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UNICELLULAR SHIFTS ON BANACH SPACES

SANDY GRABINER

INTRODUCTION

Recall that a bounded operator on a Banach space is unicellular if its lattice
of closed invariant subspaces is totally ordered. In [6, Theorem 2.10, p. 21] we show-
ed that every separable Banach space has a unicellular unilateral weighted shift.
In the present paper we show that every separable Banach space also has a unicellu-
lar backward shift (Theorem 1.1) and a unicellular bilateral shift (Theorem 2.3).
We also prove an analogous result for diagonal operators (Theorem 3.3). We
construct a unicellular backward shift by an extension of the method we used in
[6, Theorem 4.1, p. 27] to construct unicellular forward shifts. Our construction
of a unicellular bilateral shift is based partly on the existence of unicellular forward
and backward shifts, and partly on a theorem of Domar about scalar sequences
[2, Theorem 5]; Domar used his theorem to construct unicellular bilateral shifts
on /? [2, Theorem 2).

Our shifts and diagonal operators will all be defined with respect to M-bases.
Recall that an M-basis (or Markushevich basis) for a locally convex space X is a
biorthogonal sequence {x,, x}}32, for which the span of {x,}3 is dense in X, and
the linear functionals {x*}3° < X are total over X. Since {x,}& has dense span, the
associated linear functionals are completely determined so that {x,}3° alone is
sometimes called an M-basis. We can use any countably infinite set, not just the
non-negative integers, as an index set for an M-basis. Notice that if {x,, x*} is an
M-basis and if {c,} is a sequence of non-zero scalars, then {c,x,, (x*/c,)} is also an
M-basis.

In the case that X is a Banach space, the M-basis {x,, x}} always satisfies
%0 lx¥| = |x*(x,)| == 1. The M-basis is said to be bounded if in addition there
isan M > 0 with ||x,|| [x*| < M for all n. It is easy to construct an M-basis in any
separable Banach space [10, Proposition 1.f.3, p. 43], and one can in fact always
construct a bounded M-basis [10, Theorem 1.f.4, p. 44], [11].
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1. UNILATERAIL SHIFTS

Suppose that {x,, x*}& is an M-basis for the locally convex space X and that
{¢,}& is a sequence of non-zero scalars. A continuous linear operator 7 on X is &
Sorward shift with weights {c,,/c,}& (for the M-basis) if Tx, = : (¢,21/¢)X,4q for
all n; and it is a backward shift with weights {c,+1/c, )T if T(x,41) = (Cu41/0)x, for
alln > 0:and T(x,) = 0. Since the span of {x,}% is dense, theré can be no more than
one forward or backward shift with a given sequence of weights; but no shift of
either type with weights {c,;/¢,} need exist.

We now construct unicellular backward shifts for an arbitrary M-basis.

THEOREM 1.1. Suppose that {x,, x*}3 is an M-basis for the Banach space X
and that {¢,}T is a sequence of non-zero sca/als If {x*1} is bounded below, and if
(i) thereisak > 0 for which {|c, 4,/ c.i}& is eventually non-increasing,

(i) L(Icnm/tc Dlxdl x50l < o0,

(iii) tlle sequence {(jc, 411/ lc,,l)l‘,x w1l 18 is bounded,
then the backward shift with weights {c,,ﬂ/c,,}0 is unicellular.

Before proving Theorem 1.1, let us observe that Condition (ii) is precisely
the condition needed to guarantee that there is a backward shift 7" with weights
{ €a+1/Cs}- The shift T is then compact, in fact nuclear, and therefore quasinilpotent.
Also, notice that Condition (iii) follows from Condition (ii) if {||x¥|} is bounded or
if {|x,!'} is bounded below. However,we will nced Condition (iii) as stated above
in our application to bilateral shifts in the next section.

Proof of Theorem 1.1. By multlpljymg the M-basis by a sequence of uni-
modular scalars if necessary, we can assume all ¢, are posmve

In the dual space X*, {x¥, x,}3° is an M-basis for the weak*-topology, and T*
is the forward shift with respect to {x¥, x,} with weights {¢,+,/c,}&. It will be con-
venient to let z" == ¢,x}* and to let n, = x,/¢, and to identify n, with its image in X**

Then X* can be considered as a space of formal power series by 1dent1fymg

Jin X* with the formal power series Y, 7,(f)z". With this identification, T%f ~ zf
0

{for more information on this identification, see [5, p. 81] or [6, pp. 18---20]).

The map E — EL sets up a one-one correspondence between the closed T-in-
variant subspaces of X and the weak“-closed T*-invariant subspaces of X*. So
to show that T is unicellular, we must show that the only non-zero weak ~closed
‘T*-invariant subspaces of X * are the spaces

(12)  By={xp, X ..o o} = {f€ X5 2(f) = 1(f) ... moa(f) = O},

where we interpret B, as X*.
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Suppose now that L is a non-zero weak*-closed 7*-invariant subspace of X*,
We break the proof that L is one of the spaces B, into three steps.

Step 1. Some z" belongs to L.
STEP 2. Whenever z" belongs to L, then B, < L.
Steep 3. Some B, = L.

SteP 1. Let K# be the Banach space of all formal power series /= Y 2,2"
0

for which the norm

£k = 1Al + Y |Aulea—s
1

is finite, and let K be the series in K* with constant term equal to 0. Condition (i)
implies that, under an equivalent norm, K and K#* arc Banach algebras with K
radical (see [3, Lemma 2.4, p. 643] and the proof and remark following [3, Theorem
2.10, pp. 645—646]), and it also implies that every non-zero ideal in K contains a
power of z [3, pp. 644—645]. Since the polynomials are dense in K, every closed
non-zero subspace of K which is invariant under multiplication by z is an ideal, and
thercfore contains a power of z.

Condition (iii) implies that K is continuously imbedded in B. Therefore L N K
is a closed ideal in K. Condition (i) and the assumption that {lIx¥|} is bounded
below together imply that Bz K. Therefore L N K contains z2L and is non-zero.
Hence L 2 L N0 K contains a power of z.

SteP 2. Now suppose that z" belongs to L. We must show that if x in X is
annihilated by all £ in the weak*-closed subspace L of X*, then x is annihilated by

all fin B,. Since L is T*-invariant, x is annihilated by 2", 2"+, z"+2 . .. . But {z,}
n—1

is total over x, so x must therefore equal ¥, z¥(x)m,, which is annihilated by all f
ka1

in B,.

Sttp 3. There is a k > 0 for which L < B, and for which L contains an f
with m,(f) # 0. By Step 2, there is a g in L and a polynomial p with non-zero constant
term for which f = z¥p + g. Then, in the notation of Step 1, z¥p belongs to the ideal
K# n L of K*. Since K is radical and p has non-zero constant term, p is invertible
in K*, so that z¥ = zfpp~1e K# n L < L. By Step 2, we then have L2 B,, so L — B,.
This completes the proof of the theorem.

There are various ways of weakening the hypothesis of Theorem 1.1. Condition
(i) is used only in the proof of Step 1 to guarantee that X is a radical algebra in
which every closed ideal contains a power of z. Condition (i) could therefore be
replaced by this assumption about K or by any of the many known conditions which
imply that K is a radical algebra in which every closed ideal contains a power of z.
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Other possible generalizations include changing 'c,,, and [[x*,,f in (iii) to Casnj
and !x% ;f for some fixed j > 0, and, in addition, when a backward shift with
weights {c,../c,} is known to exist, changing ¢,.,! and |x*_! in (ii) to ¢, p
and [|x*, .| for some m > 0. Then in the proof of Theorem 1.1, K is defined using

Ca—;, and then one shows Bz"+/ < K.
One can also modify Theorem 1.1, or its generalizations, to give a slightly

more general construction of forward weighted shifts than is given in {6]. In the
hypothesis of Theorem 1.1, interchange the roles of {x,} and {x*} (e.g. assume | "x,{|}
is bounded below). The proof for forward shifts does not use duality arguments;
instead, one identifies X itself as a space of power series by letting z” == ¢,x,. The
proofs of Steps 1 and 3 are exactly the same as in the proof of Theorem 1.1;
and Step 2 is now trivial.

2. BILATERAL SHIFTS

Suppose that X is a Banach space and that {¢,}% is a sequence of non-zero
scalars. The bounded operator T is a bilateral shift for the M-basis {x,, x¥}%,
with weights {¢,1/¢,} % provided Tx, = (¢p1/Ca)¥n+:1 for all integers n. As with
unilateral shifts, no bilateral shift with a given sequence of weights need exist;
but if one does exist it is unique.

The bilateral shift T is unicellular if and only if its only proper non-zero closad
invariant subspaces are the spaces

@.1) X, = cl [span{x,}22.4]

defined for each integer A. Thus in order for {x,, x3}%,, to have any unicellular
shifts, it is necessary that

2.2) X =[x leitel®

for any, and hence all, integers k. We will call those M-bases for which formula
(2.2) holds for all k, splitting bases.

It is clear that every Schauder basis is a splitting basis, but we will see in the
next section that every separable Banach space has an M-basis {x,, x*}%®,, which
is not a splitting basis. Formula {2.2) is equivalent to the assertion that the biortho-
gonal sequence induced by the M-basis {x,, x¥}%, on the quotient space XX,
is an M-basis for the quotient space. Hence the construction by Gurarii and Kadec
in [7, Theorem 1, p. 966] provides a splitting basis for each separable Banach space.

We now show that every splitting basis has a unicellular shift, and hence that
every separable Banach space has a unicellular bilateral shift for some M-basis.

THEOREM 2.3. The M-basis {x,, x*}% has a unicellular bilateral shift if and
only if the M-basis is splitting.

Proof. If the M-basis is not splitting then the spaces in formula (2.2) are dis-
tinct sequences of invariant subspaces for any bilateral shift, so no such shift can
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be unicellular. Assume that {x,, x¥}%,, is a splitting basis. Without loss of generality,
we can normalize so that all ||x,| = 1.

Choose a sequence of positive numbers {w,}%®,, satisfying:
[~

() Y, Wara/wllxgll < o0
- 00

(il) {W,4+1/Wa}3 is non-increasing and {w, ,,/w,}% o is non-decreasing.
. . e . £
(iii) liminf(w)*" < 1/3 and limsup(w,)'/"" > 3.

H=>00 n=y»—~ 00

Condition (i) implies that there exists a bilateral shift 7" with weights {w,,1/w,}%.
Suppose that L is a proper non-zero T-invariant subspace. We must show that L
is one of the spaces X, of formula (2.1).

We first assume that there is an integer p for which L n X, # {0}. Then the
restriction of T to X, is a forward unilateral shift with non-zero invariant subspace
Ln X, It follows from [6, Theorem 2.10, p. 21}, or from the remarks at the end
of the previous section, that the restriction of 7' to X, is unicellular. Hence there
isaj2nwithl 2 LnX,=X,

The assumption that {x,, x*}*=, is a splitting basis means that the biorthogonal
system {y,, y*}3° that it induces on the quotient space X/X; is an M-basis. If we let
¢, 1/(w;_y_,), then T induces on X/X; the backward shift for {y,, ¥*}5° with weights
{cn+1/c,}& and with proper invariant subspace L/X.

Let 6 be the natural projection on X/X;. Then, for all»n > 0, we have

1yall = 165 -1-nll < h3xjmnmnll =1
and

Byl = lyrabll = 11.,\',-*—,.'»i = 1.

Hence it follows from (i) and (i) that the induced backward shift on X/X; satisfies
the hypothesis of Theorem 1.1 and is therefore unicellular. Thus the invariant sub-
space L/X; equals X,/X; for some k < j, so that L == X,. This finishes the proof
in the case that some L N X, is non-zero.

To complete the proof, we show that if x # 0 belongs to L N 7T(X) then x
belongs to some X,. Tt will be convenient to define z, == w,x, so that Tz, == z,,,.

Since x belongs to the range of 7, it follows from (i) that x is the sum of an absolutely
[~]

converging series Y, a,z,. The convergence of the series implies, in particular, that

— 00
the sequence {a,|z,l} = {a,w,}% is bounded. Since L is a proper closed subspace
of X, there is a non-zero fin X* which annihilates L. Let b, = f(z,); then in particular
1b,l < B fHlz,ll. Hence the sequence {b,/w,}®,, is bounded and not identically zero.
Since L is T-invariant and contains x, it also contains T« for each m = 0. Thus for
each m > 0 we have

0= T = 117§ a2 )= § af ") = § @b,

11 -~ ¢, 2159
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Hence it follows from Domar’s {2, Theorem 5] that there is an integer p for which
o] [~

4,0 for n < p. Therefore x =Y a,z,:= Y aw,x, belongs to LN X, This
r I4

completes the proof.

If the M-basis {x,, x¥}% is not a splitting basis, the above proof can be adapt-
ed to show that L is a proper non-zero invariant subspace for the bilateral shift
if and only if there is an integer k for which [{x*}¥73]L 2L 2 X, ,, (cf. [6, Theorem
4.4, p. 29)).

When the sequence {"x,!' lx*}|}%,, is bounded or does not become unbounded
too rapidly, it is possible to write down simple explicit {w,} satisfying the conditions
(1), (i1}, and (iii) in the proof of Theorem 2.3. For instance, if limsup(iy, jx¥ ' <4

‘n'=00
and if we normalize so that all |x,]| == 1, then we can define w, - : (1/4)" forn > 0
and w, = (4)"2 for n<0. I do not know if every separable Banach space has a bound-
" ed splitting basis. But if in the construction of the splitting basis in [7, Theorem 1,
p. 966], the M-bases which start the construction are taken to be bounded, which
can always be done [10, Theorem 1.f.4, p. 44], then for the resulting splitting bases
the sequence {(||x,ll [x¥1)/In!}* is bounded.

The construction in [7, Theorem 1, p. 966] starts with an arbitrary subspace,
which is X in our notation, of infinite dimension and codimension. Thus any sub-
space of infinite dimension and co-dimension in X is an invariant subspace of some
unicellular bilateral shift on X.

3. DIAGONAL OPERATORS

Suppose that {x,, x¥}% is an M-basis for the Banach space X and that {4,}
is a sequence of scalars. The bounded operator T is a diagonal operator for the
M-basis with weights {,}5 if Tx, = A,x, for all n. As with shifts no such diagonal
operator need exist, but if one does exist it is unique.

For each set A4 of non-negative integers, we let

3.1 X, == cl[span{x,},e.).

“Each X, is an invariant subspace of every diagonai operator T for the M-basis
1x,, XF13°. When there are no other invariant subspaces, the invariant subspace lattice
of T is isomorphic to the lattice of subsets of a countably infinite set. This cannot

- happen for any diagonal operator unless

1 (3.2) Xg=[{xFhealt

for all sets of non-negative integers 4. We will call M-bases for which (3.2) holds
for all A, synthesis bases. Using the terminology of the previous section, an M-basis
is a synthesis basis if and on]y ifitisa sphmng basis whencver it xs rearranged into
a doubly infinite sequence
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It is clear that every Schauder basis is a synthesis basis. In fact if an M-basis
has practically any summability property, then it is a synthesis basis [12, pp. 722
and 731]. However, every separable Banach space has an M-basis which is not
a synthesis basis [2, p. 732] (and hence has an M-basis {x, , x¥}%®,, which is not split-
ting). Tt is an open problem whether every separable Banach space has a synthesis
basis [1, Problem 2, p. 189], but every separable Banach space whose dual has the
approximation property is known to have a synthesis basis [8, Theorem 1, p. 481].

We now show how to construct diagonal operators whose only invariant
subspaces are the spaces X, of formula (3.1).

THEOREM 3.3. Suppose that {x,, x¥}3 is a synthesis basis for the Banach space
oo

X and that {4,}3 is a sequence of distinct non-zero scalars. If Y |2,] | x,] |x*| < oo,
}]

then the diagonal operator with weights {2} has its invariant subspace lattice iso-
morphic with the lattice of subsets of a countably infinite set.

Proof. For each non-negative integer n, let E, be the rank one projection

o]

E,(x) = x¥(x)x,. Then Y 1,E, converges absolutely in the uniform norm to the
0

diagonal operator T with weights {1,}&. T is therefore compact and has the points
{2,} as the non-zero points of its spectrum, with {E,} as the associated spectral
projection. Since the spectrum of 7" does not disconnect the plane, each E, is a
limit of polynomials in 7, and therefore any T-invariant subspace is invariant
under all £,.

Suppose that L is a closed 7-invariant subspace, and let
A=1{n>0:x}x) # 0 for some x in L}.

If n ¢ A, then x}(L) = {0}, so it follows from formula (3.2) that L = X,. On the
other hand ifne 4, x, € E,(L) € L, so that L 2 X,. Hence L == X, and the proof
is complete.

If the M-basis {x;,, x}}e is not a synthesis basis, then the above proof shows
that the closed subspace L is T-invariant if and only if there is a set of non-negative
integers A for which X, = L < [{x¥*},,.]*+.

We use the term synthesis basis because of analogies with spectral synthesis
in Banach algebras [9, pp. 192—194). Explicitly, if we let {d,}5" be a sequence of
rion-zero scalars satisfying Y,d,[lx¥|2|x,l < oo, then there is an equivalent norm

on X under which X becomes a commutative semisimple Banach algebra when
o)

multiplication is defined by yz = Y, x*(y)x¥(z)x, [4], [13, Theorem 8, p. 447]. The
0
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closed subspace L is an ideal of the algebra if and only if it is 7-invariant. The maxi-
mal ideal space of the algebra is the non-negative integers, and the set A of non-ne-
gative integers satisfies (3.2) precisely when A is a set of spectral synthesis [, Defi-
nition 8.3.1, p. 194].

When [x,, x¥}¥° is an unconditional basis or a Schauder basis, we can relax
(=]

the assumption that ¥, 12, [lx,} [x*} < oo. In the case of an unconditional basis,
0

we need only assume that {2,}5° is a bounded sequence of distinct scalars and that
each /, is in the unbounded component of the complement of the set of limit points
of {4,}&°. For Schauder bases we add the assumption that {4,}& is of bounded variation.
In each case we still have that each 1, is an isolated point in the spectrum of 7" with
a deleted neighborhood in the unbounded component of the spectrum. Thus each
E, is still a limit of polynomials in 7, and the proof of Theorem 3.3 goes through as
before. With a somewhat more complicated proof, we can allow a finite number
of {,}% to be limit points of the sequence or to be in a bounded component or the
complement of the set of limit points.

Research partially supported by National Science Foundation Grant MCS—8002923,
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Note added in proof. Two of the results used above to construct unicellular bilateral
shifts have recently been sharpened [14], [15], allowing us to prove unicellularity under much
weaker conditions on {w"} than we assumed in the proof of Theorem 2.3. Yngve Domar has
sharpened his [2, Theorem 5] to the stronger result {14, Theorem 3], which allows us to replace
(iii) by the weaker condition nw},/” — 0 as !n| - 0o. Because of the monotonicity assumptions in
(ii), this new condition is also equivalent to nw,_,/w, — 0 as |n| — oo. Paolo Terenzi has shown
that, in the terminology we used above, every separable Banach space has a bounded splitting
basis [15, Theorem 1I]. For a bounded splitting basis we need assume only that {w"} satisfies con-
ditions (i) and (ii) in the proof of Theorem 2.3 above. This is because, for a bounded M-basis,

[~+]
(i) says that z Wy1/W, < 00, which, when combined with the monotonicity assumptions in
- Q0

(i), implies that nw, ,/w, -+ 0 as {n|— co.
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