A GENERALIZATION OF DISSIPATIVITY AND POSITIVE SEMIGROUPS

WOLFGANG ARENDT, PAUL R. CHERNOFF and TOSIO KATO

INTRODUCTION

The starting point of this paper is a "half-norm" Φ on a Banach space X, that is, a positive homogeneous, subadditive real-valued function on X. Such a half-norm defines a positive cone $X_+ = \{x : \Phi(-x) \le 0\}$, and we assume in addition that this cone is proper. Conversely, every closed, proper cone X_+ in a Banach space is generated by a continuous half-norm (e.g., $\varphi(x) = \operatorname{dist}(-x, X_+)$).

In Part I we develop a theory of Φ -contraction semigroups and the associated class of Φ -dissipative operators. These semigroups are in particular positive, i.e. they leave the cone X_+ invariant.

If $\Phi(x) = ||x||$, Φ -dissipativity is simply dissipativity, and we recover the Hille-Yosida theorem (X_+) is trivial in this case). If $\Phi(x) = ||x^+||$ (X being a Banach lattice), Φ -dissipativity is the same as dispersiveness as introduced by Phillips [15]. As has been done in these special cases, Φ -dissipativity can be expressed in terms of the subdifferential $d\Phi$ of Φ . We also give a notion of strict Φ -dissipativity and there is a remarkable result: Φ -dissipativity implies strict Φ -dissipativity if the operator is densely defined.

In Part II we consider an ordered Banach space X whose positive cone X_+ has non-empty interior. Every $u \in \operatorname{int}(X_+)$ defines in a natural way a half-norm Φ_u which generates the given cone. Applying the results of Part I to these half-norms we show that, if the cone is normal, a densely defined operator A in X is the infinitesimal generator of a C_0 -semigroup if and only if its resolvent $R(\lambda, A)$ exists and is positive for all large real λ . The latter property, in turn, can be expressed by the usual range conditions together with a minimum principle (P) which has been considered by Evans and Hanche-Olsen [6] for bounded generators.

We conclude with an application of our general theory to the case when X is the space of hermitian elements of a C^* -algebra, where we obtain results recently announced by Jørgensen [10].

Acknowledgement. One of the authors (W.A.) wishes to express his gratitude to the Berkeley Mathematics Department for hospitality extended during his visit for the 1980. 81 academic year.

Φ -DISSIPATIVE OPERATORS

1. HALF-NORMS

Let X be a real vector space. A real-valued function Φ on X will be called a half-norm if the following conditions (C 1-3) are satisfied.

(C1)
$$\Phi(x - y) \le \Phi(x) + \Phi(y)$$
 (subadditivity)

(C2)
$$\Phi(tx) = t\Phi(x)$$
 for $t \ge 0$ (positive homogeneity)

(C3)
$$\Phi(x) + \Phi(-x) > 0$$
 for $x \neq 0$.

Note that (C1) and (C2) imply that Φ is convex with $\Phi(0) = 0$ and that $\Phi(x) - \Phi(-x) \ge 0$. In view of (C3),

(1.1)
$$||x||_{\Phi} = \Phi(x) + \Phi(-x)$$

defines a norm on X. This is why we call Φ a half-norm.

In what follows we assume that X is a real Banach space with its own norm. We will always assume that Φ is continuous. Because of the positivehomogeneity this means that there exists a constant c > 0 such that

$$\Phi(x) \leq c \|x\|.$$

One can introduce an order relation in X by stipulating that

$$(1.3) x \le y if and only if $\Phi(x-y) \le 0.$$$

With this definition X becomes an ordered Banach space whose positive cone X_+ is the closed set consisting of all $x \in X$ such that $\Phi(-x) \leq 0$.

Conversely, given an ordered Banach space X with a closed positive cone X_+ , there always exists a continuous half-norm Φ that induces the order via (1.3); for example,

We call (1.4) the *canonical half-norm* for the given order. Canonical half-norms were considered by Calvert [3], though in a different form.

EXAMPLES 1.1. (a) $\Phi(x) = ||x||$ gives the trivial cone $X_+ = \{0\}$.

(b) If X is a Banach lattice, $\Phi(x) = ||x^+||$ is the canonical half-norm that induces the given order.

(c) Similarly, if X is the space of hermitian elements in a C^* -algebra, then $\Phi(x) = ||x^+||$ is the canonical half-norm.

2. Φ -DISSIPATIVE OPERATORS

Let X be a real Banach space and Φ a continuous half-norm on X. Let A be a linear operator with domain D(A) and range R(A) in X.

We say A is Φ -dissipative if

(2.1)
$$\Phi(u - tAu) \ge \Phi(u)$$
 for $u \in D(A)$ and $t \ge 0$.

Since $\Phi(u - tAu)$ is a convex function of $t \in \mathbb{R}$, (2.1) is equivalent to

(2.2)
$$[(d/dt) + \Phi(u - tAu)]_{t=0} \ge 0 \quad \text{for } u \in D(A),$$

where $(d/dt)^+$ denotes the right derivative.

We say A is strictly Φ -dissipative if

(2.3)
$$[(d/dt)^{-}\Phi(u-tAu)]_{t=0} \ge 0 \quad \text{for } u \in D(A),$$

where $(d/dt)^-$ is the left derivative. Due to the convexity of $\Phi(u - tAu)$ in t, strict Φ -dissipativity implies Φ -dissipativity.

EXAMPLE 2.1. (cf. Example 1.1) (a) If $\Phi(x) = ||x||$, (strict) Φ -dissipativity reduces to (strict) dissipativity (cf. Browder [2], Kato [11]).

(b) If $\Phi(x) = ||x^+||$ (assuming that X is a Banach lattice), Φ -dissipativity coincides with the property of *dispersiveness* due to Phillips [15] (see also Hasegawa [8], Sato [16]), although this is not obvious. (The proof will be given below in Example 3.2(b), after another characterization of Φ -dissipativity has been introduced.)

PROPOSITION 2.2. If A is Φ -dissipative, 1 - tA is injective for $t \ge 0$.

Proof. Suppose u - tAu = 0, where $u \in D(A)$ and $t \ge 0$. Then (2.1) implies $\Phi(u) \le 0$. Since -u satisfies the same condition as u, we have also $\Phi(-u) \le 0$. Thus we conclude u = 0 from (C3).

THEOREM 2.3. If a Φ -dissipative operator A is closable, the closure \tilde{A} is also Φ -dissipative.

Proof. This follows directly from (2.1).

REMARK. It is not known whether Φ -dissipativity in Theorem 2.3 can be replaced with *strict* Φ -dissipativity. However, Theorem 2.5 establishes this for *densely defined* operators.

THEOREM 2.4. If A is densely defined and Φ -dissipative, then A is closable (hence \tilde{A} is Φ -dissipative by Theorem 2.3).

Proof. Let $u_n \in D(A)$, $u_n \to 0$, $Au_n \to v \in X$, $n \to \infty$. We have to show that v = 0. To this end, let $w \in D(A)$. Then (2.1) gives

$$\Phi(u_n + tw) \leq \Phi(u_n + tw - tA(u_n + tw)), \quad t > 0.$$

Because Φ is continuous we can let $n \to \infty$, getting

$$\Phi(tw) \leqslant \Phi(t(w-v)-t^2Aw).$$

Hence $\Phi(w) \leq \Phi(w-v-tAw)$ by positive-homogeneity. Letting $t \downarrow 0$ finally gives $\Phi(w) \leq \Phi(w-v)$. Since D(A) is dense by hypothesis, we can let $w \to v$, obtaining $\Phi(v) \leq \Phi(0) = 0$. Since $A(-u_n) \to -v$ as $n \to \infty$, we have $\Phi(-v) \leq 0$ similarly. Hence v = 0 by (C3).

THEOREM 2.5. If A is densely defined, A is Φ -dissipative if and only if A is strictly Φ -dissipative. (More generally, it suffices that D(A) is dense with respect to R(A).)

Proof. Suppose that A is Φ -dissipative. Let $u, w \in D(A)$, t > 0. Then

$$\Phi(u + tAu) \leq \Phi(u + tw) + ct ||w - Au|| \leq \text{(by (C1) and (1.2))}$$

$$\leq \Phi((1 - tA)(u + tw)) + ct ||w - Au|| = \text{(by (2.1))}$$

$$= \Phi(u + t(w - Au) - t^2 Aw) + ct ||w - Au|| \leq \text{(by (1.2))}$$

It follows that $[(d/dt)^{-}\Phi(u-tAu)]_{t=0} \ge -2c||w-Au||$. If D(A) is dense with respect to R(A), we may let $w \to Au$, obtaining (2.3). Thus A is strictly Φ -dissipative.

REMARK. In the special case of dissipativity ($\Phi(x) = ||x||$), Theorem 2.5 has been mentioned by several authors independently (Chernoff [4], Batty [1]). Theorem 2.4 was proved by Lumer and Phillips [13] in the dissipative case, and by Sato [16] in the dispersive case. Curiously, it appears that Theorem 2.3 has not previously been proved in the dispersive case, probably because condition (2.1) was not known in that case.

3. Φ -dissipativity and the subdifferential of Φ .

Sometimes it is convenient to express Φ -dissipativity in terms of the sub-differential $d\Phi$ of Φ ; in fact ordinary dissipativity and dispersiveness are usually defined in this manner.

Recall that Φ is a convex, continuous map of X into \mathbb{R} . The subdifferential $d\Phi$ is a map from X to 2^{X^o} . For each $x \in X$, $d\Phi(x)$ is by definition the set of all $f \in X^o$ such that

(3.1)
$$\langle x, f \rangle = \Phi(x) \text{ and } \langle y, f \rangle \leqslant \Phi(y) \text{ for all } y \in X$$

(because Φ is positive homogeneous in our case).

The one-sided directional derivatives of Φ have well known representations by means of the subdifferential (see e.g.: Moreau [14, (10.15)]).

$$(3.2) \qquad [(\mathrm{d}/\mathrm{d}t)^+ \Phi(x+ty)]_{t=0} = \max\{\langle y, f \rangle; f \in \mathrm{d}\Phi(x)\}$$

$$(3.3) \qquad [(d/dt)^{-}\Phi(x+ty)]_{t=0} = \min\{\langle y, f \rangle; f \in d\Phi(x)\}.$$

Accordingly, from the definition (2.2-3) of (strict) Φ -dissipativity, we have the following criteria.

THEOREM 3.1. A is Φ -dissipative if and only if for each $u \in D(A)$, $\langle Au, f \rangle \leq 0$ for some $f \in d\Phi(u)$.

A is strictly Φ -dissipative if and only if for each $u \in D(A)$,

$$\langle Au, f \rangle \leq 0$$
 for every $f \in d\Phi(u)$.

Finally, let us recall that X carries an ordering associated with Φ by (1.3). Defining the order on X^* as usual we obtain from (3.1)

$$(3.4) f \ge 0 \text{if } f \in d\Phi(x).$$

EXAMPLE 3.2. (a) $\Phi(x) = ||x||$. In this case $d\Phi$ is the *duality map*: $d\Phi(x)$ contains each $f \in B^*$ with $\langle x, f \rangle = ||x||$. This implies that ||f|| = 1 if $x \neq 0$, while $d\Phi(0) = B^*$. (Here B^* denotes the unit-ball of X^* .)

(b) $\Phi(x) := ||x^+||$ (X is a Banach lattice). In this case it is easy to see that $f \in d\Phi(x)$ is characterized by

(3.5)
$$f \in B_+^* (= B^* \cap X_+^*)$$
 with $\langle x, f \rangle = ||x^+||$.

(3.5) implies that $\langle x^-, f \rangle = 0$, and that ||f|| = 1 if $x^+ \neq 0$ while $0 \in d\Phi(x)$ if $x^+ = 0$. Thus Theorem 3.1 shows that in this case Φ -dissipativity coincides with dispersiveness as defined by Phillips [15]. Indeed, Phillips calls an operator A dispersive if $[Ax, x^+] \leq 0$. Here $[x, y] = \langle x, g \rangle$ is a semi-inner product: g = g(y) is some vector in X^+ such that $||g||^2 = ||y||^2 = \langle y, g \rangle$ and $g \in X^+_+$ if $y \in X_+$. Thus $[Ax, x^+] \leq 0$ is equivalent to $\langle Ax, f \rangle \leq 0$ for some $f \in X^+_+$ such that $||f||^2 = ||x^+||^2 = \langle x^+, f \rangle$. In view of the remarks made above, this condition is equivalent to (3.5) by a simple change of normalization of f.

4. Φ -CONTRACTION SEMIGROUPS

In this section we consider the infinitesimal generator A of a strongly continuous semigroup $\{U(t); t > 0\}$ on X, and we write $U(t) = e^{tA}$. We assume that $\{e^{tA}; t > 0\}$ is of a class (0, A) and type ω , as defined by Hille-Phillips [9].

For the convenience of the reader, we recall that the type of U(t) is the infimum of the set of real numbers ω_0 such that $||U(t)|| \leq M e^{\omega_0 t}$ for some M and all large t. If $\lambda > \omega$ then the resolvent $(\lambda - A)^{-1} = R(\lambda, A)$ exists. The semigroup $U(t) = e^{tA}$ is said to be of class (A) provided that $\lambda R(\lambda, A) \to I$ in the strong operator topology

as $\lambda \to \infty$. The semigroup is of class (0, A) if in addition the integral $\int_0^1 ||U(t)x|| dt$

is finite for each $x \in X$ (see [9, § 10.6]).

Theorem 4.1. Let $\{e^{tA}; t > 0\}$ be of class (0, A) and type ω . Let Φ be a half-norm on X. Then

$$\Phi(e^{tA}x) \leq \Phi(x) \quad (t > 0, x \in X)$$

if and only if A is Φ -dissipative. In this case e^{tA} is positive for t > 0.

Proof. It is known that $(1 - tA)^{-1}$ exists and is bounded on X for $t^{-1} > \omega$. If $\Phi(u - tAu) \ge \Phi(u)$, it follows that

$$\Phi((1-tA)^{-1}x) \leqslant \Phi(x) \quad \text{for all } x \in X.$$

Then $\Phi((1-tA)^{-n}x) \le \Phi(x)$ by iteration, and (4.1) follows from the formula $e^{tA}x = \lim_{n \to \infty} (1-(t/n)A)^{-n}x$ (see [9, (11.6.6)]).

Suppose, conversely, that (4.1) is true. The relation

$$\lambda(\lambda - A)^{-1}x = \int_{0}^{\infty} \lambda e^{-\lambda t} e^{tA}x \, dt \quad (\lambda > \omega)$$

is true for a semigroup of class (0, A) (see [9, 11.5.2]), whence the convexity of Φ gives, for $\lambda > \omega$,

$$\Phi(\lambda(\lambda-A)^{-1}x) \leqslant \int_{0}^{\infty} \lambda e^{-\lambda t} \Phi(e^{tA}x) dt \leqslant \int_{0}^{\infty} \lambda e^{-\lambda t} \Phi(x) dt := \Phi(x).$$

This gives (2.1) on writing $\lambda = t^{-1}$ and $u = (1 - tA)^{-1}x$.

(4.1) implies that $\Phi(e^{tA}(-x)) \leq \Phi(-x) \leq 0$ for $x \in X_+$. Hence $x \in X_+$ implies $e^{tA}x \in X_+$, showing that e^{tA} is positive.

REMARK 4.2. We have assumed that A is the infinitesimal generator of a semigroup. Suppose we do not make this assumption and try to generate a semigroup $\{e^{tA}; t > 0\}$. Then we have to assume in addition to A being Φ -dissipative, that $(1-tA)^{-1}$ exists as a bounded linear operator on X for sufficiently small t. But this does not seem to suffice.

If we assume in addition that Φ has the property:

(C4)
$$\Phi(x) + \Phi(-x) \ge \delta ||x|| \quad (x \in X)$$

for some constant $\delta > 0$, then it is easy to show that A generates a bounded C_0 -semi-group $\{e^{tA}; t > 0\}$. Indeed, we then obtain (4.2) as above. Now (C4) implies that $\|x\|_{\Phi} = \Phi(x) + \Phi(-x)$ is an equivalent norm on X. Moreover, (4.2) implies $\|(1 - tA)^{-1}x_{\Phi} \leq \|x\|_{\Phi}$. Hence A generates a contraction C_0 -semigroup $\{e^{tA}; t > 0\}$ on $(X, \|\cdot\|_{\Phi})$, which is also a bounded C_0 -semigroup in the original norm of X.

Note that if X is an ordered Banach space with closed positive cone X_+ and Φ is the canonical half-norm, then property (C4) simply says that X_+ is a normal cone.

SEMIGROUPS WHICH LEAVE INVARIANT A POSITIVE CONE WITH NONEMPTY INTERIOR

5. THE RESULT

Let X be a real Banach space and X_+ a proper closed cone in X. Let A be a linear operator in X with domain D(A). We consider the following property:

(P) If
$$x \in D(A) \cap X_+$$
 and $f \in X_+^*$ such that $\langle x, f \rangle = 0$, then $\langle Ax, f \rangle \ge 0$.

Property (P) has been considered by Evans and Hanche-Olsen [6]. They prove that (P) is equivalent to e^{tA} being positive for all $t \ge 0$ if A is a bounded operator and X_+ has the "nearest point property".

We denote by $\rho(A)$ the resolvent set of A, that is the set of all complex numbers λ such that $\lambda - A_{\mathbb{C}}$ has a bounded inverse $R(\lambda, A) := (\lambda - A_{\mathbb{C}})^{-1}$. Here $A_{\mathbb{C}}$ denotes the C-linear extension of A in $X_{\mathbb{C}}$, the complexification of X. That is, $A_{\mathbb{C}}$ has the domain $D(A_{\mathbb{C}}) = D(A) + iD(A)$ and $A_{\mathbb{C}}(x + iy) = Ax + iAy$ for $x + iy \in D(A_{\mathbb{C}})$.

For $\lambda \in \rho(A)$ we say $R(\lambda, A)$ is positive $(R(\lambda, A) \ge 0)$ if $R(\lambda, A)_x \in X_+$ whenever $x \in X_+$.

By $\sigma(A)$ we denote the spectrum of A, that is the complement of $\rho(A)$ in \mathbb{C} . The *spectral bound* s(A) of A is the number

$$s(A) = \sup\{Re\lambda ; \lambda \in \sigma(A)\}.$$

If A is the generator of a C_0 -semigroup of type ω the following inequality holds:

$$(5.1) -\infty \leq s(A) \leq \omega < \infty.$$

For the rest of this paper we assume that X_+ has non-empty interior. Then we have the following characterization of operators A with positive resolvent.

THEOREM 5.1. If A is densely defined the following assertions are equivalent.

- (1) A satisfies (P) and there exist arbitrarily large real λ such that $(\lambda A)D(A) = X$.
 - (2) There exist arbitrarily large real $\lambda \in \rho(A)$ such that $R(\lambda, A) \ge 0$.

REMARK. Suppose that it is known that for sufficiently large real $\lambda \in \rho(A)$ there is an estimate of the form $||R(\lambda, A)|| \leq M/\lambda$. Then (2) is equivalent to:

(3) $\rho(A)$ contains an interval of the form (λ_0, ∞) and, for all $\lambda > \lambda_0$, $R(\lambda, A) \ge 0$.

That (3) implies (2) is trivial. To see that (2) implies (3), let $\lambda_0 > 0$ be such that $\|R(\lambda, A)\| \le M/\lambda$ for all $\lambda \in \rho(A)$ with $\lambda > \lambda_0$. Now take any $\mu \in \rho(A)$ with $\mu > \lambda_0$ and $R(\mu, A) \ge 0$. Then we see by the usual geometric series expansion that $R(\lambda, A)$ exists if $(1 - M^{-1})\mu < \lambda \le \mu$, and

$$R(\lambda, A) = \sum_{n=0}^{\infty} (\mu - \lambda)^n R(\mu, A)^{n+1}$$

is obviously a positive operator. By iterating this argument we get the existence and positivity of $R(\lambda, A)$ for $\lambda_0 < \lambda \le \mu$. Since μ can be arbitrarily large, (3) is established.

COROLLARY 5.2. If A is the infinitesimal generator of a strongly continuous semigroup $\{e^{tA}; t > 0\}$ of class $\{0, A\}$ the following are equivalent.

- (i) $e^{tA} \ge 0$ for all t > 0.
- (ii) A satisfies (P).
- (iii) For infinitely many (equivalently, for all) sufficiently large real λ , $R(\lambda, A) \ge 0$.

REMARK. Concerning the proof of 5.2, note that A certainly satisfies the estimate $||R(\lambda, A)|| \le M/\lambda$ for some M and all large λ , so that the preceding remark is applicable. The equivalence of (i), (ii), and (iii) then follows from 5.1 together with the formulas connecting e^{tA} and $R(\lambda, A)$ discussed in Section 4.

From the assumption (1) (equivalently (2)) of Theorem 5.1 alone we can conclude that A is a generator if the cone X_+ has a stronger property. We need that for an interior point u of X_+ the order interval $\{x \in X; -u \le x \le u\}$ is norm-bounded. This is equivalent to X_+ being a *normal* cone (see [12, 2.2]).

THEOREM 5.3. Suppose that X_+ is a normal cone and A is densely defined. Then A is the generator of a positive C_0 -semigroup if and only if A satisfies condition (1) (equivalently (2)) of Theorem 5.1.

In that case, the following formula holds for the type ω and the spectral bound s(A) of the semigroup generated by A.

$$(5.2) s(A) = \omega = \inf\{\lambda \in \mathbb{R} : Au \leq \lambda u \text{ for some } u \in D(A) \cap \operatorname{int}(X_+)\}.$$

REMARK. 5.4. If A is densely defined $D(A) \cap int(X_+)$ is non-empty, so that the set which appears in (5.2) is non-empty.

(5.2) is well known for positive matrices; in fact, (5.2) is the upper estimate for s(A) of Collatz's inclusion theorem [5]. Moreover, in our situation an analogous lower estimate for s(A) is valid (and easier to prove): If $x \in D(A)$, x > 0 and $\lambda \in \mathbb{R}$ such that $Ax \ge \lambda x$, then $\lambda \le s(A)$. In fact, if $\lambda > s(A)$, $R(\lambda, A)$ exists and is positive. Since $Ax - \lambda x \ge 0$ it follows that $-x = R(\lambda, A)(Ax - \lambda x) \ge 0$, a contradiction.

This lower estimate also shows that $\sigma(A)$ is not empty; in fact, if $u \in D(A) \cap \text{int}(X_+)$, then $Au \geqslant \lambda u$ for some λ . But note that this argument fails if

 X_+ has no interior, and indeed it can happen that $\sigma(A)$ is empty even for generators of positive C_0 -semigroups if $\operatorname{int}(X_+) = \emptyset$ (see [7]). In this case it can also happen that $\omega > --\infty$, so that $\omega \neq s(A)$ (see [7]).

6. The proofs

For $u \in \text{int}(X_+)$ we define a function $\Phi_u : X \to \mathbf{R}_+$ by

$$\Phi_{u}(x) = \inf\{\lambda > 0 \; ; \; x \leqslant \lambda u\}.$$

PROPOSITION 6.1. Φ_u is a continuous half-norm which induces the given order of X by (1.3). Moreover,

(6.2)
$$\Phi_{u}(x)u - x \in X_{+} \quad \text{for every } x \in X.$$

Finally, if X_+ is normal Φ_u satisfies (C4) (see Section 4).

Proof. Since $u \in \operatorname{int}(X_+)$ there exists $\varepsilon > 0$ such that $\|u - y\| \le \varepsilon$ implies $y \in X_+$. Let $x \in X$, $\|x\| \le \varepsilon$. Then $\|u - (u - x)\| \le \varepsilon$. Hence $u - x \ge 0$, and $\Phi_u(x) \le 1$. This implies

$$\phi_{n}(z) \leq (1/\varepsilon) ||z|| \quad \text{for all } z \in X.$$

Thus Φ_u is well defined. It is easy to see that Φ_u satisfies (C1) and (C2). So (6.3) implies that Φ_u is continuous.

We prove (6.2). Let $x \in X$. By the definition of Φ_u , $(\Phi_u(x) + (1/n))u \ge x$ for all positive integers n. Hence $n\langle x - \Phi_u(x)u, f\rangle \le \langle u, f\rangle$ for all $n \in \mathbb{N}$ and all $f \in X_+^*$. This implies $\langle \Phi_u(x)u - x, f\rangle \ge 0$ for all $f \in X_+^*$. Hence $\Phi_u(x)u - x \ge 0$ by [11, Corollary 1.3].

 Φ_u induces the given order. In fact, let $x \in X$. Clearly, $\Phi_u(-x) = 0$ if $x \in X_+$. Conversely, if $\Phi_u(-x) = 0$, then $-x \le \Phi_u(-x)u = 0$ by (6.2). Hence $x \ge 0$.

(C3) follows now because X_+ is a proper cone. We have thus proved that Φ_u is a continuous half-norm.

Suppose that X_+ is normal. Then there exists M > 0 such that $||x|| \le M$ whenever $-u \le x \le u$. Using (6.2) we obtain:

$$\max\{\Phi_{\mathbf{u}}(x), \Phi_{\mathbf{u}}(-x)\} \leqslant 1 \text{ implies } ||x|| \leqslant M.$$

By the positive homogeneity of $\| \|$ and (C3),

$$\|x\|_{\varPhi_u} = \varPhi_u(x) + \varPhi_u(-x) \geqslant \max\{\varPhi_u(x), \varPhi_u(-x)\} \geqslant M^{-1}\|x\|_{\bullet}$$

That is, (C4) is valid.

Note: the norm $\| \|_{\Phi_u}$ is equivalent to the order-unit norm $\| \|_u$ defined by u, namely

$$||x||_{u} = \inf\{\lambda : -\lambda u \le x \le \lambda u\}.$$

In fact, $||x||_u = \max\{\Phi_u(x), \Phi_u(-x)\}.$

LEMMA 6.2. If $x \in X$ is such that $\Phi_u(x) > 0$, then there exists $f \in d\Phi_u(x)$ such that $\langle u, f \rangle = 1$.

Proof. Since $\Phi_u(x+tu) = \Phi_u(x) + t$ (t > 0), $[(d/dt)^+\Phi_u(x+tu)]_{t=0} = 1$. By (3.2), there exists $f \in d\Phi_u(x)$ such that $\langle u, f \rangle = 1$.

LEMMA 6.3. Let $u \in D(A) \cap int(X_+)$ be such that $Au \leq 0$. If A satisfies (P), then A is Φ_u -dissipative.

Proof. Let $x \in D(A)$. We show that the criterion of Theorem 3.1 is satisfied. If $\Phi_u(x) = 0$, then $f := 0 \in d\Phi_u(x)$ and $\langle Ax, f \rangle = 0$. So suppose that $\Phi_u(x) > 0$. By 6.2 there exists $f \in d\Phi_u(x)$ such that $\langle u, f \rangle = 1$. So $\langle \Phi_u(x)u - x, f \rangle = 0$. Since $\Phi_u(x)u - x \geqslant 0$ by (6.2) and $f \geqslant 0$ by (3.4) the hypothesis (P) implies that $\langle A(\Phi_u(x)u - x), f \rangle \geqslant 0$. Because $Au \leqslant 0$ this gives $\langle Ax, f \rangle \leqslant \Phi_u(x)\langle Au, f \rangle \leqslant 0$.

LEMMA 6.4. If $u \in D(A) \cap int(X_+)$ and A is strictly Φ_u -dissipative, then A satisfies (P).

Proof. Let $x \in D(A)$, $x \ge 0$, $f \in X_+^*$, $\langle x, f \rangle = 0$. Assume that $f \ne 0$ (otherwise nothing has to be proved). Then $\langle u, f \rangle > 0$ ([12, Corollary 1.4]). Let $g = (1/\langle u, f \rangle)f$. Then $\langle u, g \rangle = 1$ and $g \ge 0$. So $g \in d\Phi_u(-x)$. In fact, $\langle -x, g \rangle = 0 = \Phi_u(-x)$, and for $z \in X$, $\langle z, g \rangle \leqslant \Phi_u(z)$, because $\Phi_u(z)u - z \ge 0$, hence $\langle \Phi_u(z)u - z, g \rangle \ge 0$. It follows from the assumption and Theorem 3.1 that $\langle A(-x), g \rangle \leqslant 0$. Hence $\langle Ax, f \rangle \ge 0$.

Note that A satisfies (P) if and only if $(A - \lambda)$ satisfies (P), where $\lambda \in \mathbb{R}$. This follows immediately from the definition of (P).

COROLLARY 6.5. If A is densely defined and satisfies (P), then A is closable and its closure \tilde{A} satisfies (P).

Proof. Since D(A) is dense in X and $int(X_+)$ is a non-empty open set, there-exists $u \in D(A) \cap int(X_+)$. There exists $\lambda > 0$ such that $Au \le \lambda u$. Let $B = A - \lambda \lambda$. Then $Bu \le 0$. B also satisfies (P) and is densely defined. So by 6.3 B is Φ_u -dissipative, hence closable by 2.4. Consequently, A is also closable. Moreover, the closure B of B is Φ_u -dissipative by 2.3, hence strictly Φ_u -dissipative by 2.5. From 6.4 it follows that B satisfies (P). Hence, $A = B + \lambda$ also satisfies (P).

PROPOSITION 6.6. Suppose that A is densely defined. If there exist arbitrarily large real $\lambda \in \rho(A)$ such that $R(\lambda, A) \ge 0$, then A satisfies (P).

Proof. Let $u \in D(A) \cap \operatorname{int}(X_+)$. Property (P) as well as the hypothesis of the proposition hold for A if and only if they hold for $(A - \lambda)$ $(\lambda \in \mathbb{R})$. Since $Au \leq \lambda u$ for some $\lambda \in \mathbb{R}$, we can assume that $Au \leq 0$. We show that A is Φ_u -dissipative. Then (P) follows from 2.5 and 6.4.

Let $x \in D(A)$. We have to show that there exist arbitrarily small t > 0 such that $\Phi_u(x - tAx) \ge \Phi_u(x)$. Let t > 0 be such that $\lambda = t^{-1} \in \rho(A)$ and $R(\lambda, A) \ge 0$. Let $u' = (\lambda - A)u$. Since $Au \le 0$, we have $\lambda u \le u'$. Hence

$$\lambda R(\lambda, A)u \leq R(\lambda, A)u'.$$

Now let $a > \Phi_u(x - tAx)$. Then $au \ge x - tAx$; consequently, $\lambda au \ge \lambda x - Ax$. Since $R(\lambda, A) \ge 0$, this implies

$$x \le a\lambda R(\lambda, A)u \le aR(\lambda, A)u' = au$$
 (by (6.4)).

Hence $\Phi_u(x) \le a$. Since $a > \Phi_u(x - tAx)$ was arbitrary, we conclude that $\Phi_u(x) \le \Phi_u(x - tAx)$.

LEMMA 6.7. Let A satisfy (P). If $\lambda \in \rho(A)$ is such that $R(\lambda, A) \ge 0$, then there exists $u \in D(A) \cap int(X_+)$ with $Au \le \lambda u$.

Proof. Let $u' \in D(A) \cap int(X_+)$ and let $u = R(\lambda, A)u'$.

We first show that $u \in \operatorname{int}(X_+)$. By [12, Corollary 1.4], this is equivalent to: $\langle u, f \rangle > 0$ for all $f \in X_+^* \setminus \{0\}$. So let $f \in X_+^*$, $f \neq 0$. Since $u' \in \operatorname{int}(X_+)$, it follows that $\langle u', f \rangle > 0$. If $\langle u, f \rangle = 0$, then $\langle Au, f \rangle > 0$ by (P). Since $\lambda u - Au = u'$, this implies that $0 = \lambda \langle u, f \rangle = \langle u', f \rangle + \langle Au, f \rangle > 0$, which is absurd. So $\langle u, f \rangle > 0$, as claimed.

Since
$$(\lambda - A)u = u'$$
, $Au \leq \lambda u$.

Now we are able to prove the two theorems of Section 5.

Proof of Theorem 5.1. (1) implies (2). Let $u \in D(A) \cap \operatorname{int}(X_+)$. There exists $\lambda_0 \in \mathbb{R}$ such that $Au \leq \lambda_0 u$. Since A satisfies (1) (resp. (2)) if and only if $A - \lambda_0$ satisfies (1) (resp. (2)), we can assume that $\lambda_0 = 0$. So $Au \leq 0$ and A is Φ_u -dissipative by 6.3. Let $\lambda > 0$ be such that $(\lambda - A)D(A) = X$. We claim that $\lambda \in \rho(A)$ and $R(\lambda, A) \geq 0$. This will show that (2) follows from (1). The operator $(\lambda - A)$ is injective by 2.2. So $\lambda - A$ is bijective. Thus, in order to show that $\lambda \in \rho(A)$, it is enough to show that A is closed. By Theorem 2.4, A is closable and its closure A is Φ_u -dissipative. Moreover, $(\lambda - A)D(A) = X = (\lambda - \tilde{A})D(\tilde{A})$. Since $\lambda - \tilde{A}$ is injective (by 2.2), this implies that $D(\tilde{A}) = D(A)$. Hence A is closed. It remains to show that $R(\lambda, A) \geq 0$. Let $y \geq 0$. We have to show that $x := R(\lambda, A)y \geq 0$. Since A is Φ_u -dissipative, we have $\Phi_u(-x) \leq \Phi_u(-x + \lambda^{-1}Ax)$; hence $\lambda \Phi_u(-x) \leq \Phi_u(-\lambda x + Ax) = \Phi_u(-y) = 0$. Thus $x \geq 0$.

It follows from 6.6 that (2) implies (1).

Proof of Theorem 5.3. If A is the generator of a positive C_0 -semigroup, (2) is trivially satisfied (cf. [9, 11.7.2]). So, let us assume (2) (equivalently (1)). Let $u \in D(A) \cap \operatorname{int}(X_+)$, $Au \leq \lambda u$. Let $B = A - -\lambda$. Then $Bu \leq 0$ and B satisfies (P) because (1) is valid. By 6.3, B is Φ_u -dissipative. Since Φ_u satisfies (C4) by 6.1, it follows from Remark 4.2 that B generates a positive, bounded C_0 -semigroup $\{e^{iB}; t > 0\}$. Hence A generates the semigroup $\{e^{\lambda t}e^{tB}; t > 0\}$ which is positive and has type $\leq \lambda$. This shows that $\omega \leq \inf\{\lambda; Au \leq \lambda u \text{ for some } u \in D(A) \cap \operatorname{int}(X_+)\}$. Now, (5.2) follows from (5.1) and Lemma 6.7.

REMARK 6.8. Let $\mathfrak A$ be a C^{\otimes} -algebra with unit u. Denote by X the set of all hermitian elements of $\mathfrak A$. X is an ordered Banach space and u an interior point of its positive cone X_+ . Let Φ_u be the half-norm (6.1). Obviously, $\Phi_u(x) := \|x^+\|$ $(x \in X)$. Let us also consider the half-norm Φ given by $\Phi(x) := \|x\|$. Then $\Phi(x) := \Phi_u(x) \vee \Phi_u(-x)$. This shows in particular that X_+ is a normal cone (cf. Remark 4.2). Hence Theorem 5.3 is valid for densely defined operators on X.

We want to compare Φ_u and Φ and the corresponding notions of dissipativity. For the subdifferentials we have the following relation:

(6.5)
$$d\Phi_n(x) = d\Phi(x^+) \quad \text{for all } x \in X \text{ such that } x^+ \neq 0.$$

[In fact, let $f \in d\Phi_{n}(x)$. Then $f \ge 0$ (by 3.4). Hence $\langle z, f \rangle \le \langle |z|, f \rangle \le \Phi(z)$ for all $z \in X$. Moreover,

$$\langle x^-, f \rangle = \langle x^+, f \rangle - \langle x, f \rangle = \langle x^+, f \rangle - \|x^+\| \leqslant \|x^+\| - \|x^+\| = 0.$$

Since $f \ge 0$, it follows that $\langle x^-, f \rangle = 0$. Hence $\langle x^+, f \rangle = \langle x, f \rangle = \|x^+\|$. We have proved that $f \in d\Phi(x^+)$. Conversely, let $f \in d\Phi(x^+)$. Let $f = f^+ - f^-$ be the Jordan decomposition of f; that is, $f^+, f^- \in X_+^*$, $\|f\| = \|f^+\| + \|f^-\|$. Then

$$\langle x^+, f^- \rangle = \langle x^+, f^+ \rangle - \langle x^+, f \rangle = \langle x^+, f^+ \rangle - ||x^+|| \le 0,$$

so that $\langle x^+, f^- \rangle = 0$. Hence $\langle x^+, f^+ \rangle = \|x^+\|$, and it follows that $\|f^+\| = 1$ if $x^+ \neq 0$. But then $\|f^-\| = 0$ and we conclude that $f \geq 0$. Since $\|f\| \leq 1$, it follows that $\langle z, f \rangle \leq \langle z^+, f \rangle \leq \Phi_u(z)$ for all $z \in X$. Hence $f \in d\Phi_u(x)$.]

Let A be an operator on X with dense domain D(A). It follows from (6.5) that A is Φ_u -dissipative if and only if

(6.6) for every
$$x \in D(A)$$
 there exists $f \in d\Phi(x^+)$ such that $\langle Ax, f \rangle \leq 0$.

(6.6) is Jørgensen's definition of dispersiveness [10]. Thus Theorem 2.5 implies the equivalence of (i) and (ii) in [10] (namely dispersiveness and strict dispersiveness). We now compare dissipativity (that is Φ -dissipativity) with Φ_u -dissipativity, assuming that $u \in D(A)$.

The following assertions are equivalent:

- (i) A is Φ_{u} -dissipative
- (ii) A is dissipative and satisfies (P)
- (iii) $Au \leq 0$ and A satisfies (P).

[In fact, if A is Φ_n -dissipative, then

$$\Phi(x) = \Phi_u(x) \vee \Phi_u(-x) \leqslant \Phi_u(x - tAx) \vee \Phi_u(-(x - tAx)) = \Phi(x - tAx)$$

for all $x \in D(A)$ and $t \ge 0$. Hence A is dissipative. Moreover, A satisfies (P) by 6.4 and 2.5. We have proved that (i) implies (ii). If A is dissipative, then $Au \le 0$. [In

fact, let $f \ge 0$, ||f|| = 1. Then $\langle u, f \rangle = 1 = \Phi(u)$. Hence $f \in d\Phi(u)$. Since A is strictly dissipative by 2.5, it follows that $\langle Au, f \rangle \le 0$. Consequently, $Au \le 0$. This proves that (iii) follows from (ii). Finally, Lemma 6.3 gives the remaining implication.]

To prove another relation, assume that A is dissipative. If $Au \ge 0$, then A satisfies (P).

[In fact, suppose $x \in X_+ \cap D(A)$ and $f \in X_+^*$, ||f|| = 1, such that $\langle x, f \rangle = 0$. Let y = ||x||u - x. Then $y \in D(A)$, and $f \in d\Phi(y)$ because

$$\Phi(y) \geqslant \langle y, f \rangle = \|x\| \langle u, f \rangle - \langle x, f \rangle = \|x\| - 0 \geqslant \|y\| = \Phi(y).$$

Hence

$$0 \ge \langle Ay, f \rangle = ||x|| \langle Au, f \rangle - \langle Ax, f \rangle$$

and so $\langle Ax, f \rangle \ge ||x|| \langle Au, f \rangle \ge 0$; that is, (P) holds.]

In particular, we get the following conclusion (using the fact that (iii) implies (i)):

If Au = 0, then A is dissipative if and only if A is Φ_u -dissipative (cf. [10, Corollary]). Of course, if A is the generator of a C_{θ} -semigroup, this follows from the well known fact that a bounded *-preserving operator T on $\mathfrak A$ with Tu = u is positive if and only if T is contractive.

Research of W.A. supported by the Deutsche Forschungsgemeinschaft. Research of T.K. partially supported by NSF Grant MCS-79-02578.

REFERENCES

- 1. Batty, C. J. K., Dissipative mappings with approximately invariant subspaces, J. Functional Analysis, 31(1979), 336-341.
- Browder, F. E., Nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc., 73(1967), 470-476.
- CALVERT, B. D., Semigroups in an ordered Banach space, J. Math. Soc. Japan, 23(1971), 311-319.
- 4. CHERNOFF, P. R., Unpublished note, 1978.
- COLLATZ, P., Einschliessungssatz fuer die charakteristischen Zahlen von Matrizen, Math. Z., 48(1942), 221-226.
- 6. EVANS, D. E.; HANCHE-OLSEN, H., The generators of positive semigroups, J. Functional Analysis, 32(1979), 207-212.
- Greiner, G.; Voigt, J.; Wolff, M., On the spectral bound of semigroups of positive operators, J. Operator Theory, 5(1981), 245-256.
- 8. HASEGAWA, M., On contraction semi-groups and (di)-operators, J. Math. Soc. Japan, 18(1966), 290-302.
- HILLE, E.; PHILLIPS, R. S., Functional analysis and semigroups, Amer. Math. Soc. Col. Pub. Vol. XXXI, Providence, Rhode Island, 1957.
- Jergensen, P., Dispersive mappings in operator algebras, Abstract 81T-47-256, AMS Abstracts 2(1981), 409.

- 11. KATO, T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19(1967), 508--520.
- 12. Krein, M. G.; Rutman, M. A., Linear operators leaving invariant a cone in a Banach space, AMS Translations, 26(1950), 1-128.
- 13. Lumer, G.; Phillips, R. S., Dissipative operators in a Banach space, *Pacific J. Math.*, 11(1961), 679-698.
- Moreau, J. J., Fonctionelles convexes, Séminaire sur les équations aux derivées partielles, Collège de France, 1966-1967.
- 15. Phillips, R. S., Semi-groups of positive contraction operators, *Czechoslovak Math. J.*, 12 (1962), 294--313.
- 16. SATO, K., On the generators of non-negative contraction semi-groups in Banach lattices, J. Math. Soc. Japan, 20(1968), 423--436.

WOLFGANG ARENDT Mathematisches Institut, Universität Tübingen, 74 Tubingen, W. Germany. PAUL R. CHERNOFF and TOSIO KATO
Department of Mathematics,
University of California,
Berkeley, California 94720,
U.S.A.

Received August 10, 1981.