.8) DE(xX," ... X% = D( Y Xt X,.i"Xk) =
1 p k57 1 P
p
p 1ﬁ - uil a’j—l o; . a o a; -1
=== 2 UijekxXil 'Xi. X’ pXk+ }_JcipekXXil"‘Xip Xk+
k>ip J=1 J P k=i 1 P
| > qil X
-+ ZakekxX‘. L XT
k>i ! b
14
From (1.3) and (1.6),
0;€, Ekaj = 0;€,€;1+10k+1 - - - €mOm '+ €0, 410,41 - .. €0y =0
for 1 € j<k <m, and-
€0, + Y dé. =1, 1<j<m
k>»i
Indeed
Z’Jaj + Z akek == ejajej+15j+1 AP emam "]"
k»Jj
+ (7jejej+1(7j+1 o emam —”' aj+1ej+1€j+2(}j+2 N emam + FEEEN + a,,,e,,, ==
25 (05051 0je)€ 41041 o v €O F oo - Ol = ... = 0+ Oy =1L

Finally by adding (1.8) to (1.8)' one obtains ED +- DE = I.
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On the right of $° ® K_,, one computes in the same way:

ED(xX,*...X,'") = £ ( Y AKX X4
1 p k(ip 1 IP

o, @, =1
iy py i
(19) -+ kxX A,IPX,\ == S e (AYXI\X L. X P e
">' 4 B 'p
B
, ~t %, ®;
+ z e‘/‘(‘,‘.\‘X,. Xl. L
k>i 1 P
14
, e; % St B @ ~1
DEX'... X, )=DE& xX.*...X,? )=
11 1 p 1 I
Il 1 4
, o ot iy a’p—l R *i, i
(1.9 = Y 08 xX.X, ... X O e XXX P
k<i, 4 1 p pp 1 I3
, e % i
4 Z Cl; xX‘ X ?X,.
!
kK>i 4 1

The last term of (1.9)"is zero because (’k?,{p =),
Remarking that 6,€} -+ €/¢, =: 0 for k < j and that &;&] -+ ¥, 27 +: 1
k>J
1 £ j € m, the equality £'D" + D'E’ =: I holds.

Let «/ be a mxn matrix (a;;) with the elements in a commutative algebra 4.
We shall denote by a; = (@, ..., a;,) the rows of #andby o = (@, ..., a,)
the columns of .27. We shall apply the above proposition to the Koszul complexes
K, = K (a)) or to K/ == K'(a’). If we denote by ¢; and & the corresponding boundary
operators, the relations (1.3) hold.

We shall denote by C,(p) the translations of a complex C : Cy(p) ==+ Cpug,s
0g(p) = Cprq P, g € L.

COROLLARY 1.2. If the matrix A is left or right invertible, then the complexes
K(K¥p), ..., K"(P)®R M, respectively K (Ky(p), ..., K.(p) ® M are exuct, for
each p e Z and each A-module M

Proof. Let # = (b;)) be a left inverse for 7. Then m = n and if one denotes
by b; the rows of #:

bjaj == E bj,-a,-j == ]]., 1 </ < n,
i

(1.10)
b.a* ba,po 1 <jk<nj#k
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Then one defines with the elements of 4, in analogy with (1.1), the operators of
degree —1, ¢, : K/ = K/,

14 A
ek(xY,-l/\ oA Y,-p)= Z‘ (—1)"bk;thi1A LN Y A LA Yip,

h
h=1

and the rclations (1.6) follow from (1.10).

For a right invertible matrix the procedure is dual.

By Proposition (1.1) the complexes K (KYp), ..., K"(p)), respectively K (K (p),
..., K,(p)) are homotopy-trivial, which is enough for the proof of the corollary.

2. ESSENTIAL FREDHOLM COMPLEXES

There are many directions to extend the theory of Fredholm operators to
complexes of operators, for example the Hilbert space context [2] where there exists
a good notion of Fredholm complex with nice stability properties, or the Banach
space context and unbounded operators on them [17], where there are still open
problems. We shall relate these ways by a notion of essential Fredholm complex
of Banach spaces and associate an index with good stability properties.

We denote by X, Y, ...; d,¢, ... Banach spaces and bounded linear operators
on them, Z(X, Y) the set of linear bounded operators between X and Y and by
A'(X, Y) the set of compact operators.

DeriNtTiON 2.1. An essential complex of Banach spaces is a sequence of Banach
spaces X? and opcrators 6¢:

8 & on--1
0- X' S X1— ... X"1_L, X" 0

such that 6767~1 is a compact operator for every p e Z.

We shall use only finite complexes, i.e. X7 == 0 for p < 0 or for large p.
The Fredholm property for such an essential complex will mean the exactness
modulo compacts:

DEFINITION 2.2. An essential complex X* is Fredholm if for any Banach
space Y, the complex

LY, XA (Y, X)
is exact.

This is equivalent with the existence of a homotopy between the identity of
the complex and the zero map, modulo compacts:
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PropostTION 2.3. An essential complex X° is Fredholm if and only if there
exist operators e?: X7 — X?=1 such that:

(2.1) 0P~ - gp+15P = | + compact, pel.

Moreover if ¢; and & satisfy (2.1), then they are homotopic in the class of essentially
trivial homotopies.

This characterization of Fredholm complexes agrees with a particular case of
the definition of Fredholm complexes of vector bundles given by G. Scgal [14].

Proof: The sufficiency is clear because for each Banach space Y, the complex
LY, X")/H (Y, X*) is homotopy-trivial.

To prove the necessity, we shall construct by decreasing induction on p the
operators &”. The first step is clear because the complex is finite. Suppose that there
exists ¢ for ¢ = p -- 1. Then the complex

L 4

LX0, XP-N)H(XP, Xr=1) == L(X?, XO)H (X, X7)

= L(XP, XPHY)A(XP, XPHY)

is exact, so that if we choosc the class of I .- ¢7+152 in the middle tcrm, there is
e e L(XP, XP~1) such that
I — gP+15? == §P~1gpP . compact,

Indeed,
(I - gP+15P) = §P -~ OPeP 16 =

= §7 -— (I — gP+237+1)5? - compact = compact.
Suppose that we have two essential trivial homotopies ] and & of X°. Then

for each 2 ¢ [0, 1], Ag; + (1 — A)g; is still an essential trivial homotopy, which proves
the last affirmation of the proposition.

Let us remark that if we replace &* by £°d°¢", then we obtain an essential complex
Bl Cn Gn
(2.2) 0 X0 Xlee . e X' lee X" 0
which is Fredholm by the symmetry of the relations (2.1).

Let X” be an esscntial Fredholm complex, homotopiqually trivial by an essential
homotopy ¢'. Then the operator

{2.3) T = @ XY > @ X+t
» »
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is a Fredholm operator. Indeed, let us define

ret 0
O’l 83
S = e |exTioexw
p n
0

Then the operators TS and ST are essential invertible:

' gle? 0

ST == ! 83;4 -+ compact,
0 T
I 23 0

TS = ! 84185 -+ compact.
0 .

By the last assertion of Proposition 2.3, the index of T does not depend on
the choice of the essentially trivial homotopy ¢, so we give the following

DEFINITION 2.4. Let X* be an essential Fredholm complex and let T be the
operator defined by 2.3, Then the index of X is:

indX® == indT.

The notion of essential Fredholm complex and associated index are obviously
stable under compact perturbations of the coboundary operators 6°.
Now we shall prove the stability under small perturbations. Let (X°, 6°) be an

essential Fredholm complex and let 5* be a sufficiently small norm perturbation
of &", such that 3°2 compact. Then for each Banach space Y, the complex

(LY, X)H Y, X, 33)

is exact. Indeed this holds by the stability theorem for exact complexes (for example
[17, Theorem 2.11}).
In order to prove the invariance of the index, let £° be a trivial essential homo-

topy for 5. By the classical thcorem of stability for Fredholm operators, the operator
5 e 0
. 5e g
Ty = 5
0 B

is Fredholm as a perturbation of 7, and ind Ty = ind7".
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Let us remark that for each A € [0, 1], the operator

& AETH (1 — e 0
T, = 5 B (1~ Dt
84

0

is Fredholm. Indeed, if we take

A+ (1 — Al 0
S, — ot Aed +~(1 — A)e?
* o3
0
then
A+ (1 — A)(5081 s 8231) ®
Sy = L A4 (1 — (3% -+ 6859
0 L
and the diagonal blocks are essentially invertible, because 30g1 + e;‘ﬁéT, ... are

essentially small perturbations of the identity, hence —A(1 — 2)~1is not an element
of the essential spectrum of them.

Similarly one proves that S,T; is cssentially invertible. Because the index is
invariant to homotopy, we obtain:

indTy == ind7; == ind7,
hence
indX" == ind7T} == ind7, = ind7 = indX".

Concluding, we have proved the following

THEOREM 2.5. The Fredholm property and the associated index of an essential
complex of Banach spaces are invariant under small norm or compact perturbations
of the boundary operators.

The next proposition relates our index to the Euler characteristic y(X*) of
a complex X"

PROPOSITION 2.6. Let X° be a Fredholm complex (ie. essential Fredholm
complex and 670°-1 =0, p e Z).
Then H?(X'), p € Z, are finite dimensional spaces and

2.4) indX" = y(X°).
Proof. Let & be a homotopy of X* and k? € #(X?), such that

gPHIOP 4 oP-1gP =] + kP, pel.
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Then 07-1¢?|Kerd? = (I + k?)|Kerd?: Kerd? — Kerd?, so that k?(Kerd?) = Kerd?.
But ( -+ k?){Kerd” is a Fredholm operator on Kerd?, hence

dimH#(X") == dimKeré”/IméP-1 £ dimCoker(/ + k”)Kerd?

and the last number is finite. As a consequence, the ranges of operators 67 are closed.
We shall prove the equality (2.4) by induction on the length of the complex
X 1f the length of the complex is one, then (2.4) is the definition of the index. Suppose

the affirmation is true for complexes of the length n — 1.
Let X' be a Fredholm complex of the length n:

0o X' X' X2 ... 5 X">0.
Let ¢ be a homotopy of the complex X* and let denote X* the complex:
0- XYImd®* —» X2 > X3 ... 5 X"> 0.
Then y(X°) - : dimKerd® — indX" and ¢ induces a homotopy 3° for X*: 2% =

—: mog?, 87 === &9 for ¢ = 3, where n is the projection map 7 : X* - X*/Imd°.
A short computation shows that

€2 0
. . o2 gt
indT = dimKerd® + ind 54 -
0 .
ot g 0
= dimKerd® — ind( o3 eb \)—_—
0 T

= dimKerd® — indX";

because the second matrix operator is the essential inverse of the first, hence by the
induction hypothesis indT == y(X°).

In the Hilbert spaces case one can prove the following:

Proposttion 2.6. Let H® be an essential complex of Hilbert spaces. The follow-
ing assertions are equivalent:

iy H' is Fredholm,

ii) (0°%) is almost an essential trivial homotopy for H', namely the operator
86% - 0% is Fredholm.

itl) There exist compact modifications of the boundaries such that H® becomes
a complex with cohomology spaces of finite dimension.
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CoroLrARY 2.7. If H, and H; are two essential Fredholm complexes of Hilbert
spaces and if f* . Hy — Hy is, modulo compacts, a wiorphism of complexes which
is a linear isomorphism, then ind H; — ind 1},

Proof. Let 171’ be a complex which is a compact modification of /3. Then
transporting by f* the boundaries of 1], one obtains a compact perturbation of £

into an essential Fredholm complex H;. Then
indH; == indH; = y(H3) — y(H3) = indH; = indH},

The property of fredholmicity for an essential complex is stable also by passing
to duals:

THEOREM 2.8. Let X° be an essentiul Fredholm complex of Banach spaces.
Then the dual essential complex X' iy also Fredholm and

indX*' -= indX"

if the zero'th covariant component of X' is the dual of the zero'th contravariant com-
ponent of X°.

Proof. Let ¢ be an essential trivial homotopy of X°. Then the homotopy rela-
tions for X give by duality homotopy relations for X*’, hence the dual complex is
Fredholm. The associated Fredholm operator of X*' is

el o 0]
é:3' 5.’:"
S =
O
0
e 0
. ) ot & . .
so that indS = —ind = jndX".

(53

3. SEMI-FREDHOLM SYSTEMS OF ESSENTIALLY
COMMUTING OPERATORS

Let X be a Banach space and 77 = (7)), 1 <i<m, 1 <j< n, asystem of
linear bounded operators with the property:

3.D [Ty, TWle (X)), 1<ih<ml <) kgn
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We shall denote by K,(K’) the essential Koszul complex of the i’th row (j’co-
lumn) of 7. Also one can form the essential complexes

KXT, X) = K(KY(p), ..., K"(p))
and
Kp(‘a/—, X) = K.(Kl(p)’ tres Km(P))

where C(p) denotes the complexes C with the degree shifted with p steps, and K,
is the complex constructed in § 1. They are indeed essential complexes because

LK, KT, XA (X, KT, X)) = KT, LA (X))
is a complex.
The zero component of the complex K? or K, is the one of degree p in Y and
1 in X.
Let & ==(S;), 1 i< m, 1 <j<n, bea system of operators, such that
3.2) [S

i Sl € A(X),  [Sy, Tl e A(X)
for each i,j, &, h.
The following lemma gives a criterion in order that the essential complexes

K,(7) be Fredholm.

LEMMA 3.1. Assume that, with the above notations, the system % is a left or
right thverse, modulo compacts, of 7.

Then, for each p € Z, the essential complex KP(J'), respectively K/(7F), is
Fredholm.

Proof. Suppose 7% = I -}- compact. Then, by Corollary 1.2, the complex
KT, L(X)|# (X)) is exact, i.e. the essential complex K,(7) is Fredholm.

DeriNiTioN 3.2. Let 7 be a system of essentially commuting operators on a
Banach space. If the essential complexes K,(°) or K”(J") are Fredholm, the indices
of I are:

ind,7 = indK,(77), respectively, ind?J = indK?(J).

As a consequence of the Theorem 2.5 one can prove the following

TraroreM 3.3. Let I be a system of essentially commuting operators on a
Banach space, such that the essential complexes K (7) or KP(T'), p € Z, are Fredholm.

Then the indices ind,7, respectively ind?.7", p e Z, are invariant by compact
or small norm perturbations of T, such that condition (3.1) holds.

If the system 7 has only one row, the essential complexes K,(7") are transla-
tions of the essential Koszul complex K (7)), so that if one of these is Fredholm,
then all are Fredholm, and

ind,7 = indK (7 )(—1)? = (—1)?ind,J .
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If the system Z is of type (u, n), i.e. a square matrix, then Ky(.7") coincides
with K% ") and both with the complex

0-XS@x-0
1

-@® a

so that
ind%7 == —indyJ == classical index of 7,
if there exist these indices.
Also in this case if the operator 7 is Fredholm, then there is an essential bila-
teral inverse of .7~ which satisfies (3.2) , so that all the essential complexes KA9),
KP(J") are Fredholm. A short computation shows that

ind_,7 = inddetJ.

The indices have a good behaviour by passing to duals:

THeOREM 3.4. Let 7 be a system of essentially commuting operators on a
Banach space X, such that the essential complexes K (7), p € Z, be Fredholm.

Then the dual system ' on X' has the essential complexes KP(7') Fredholn
and
3.3) ind,7 =ind?7’, pel.

Proof. The essential complex K7(J) is the dual of K,(7). Indeed, the compo-
nents are dual, and the boundary operators agree by the duality

<XYg‘1/\.../\Yih®ijl...A,jk, XIY‘J /\.../\Yi’l)®Xj;...Xl>:~.

1 Jk
’
= (x,x >5éni; ‘e 5‘},“-;; 5].1’.; ce (S]k]; >
where 1 << ... <, <ml<i{<...<ip<m, 1<j,<...<j,<n,
1 <j{ £ ... <j{ €£nandh, k depends on p and g. More precisely

D7) =D'(7), [D(T) =D,
[0(T) ... 0, (T =0YT") ... ™(T') + compact.
By Theorem 2.8 and by the choice of zero’th components of K, and K” we

obtain (3.3).

In what follows we shall give some properties of the index of a system of
type (1, n) on Hilbert spaces.

THEOREM 3.5. Let I ; be a commuting system with one row on the Hilbert
space H, , such that the Koszul complex K(J;, H,) be Fredholm, i =1, 2,
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Then the complex K(7 é I,1 é T, H, (>§ H,) is Fredholm and
ind(7, ® LI ® T,) = ind7,-indT,.

Proof. Let K, = K(7 ;, H;). Then by the main theorem of (4], K, @ K,
is a Fredholm complex and ind K, ® K, = indK;-indK,, so that

ind(7, ® 1, I® T,) = indK, ® K, =
= indK;+indK, = ind.7",.ind T, .

Another multiplicativity property which generalizes the multiplicativity of
the index of Fredholm operators is the following:

THEOREM 3.6. Let T be a one row system of essentially commuting operators
on a Hilbert space H, and let Q, R be operators on H which essentially commute
with T .

If the essential Koszul complexes of (7, Q) and (7, R) are Fredholm, then the
essential Koszul complex of (7, RQ) is also Fredholm and

ind(Z, RQ) = ind(7, R) + ind(7, Q).

We shall present a proof which is more natural than the initial one, and which
was communicated to us by A.S. Feinstein:

Remark that the system (7 @ 4, R @ Q) can be deformed in the class of
Fredholm systems in (7 @ 9, RQ @ I), by using the deformation from [1, Lemma
2.4.6}. Then the statement follows by the aditivity of the index.

In order to prove that the systems

(.4) (y@y R 0) cost sint) (I 0) (cost —-sint))
' "o 1 (—sint cost) \O Q) \sint cost

are Fredholm for any te [0, —g—], we shall use the remark that an essentially

commuting system (7, S) is Fredholm iff the operators induced by S on the coho-
mology goups H(J, #(H)/A# (H)) are isomorphisms. In the concrete case of (3.4)
all the matrices induce isomorphisms on the cohomology of 7 @ J with coefficients
in the Calkin algebra.

CoROLLARY 3.8. If = (Ty, ..., T,) is an essentially commuting system of
operators on a Hilbert space, m = (my, ...,m,) e N, and if the essential Koszul

complex of 7 is Fredholm, then I = (TT‘, R ;," ") has the same property and

ind9"” =mm, ... mind7 .
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This answers a question raised by R. Curto in |2], where there is a deeper
investigation of essentially commuting systems with one row,on Hilbert spaces.

4. A K-THEORETIC APPROACH

The indices defined above can be obtained in a natural way, in certain cases,
from some elements of K! of a Stiefel manifold.

This part of the paper is devoted to show how the K-theory of the Stiefel
manifold can be computed using the complexes defined in § 1. The computations
are quite long, but elementary, at the level of introductory texts in algebraic topology.

The Stiefel manifold V,, ,. ,, is the set of m-frames in C", or, equivalently,
the set of right invertible m X n-matrices over C, where m < n are positive integers,
This is an open subset of C”” and we shall denote by ¢ a point of ¥, ., with
the matrix representation

211 % Z1n

. Zy Zan Zy

(41) { = 1 2n
Zml IR Zmrl,

Let A* — A’(n) be the exterior algebra with # generators and let S§* -~ S*(m)
be the symmetric algebra with m generators, both over C. We shall de note by 47 ® $§9
the trivial vector bundle over V,, ,..,,, with fiber A?®¢S?. The construction (1.4)
applied to the rows of { gives for each p ¢ Z a complex of vector bundles &7, | ..

D o

@2) . o et @ P gpem @50 M pr o 0 T g st T

This is an exact complex by Corollary 1.2, hence it defines an element v of
KXV, ) (11
The purpose of this section is to prove the following

THEOREM 4.1. The ring K#(V,, .- ) is isomorphic to the exterior algebra over
Z, generated freely by any m consecutive elements in the sequence (v*),ez..

1t will be useful for the proof to give another interpretation of the elements
v?, related with the realization of the Stiefel manifold as a homogenous space:

(4.3) Vo aem & UM U@ — m).

Let A% . .., A" be the exterior power representations of U(n) and let p%, ..., u% "
be the exterior power representations of U(n ~- m) on the subalgebra of A'(n) gene-
rated by the first »# - m indeterminates. It is known that the ring K*(U(n)) is
isomorphic with the algebra A[AY, ..., A"; Z], [1, Theorem 2.7.17].
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Given two representations o, f of U(n) on a vector space C*, which coincide
on U(n — m), then the map a.f-1:Un)/U(n — m) » GL(k, C) is well defined and
determines an element of KYV,, ,-,). Thus we obtain a group homomorphism
from the kernel 7 of the restriction map between the representation algebras and K?:

0 - I > R(U(n)) » R(U(n — m))
“4.4) !
K\(¥,

m, n- m)

We shall prove that the elements v# ¢ KY(V,, ,.,) corresponding to the exact
sequences of vector bundles &%, , _,, can be realized by this construction.

To this end let us write A°(n) as A*(n - - m) ® A’(m) with respect to the first
n — m generators on which U(n — m) acts. We shall identify the subspaces A'(n — m)
from the direct sum of even, respectively odd, components of &%, ,_,.. In order to
prove that the multiplicities of these subspaces agree, we shall compute the image
of 2! in R(U(n -- m)). By knowing the restriction law for m = 1, derived from the

Koszul complex, [1, § 2.7], we obtain by a recursive procedure:
2=y
A=t 4 Gl
4.5) A=+ Gt + Cop®
1= Gt .+ Care,

where p* == 0 for k > n — m and C% = a!/(b!(a — b)!) for a, b integers, 0 < b <a,
and zero in rest.
If we shall prove that the element of R(U(n))

02 = (A — CLAP~1 + GG P72 — L) —
(4.6)
— (AP — CLAPHTAL L Cf AP — )

has image zero in R(U(n —m)), then v? will be the image of ¢# by the map (4.4).

Let us compute the coefficient of y*, 1 < k < n--m, in 7. If k = p, then
p? appears only in A2 and in 27*™ and the total coefficient is zero. Suppose p >k,
so that only the first bracket of ¢? contains u*, precisely A%, Ak+1, Amin(ktm, z)
contain p*. The coefficient of u* is given by the sum:

k- -1 —k—m-+1 m—2p-k--m+2
(4.7 CnCekom — Cnm Rzt 4 O CE bt —

In the case p < k a similar sum appears, by the symmetry of ¢%.

7-2159
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LeMMA 4.2. The sum
CrCath, — Cn Coy ey + CoPCITA Ly — . (— 1) CLCEme1

is zero for all positive integers m and q.

Proof. Induction on m. If m == 1 the equality is obvious. Suppose the statement
holds true for m—1. Then we develop the terms as follows:

+1 +1 -1 0
Cg-_s-m = ngn-—l + Cz+m---2 -+ Cg-;-m—s ot Cm—>2

C2+m—; = Cg+m—2 + Cé’I}n_a +...+C,

so that if we regroup the terms, the sum becomes

+1 -1 -1 -2y /vg—1 :
CrCet (G — CR D e 4 (G — CRTY + G HCET s
or

+1 -2 ~3g~—1
C:?-f-m—l - Cfn’—lcg+m—-‘.: + Cﬁ—lq-}-m--s -

which is zero by the induction hypothesis.

Let us remark that a7 -- ¢-1can be computed in a similar manner and the
result is ¢ _; ,_,.41. Denoting therefore by n: V,, ,_,,—V,u_1, »_ m+1 the projection
map on the first m—1 rows, the equality

(4.8) W+ v =t (08,)

holds. ‘The integer n, the dimension of the space in which we consider the frames,
is supposed fixed and will be omitted.

Proof of Theorem 4.1. We shall use induction on m for the proof of the state-
ment together with the assertion (otherwise redundant) that the Chern character

(4.9) ch : K*(V,) ™ H¥(V,, Z)

is an isomorphism.

In the case m == 1 the manifold ¥ is topologically equivalent with the sphere
§%7~1 and all the complexes are isomorphic with the Koszul complex, hence the
theorem is true by {1, § 2.7]. -

* We shall use for the proof of the induction step the Gysin sequence, as it is
used in [3, VIIL.12] for the computation of the cohomology of V,, ,_ ...

Let M be the manifold V, _;, ,_,+; X C" and let us denote by N the sub-
manifold of M consisting of the points ({, v) with v e (¢}, the linear Isubspace gene-
rated by { in C". The manifolds M and N are homotopy-equivalent with ¥,,.., and
MN\N=1V,.
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There is the long exact sequence of K-theory associated with the pair M\ N< M :

KM, M\N) » K (M) - K(M\N)
(4.10) 1 !
KY{(MN\N) « K(M) « KI(M, M\N).

Let us remark that the space M = V,,_; X C" can be deformed to the normal
vector bundle E of N in M. Indeed, one can define the projection p : M — N,
P&, v) = ({, pree»v), whose fibers are exactly the normal directions to N in the
point ({, pr¢¢»v). By the Thom isomorphism in K-theory applied to E we obtain

(4.11) K*(M, MN\N) = K*(N)-1,

where 7, is the Thom class corresponding to the exterior algebra of the vector bundle
p*E on (M, M\\N), {1}

We shall compare now the K-theory with the cohomology via the Chern
character. Let us denote for every finite dimensional topological space X, #%X) —
= @ H¥(X,Z) and #YX)= @H*'*}(X,Z). Replacing K by s in (4.10) we
obtain also an exact sequence of cohomology with a map, the Chern character,
between (4.10) and the new diagram. Then we have the Thom Isomorphism Theorem
in cohomology

(4.12) (M, MN\N) = #H*N)-1,

and comparing (4.11) with (4.12) we obtain by the induction assumption that
ch(z,) == 1, and the isomorphism (4.9).

But the image of 7, in #°(M) is the Euler class X%, which is an element of
HAn mi ) (N) = Hr—m+1)(Y =0, [3, Proposition VII[.12.10], therefore we
have the equality of K*(N)-modules

(4.13) K*(M\N) = K*(N) ® K*(N)-7.

We proceed now to the proof of the statement of the theorem. Let pe Z
and let us denote by Z{v2*! ..., v&+™] the subalgebra of K¥*(M "\ N) generated by the
clements in brackets. Using (4.8) it follows that this algebra contains vf4t2, ..., v&+tm,
and hence the sequence (v4_;),ez, by the induction hypothesis. Using again
(4.8) one can shift the interval (v£*!, ..., v&+*™) to the left or to the right with an
arbitrary step, so that Z[vE+1, ..., v+ = Z[v ™+l | ., vr]

If we shall prove the equality

(4.14) vt =

then the proof will be complete. Indeed, assuming (4.14), the elements



84 MIHAI PUTINAR

(vp7™*1, ..., v) can be transformed by a Z-linear mapin (t, , Vi 742 ..., v ),
hence the originl m-tuple is free over Z and generates, by the induction assump-
tion and by (4.13), the ring K*(V,,).

The equality (4.14) means that the image of v%™*! by the map K{(M\\N) -
— K9(M, M\\N), is the Thom class 7,. To compute this image means to take the
Euler characteristic of the extension of the complex #5741 to M. The extension is
obvious, considering the expressions of the coboundary operators. We shall prove
that the direct images of the components of 7,71 on the Thom space M, (M \N)
are still vector bundles, so that, the Euler characteristic will be the alternating sum
of these bundles in K(M/(M\N)).

A component of the complex #5741 is of the form A”(C")® S, where C”
is the trivial vector bundle of rank 7. Deonting by {{) the subbundle of C” which
has the fiber over ({,v)e M = V,_, X C", equal with the space generated by ¢
in C", we have the decomposition C"== {({) -4 ({)L. Let us remark that {{) is a
trivial vector bundle and that {{)* coincides with the pull-back of the ‘“normal”
vector bundle E of N in M. Thus the image of C" on M/(M\N) is the direct sum
C"-1 @ g*(E), where g : M/(M\\N) — N is the natural projection map.

Let us denote by & the class of A/(C"-1@ ¢*E) in KY(M/(M\N)) and simi-
larly by B/ the class of 4/(g*E). The image of v%~"+! in this group will be the sum:

(4.15) Ml — Cla ™ o Ch T = Gyt

Replacing ' by the corresponding expressions in B/, the coefficient of f*, ke Z,
in (4.15) is:

(—DAChspr — CHEGCh + CRL Gl — )

where p = n — m 4+ 1 — k. The last sum is equal to

(—‘ 1)p(ng+p-2 - Cr’;iﬁ-lpulc}n-—l + CI';:}-%?C?"—I T e ) +
+ (=D)P(Chfpe — CBpa Gl + CBRLG, — -2

But the first sum is zero by Lemma 4.2, so that, by a recursive procedure, the
coefficient of B in (4.15) is (—1)"*%. Finally, the image of -7+! is

(1 %, (= DFF = (=1 5.
A consequence of the proof is the following

COROLLARY 4.3. The Z-module generated in KN(V,) by every m consecutive
elements of the sequence (vE),cz coincides with the module generated by the whole
sequence.

One can prove with a similar technique also
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ProposITION 4.4. Denoting by i:V, ,_p»— Vi yi1-m the natural inclusion
map, the relations

i*Vgl,n+1—m=v5x,n—nx+ vt%,n—m’ pEZs
holds.
Let us finally compute all the sequence (v ez in terms of v3,, 8 _,, ...,V?,
by forgetting the projection maps (v3,., == n¥(v},_4), ...). By taking (4.8) into
account, a recurent computation produces the formula:

(4.16) vh = (—=1)2(Cih oW + Co v 4 ...+ C2zh)
for p = 0 and

4.17) vh = (—1)P(Covh, — Civfy + C2v0p— ..0)
for p € 0.

For example in the case m = 1, v} = (—1)?{, and in the case m = 2, vf =
= (—=1)7(v -+ |pt¥).

CoROLLARY 4.5. The ring K¥(V,,) is isomorphic with the exterior algebra over Z,
[freely generated by V3, V5,1, ..., V.

Returning to matrices of operators, let E be a Banach space and let A be an
essentially commuting subalgebra of .#(E). Then the unital Banach algebra
B:=Al# N A is commutative and, denoting by X its maximal spectrum, K(X)
is isomorphic with K,(B) via the Gelfand transformation ¢ : B — €(X), by a theo-
rem due to Novodvorskii, [15, Theorem 7.5].

Let 7 be a m X n-matrix with elements in A, invertible on the right in B,
and denote by n(7) the image of 7 in B. The system n(7) determines by its Gelfand
transform a map

N
MUT): X = Vi pom:

The essential complex K, (77, E) is Fredholm by Lemma 3.1 and a standard
computation shows that

AN
ind,7 = index(¥y on(7T)*(vE}Y)).
Thus one can prove the following result, by using the universal properties
of v&:s.

PROPOSITION 4.6. a). With the above notations, each m consecutive elements
of the sequence (ind,7 ),cz determine all the sequence.

b). If we add a column with elements in A to T, then the new system I is
still right invertible in B and

ind,J’ = ind, 7 +ind,.,7, peZ.
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c). If we delete a row from °, then the new system 7" is still right invertible
in B and
. e e P »
ind, " =ind, 7" - ind, 7, pel.
COROLLARY 4.7. If T, and 7, are subsystems of .7~ obtained by deleting the
same number of rows from 7, then

ind,(7,) = ind(T,), pelZ.

The relations (4.16) and (4.17) give the explicit expressions of ind, 7 in terms
of ind, of the subsystems of 7.
Let us remark finally that for a square matrix 7°, Markus and Feldman have
proved that
indg:7 ~+ ind 47 =0

if the commutators of the elements of &~ are tracc class, [12].

5. APPLICATIONS

The main part of this section is devoted to pseudodifferential operators.
First some notations and terminology:

Let A be a compact manifold and let L] 5(M) be the sct of pseudoditierential
operators on M, of order se R and of type (p,d), 0 <d <p <1--9, in the
sense of Hérmander (see for example [9]). An elliptic on the right system of pscudo-
differential operators (in the sense of Douglis-Nirenberg) will be a matrix 2 - < (P;;)
with

(5.1) PyeLi(M) fori<i<m, 1<j<n

and some real numbers ¢}, 5;, such that for each (x, {) e T*M, the matrix of princi-
pal symbols

ao(L)x, €) = (a5 (P i) )

is invertible on the right, for ¢ sufficiently large.

For such an elliptic on the right system % one can construct, with some
modifications, essential complexes like K,(*), as follows:

Let ¢ be a real number and let us denote by H*(M) the Sobolev spaces of M.
We shall use the indeterminates X and Y of first section only for simplifications of
the boundaries formulas. The essential complex K7_, , (#) will be:

< a D <l 01.'.0", P o (4 o
(5.2) o KOy > K8y > Koy i T KPS KD s
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where we omit the first index p — 1 and
*y

Ky g2 @ HOlBDWUM) @ ¥y AL A Y ,® X,-I‘ R

summing by the indices: 1 <j < ... <j,,<n, 1I<i<...<i<m
% o PR %, == g, all %, > 0 and the order 1t(o,j,i, ) =0 + 4, + ... +
by s b s all this for 0 < ¢ < p; moreover '

K;_,=0 forqg>p.

. % %

K3, =@ Hilohia (M) ® Y,1 AL LA Yf,,+m+,,,.1 ®X,11 X,‘:u ,
summing by: [ <j; < ... < Jpumqo1Sn, 1< < .00 < < m, oz,-1+...+
oy, =q—1, all %, > 0 and 1(o,j,i,a) =0 + Hh, + ...+ t,-deMq_1 — (s +
A s, — (ac,-lsi1 R = ac,-hsih), for gz 1.

The corresponding boundaries are as in the first section:
n',i M‘-
D(XY_,' /\.../\Yj ®Xi1...X1h)=
1 k 1 3
=3 ¥ (—1YP XY, P Y, @ Xt X X
_sé“l:‘(——_) ,-sj'x jI/\.../\ jl/\.../\ jk®.11... it Xt

73 @,
D(xY, A .. AY®@X1 ... X"=

m kK A o, o,
=Y Y D PyxY A AY AL AY, ®XX;t... X"
=S t 1 t k 570
and similarly 8, ... 0,,.
Using the compactness of the commutator

[Py, Py) - H" "y "s(M) —» Ho(M),

where P, e L’i(M), i=1, 2, one can prove that K3_; . () is an essential complex of
Hilbert spaces.

One can prove that there exists for each s € R, operators 4 € L*(M) such that
the principal symbol 64(A4,) would be invertible, real and the extensions 4, : H°(M) —
— H°~*(M) would be isomorphisms. Moreover, the inverse A;! is a pseudodiffe-
rential operator, modulo compacts.
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Then the elliptic on the right system 2 which satisfies (5.1) can be written like

A_‘,1 0 A’1 0
0 A"m 0 Agn

where 2 is also elliptic on the right and satisfies (5.1) and the ellipticity condition
with t; = 5; = 0. With the operators 4, one can define an essential isomorphism in
the sense of Corollary 2.7 between KJ(#?) and KZ(#,), so that we can supposc that
the ellipticity condition holds for all #; = s; = 0. But in this case KJ(#,) coincides
with K7 (2, H°(M)), because all the operators P} have order zero.

THEOREM 5.1, Let 2 be an elliptic on the right (left) system of pseudodiffe-
rential operators on a compact manifold M.

Then the essential complexes K3 (), respectively K2 (2), are Fredholm for
all e R and pe Z, and indK3(P), respectively ind KI'(P), does not depend on a.

Proof. Assume that the components of & have order zero. There is by Theorem
6.3.7 of [9] a right parametrix & of 2, also of order zero. If ¢ is a real number, the
extensions of # and & to H°(M) give a system of essentially commuting operators
#¢ with a right essential inverse &7, such that all the components of .#¢, §¢ commute
modulo compacts. Then by Lemma 3.1 the essential complex K?,(#) is Fredholm.

The independence of the index of ¢ results by Corollary 2.7. The left invertible
case is dual.

Let # be a system like in Theorem 5.1. Then the indices ind (%) = indK5(#)
for some g € R, p e Z, depend only on the principal symbol of 2 and they are locally
constant in the space of right elliptic symbols. Moreover, if we work only with
homogenous symbols, they are also topological invariants.

For cxample lct ¢ be a smooth function on R, such that ¢(¢) = | for '¢ > 2
and (&) == 0 for {¢! < 1. The function

o:T%(SY) - C,
=o(¢ 1 > 0,
o(ede) = [0 1T €20
o) it <0,
is an elliptic symbol of order zero on the sphere S*. A pseudodifferential operator
on ST with this symbol is the following {13, XVI1.6.2]:

P : [X(SY) - LY(SY)

zx+1 for k= 0,
2k for k < 0,

Hﬂz{

where (z¥) is the natural basis of L(S%). The index of Pis —1.,
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Let now o, be the symbol 1 ® ... ®*6® ... ®1 on the n-dimensional
torus 7" - St x ... x SY and let # = (P, ..., P,) be an essential commuting
system of pseudodifferential operators associated to the symbol (o4, ..., 0,). Then
# is an clliptic to the right system, and by Corollary 3.8

ind?” = (—1ymm, ... m,,

for each me N,

Another class of operators with compact commutators are Toeplitz operators.
Oue can define the invariants ind,Z for each system  of Toeplitz operators on a
manifold M, with right invertible matrix symbol @ at all points of M. Indeed, if this
condition holds, then ¢*(@d*)-1 js a right inverse of @ in the set of continuous
matrix symbols on M.
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