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A GENERALIZATION OF DISSIPATIVITY AND POSITIVE
SEMIGROUPS

WOILFGANG ARENDT, PAUL R. CHERNOFF and TOSIO KATO

INTRODUCTION

The starting point of this paper is a “half-norm” & on a Banach space X,
that is, a positive homogeneous, subadditive real-valued function on X. Such a
half-norm defines a positive cone X, = {x; ®(—x) < 0}, and we assume in addi-
tion that this cone is proper. Conversely, every closed, proper cone X, in a Banach
space 1s generated by a continuous half-norm (e.g., ¢/x) == dist{—x, X ,)).

In Part [ we develop a theory of @-contraction semigroups and the associated
class of ¢-dissipative operators. These semigroups are in particular positive, i.e.
they leave the cone X, invariant. :

If &(x)=|x||, P-dissipativity is simply dissipativity, and we recover the
Hille-Yosida theorem (X, is trivial in this case). If §(x) = |x*|| (X being a Banach
lattice), P-dissipativity is the same as dispersiveness as introduced by Phillips [15].
As has been done in these special cases, ¢-dissipativity can be expressed in terms
of the subdifferential d® of ®. We also give a notion of strict P-dissipativity and
there is a remarkable result : @-dissipativity implies strict @-dissipativity if the opera-
tor is densely defined.

In Part IT we consider an ordered Banach space X whose positive cone X,
has non-empty interior. Every u € int(X,) defines in a natural way a half-norm &,
which generates the given cone. Applying the results of Part I to these half-norms
we show that, if the cone is normal, a densely defined operator A in X is the infini-
tesimal generator of a Cy-semigroup if and only if its resolvent R(4, A) exists and is
positive for all large real 1. The latter property, in turn, can be expressed by the
usual range conditions together with a minimum principle (P) which has been consi-
dered by Evans and Hanche-Olsen [6] for bounded generators.

We conclude with an application of our general theory to the case when X

is the space of hermitian elements of a C*-algebra, where we obtain results recently
announced by Jorgensen [10].
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®-DISSIPATIVE OPERATORS

1. HALF-NORMS
Let X be a real vector space. A real-valued function @ on X will be called a
half-norm if the following conditions (C 1--3) are satisfied.
(C1) &(x -+ ) < D(X) + (y) (subadditivity)
(C2) @(tx) ==tP(x) for t 20 (positive homogeneity)
(C3) &)+ &(—x) >0 for x # 0.

Note that (C1) and (C2) imply that @ is convex with $(0) = 0 and that
&(x) -~ ®(- x) = 0. In view of (C3),

(1.1 fixlp = B(x) + B(— x)

defines a norm on X. This is why we call @ a half-norm.

In what follows we assume that X is a real Banach space with its own norm
1 4. We will always assume that & is continuous. Because of the positivehomo-
geneity this means that there exists a constant ¢ > 0 such that

(1.2) 'D(x) < efxl.
One can introduce an order relation in X by stipulating that
(1.3) x <y if and only if &(x — y) < 0.

With this definition X becomes an ordered Banach space whose positive cone .V,
is the closed set consisting of all x € X such that §(—x) < 0.

Conversely, given an ordered Banach space X with a closed positive cone X,
there always exists a continuous half-norm @ that induces the order via (1.3); for
example,

(1.4) B(x) = dist(— x, X,).

We call (1.4) the canonical half-norm for the given order. Canonical half-norms were
considered by Calvert [3], though in a different form.

EXAMPLES 1.1. (a) @(x) == |x|| gives the trivial cone X, == {0}.

(b) Tf X is a Banach lattice, ®(x) == [x*|| is the canonical half-norm that
induces the given order.
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(¢) Similarly, if X is the space of hermitian elements in a C#-algebra, then
@(x) == ||x*| is the canonical half-norm.

2. D-DISSIPATIVE OPERATORS

Let X be a real Banach space and @ a continuous half-norm on X. Let A4
be a linear operator with domain D(A) and range R(A4) in X.

We say A is ®-dissipative if
2.1 D(u — tAu) = d(u) for ueD(A) and ¢ = 0.

Since ®(u — tAu) is a convex function of r € R, (2.1) is equivalent to
(2.2) [((d/d)+P(u — tAW)]i=o = 0 for u e D(A),
where (d/d¢)* denotes the right derivative.

We say A is strictly ®-dissipative if
23) [(d/dr)=(u — tAw)i_o > 0 for ueD(A),
where (d/d¢)~ is the left derivative. Due to the convexity of ®(u — tAu) in t, strict
d-dissipativity implies @-dissipativity.

ExaMpLE 2.1. (cf. Example 1.1) (a) If &(x) = [[x], (strict) &-dissipativity
reduces to (strict) dissipativity (cf. Browder [2], Kato [11]).

(b) If &(x) = ||x* |l (assuming that X is a Banach lattice), ®-dissipativity
coincides with the property of dispersiveness due to Phillips [15] (see also Hasegawa
[8], Sato [16)), although this is not obvious. (The proof will be given below in Example
3.2(b), after another characterization of &-dissipativity has been introduced.)

PROPOSITION 2.2. If A is ®-dissipative, | — tA is injective for t 2 0.

Proof. Suppose u — tAu = 0, where u e D(A) and ¢ = 0. Then (2.1) implies
®(u) < 0. Since —u satisfies the same condition as u#, we have also @#(—u) < 0.
Thus we conclude u = 0 from (C3).

THEOREM 2.3. If a ®-dissipative operator A is closable, the closure A is also
D-dissipative.
Proof. This follows directly from (2.1).

REMARK. It is not known whether @-dissipativity in Theorem 2.3 can be re-
placed with strict ®-dissipativity. However, Theorem 2.5 establishes this for densely
defined opcrators.

THEOREM 2.4. If A is densely defined and d-dissipative, then A is closable (hence
A is O-dissipative by Theorem 2.3).

Proof. Let u, e D(A), u, » 0, Au, - ve X, n — co. We have to show that
v == 0. To this end, let we D(A). Then (2.1) gives

D(u, -+ tw) € Plu, + tw — tA, - tw)), > 0.
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Because @ is continuous we can let # — oo, getting
D(tw) < B(t(w — v) — 12 Aw).

Hence @(w)<P(w — v — tAw) by positive-homogeneity. Letting ¢ | 0 finally gives
P(w) < @(w — ¢). Since D(A) is dense by hypothesis, we can let w -»> r, obtzining
@(c) < ¢(0) - - 0. Since A(—w,) —» —r as n - oo, we have ¢(—~r) < 0 similarly.
Hence v = 0 by (C3).

THEOREM 2.5. If A is denscly defined . A is ®-dissipative if and onlv if” A is
strictly P-dissipative. (More gencrally, it suffices that D(A) is dense with respeet to

R(4).)
Proof. Suppose that A4 is ®-dissipative. Let u, w e D(A4), ¢t > 0. Then

D(u -+ tAu) < O - tw) -+ ctlw — Aull < {by (C'1) and (1.2))
SO - - tA)(u -+ tw)) 4 ctw - Aul|| -= (by (2.1)
s Pl H(w — Au) — £2Aw) - ctlw — Au|| <
< O(u) -+ 2ethw ~- Au’l - e Aw. (by (1.2)
It follows that [(d/dt)-®(u — tAW));. o = —2chw — Aul. If D(A) is dense  with
respect to R(A), we may let w - Au, obtaining (2.3). Thus A is strictly ®-dissipative.

REMARK. In the special case of dissipativity (@(x) == |xy), Theorem 2.5
has been mentioned by several authors independently (Chernoff [4], Batty [I]).
Theorem 2.4 was proved by Lumer and Phillips [13] in the dissipative case, and by
Sato [16] in the dispersive case. Curiously, it appears that Theorem 2.3 has not
previously been proved in the dispersive case, probably because condition (2.1)
was not known in that case.

3. @-DISSIPATIVITY AND THE SUBDIFFLRENTIAL OF 9.

Sometimes it is convenient to express @-dissipativity in terms of the sub-
differential d® of &; in fact ordinary dissipativity and dispersiveness are usually
defined in this manner.

Recall that @ is a convex, continuous map of X into R. The subdiffcrential
de is a map from X to 2¥*. For each x € X, d®(x) is by definition the set of all f'e X+
such that
3.1 (x, Y =@(x) and (p, f) < &) for all yeX

(because @ is positive homogeneous in our case).
The one-sided directional derivatives of @ have well known representations
by means of the subdifferential (see e.g.: Moreau [14, (10.15)]).

(3.2) [(d/dD)*D(x + t))l-0 = max{{y, f); fe dP(x)}
(3.3) [(d/d)~B(x + t9)li o = min{{y, f); fe dP()}.
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Accordingly, from the definition (2.2—3) of (strict) P-dissipativity, we have
the following criteria.

TuroreM 3.1. A is ®-dissipative if and only if for each u e D(A4), {Au, f) < 0
for some fe dd(u).

A iy strictly d-dissipative i and only if for each u € D(A),

(Au, f) <0 for every fedd(u).

Finally, let us recall that X carries an ordering associated with @ by (1.3).
Defining the order on X* as usual we obtain from (3.1)

(3.4) £20 if fedd®)

ExaMpLE 3.2. (a) ®(x) = ||x|. In this case d® is the duality map: dd(x)
contains each e B* with {x,f) = |x||. This implics that || ]| = 1 if x # 0, while
do(0) =2 B*. (Here B* denotes the unit-ball of X*.)

(b) &(x) = ||x*| (X is a Banach lattice). In this case it is ecasy to sce that
fed®(x) is characterized by

(3.5) JeBY (=B X% with (x, f) = |x*].

(3.5) implies that <x',f> = 0, and that || || = 1if x* # 0 while 0 € d&(x) if x+ = 0.
Thus Theorem 3.1 shows that in this case ®-dissipativity coincides with dispersi-
veness as defined by Phillips [15]. Indeed, Phillips calls an operator A dispersive if
[Ax, x*] < 0. Here [x, y] = (x, g) is a semi-inner product: g = g(y) is some vector
in X* such that ||gli* = |yII* = {(», g) and ge X* if ye X,. Thus [4x,x*] <0
is equivalent to {4x,f) < 0 for some fe X* such that || £ = [[x+]* = (x*, f).
In view of the remarks made above, this condition is cquivalent to (3.5) by a simple
change of normalization of f.

4, P-CONTRACTION SEMIGROUPS

In this section we consider the infinitesimal generator 4 of a strongly conti-
nuous semigroup {U(?); ¢ > 0} on X, and we write U(f) = e™. We assume that
et > 0} is of a class (0, 4) and type w, as defined by Hille-Phillips [9].

For the convenience of the reader, we recall that the type of U(¢) is the infimum
of the set of real numbers w, such that |U(z)|| € Me* for some M and alllarge ¢.
If 2 > o then the resolvent (X — A4)~1 = R(4, A) exists. The semigroup U(¢) = ¢*/
is said to be of class (A) provided that AR(4, 4) — I in the strong operator topology

1

as A -» 0o0. The semigroup is of class (0, A) if in addition the intcgrals VU)X de

0

is finite for each x e X (see [9, § 10.6]).
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THEOREM 4.1. Let {e*4;t > 0} be of class(0, A) and type w. Let ® be a half-
-norin on X. Then

@.1 PEex) < P(x) (>0, xeX)

if and only if A is ®-dissipative. In this case ' is positive for t > (.
Proof. 1t is known that (1 — tA) ! exists and is bounded on X for ¢~ > w.
If &~ tAu) = &), it follows that

(4.2) O((1 — tA)"'x) € @¢(x) for all xe X.

Then @((1 - - tA)~"x) < ®(x) by iteration, and (4.1) follows from the formula
ety = lim(l -- (¢/m)A)~"x (see {9, (11.6.6))).

#->00

Suppose, conversely, that (4.1) is true. The relation

ML — A)~x = S lem¥etxdr (A > )

0

is true for a semigroup of class (0, A) (see [9, 11.5.2])), whence the convexity of &
gives, for A > w,
S(AA— A" X)L Sle‘“@(e”‘x) dt < S).e‘“@(x) dt == o(x).
) g
This gives (2.1) on writing A == t~Y and u = (1 — t4)~x.
(4.1) implies that ®(e*4(--x)) € ®(—x) < 0 for x e X,.. Hence x € X, implics
¢“x e X, showing that e/ is positive.

REMARK 4.2. We have assumed that A is the infinitesimal generator of a
semigroup. Suppose we do not make this assumption and try to generate a semigroup
{e*1; ¢t > 0}. Then we have to assume in addition to 4 being P-dissipative, that
(1 tA)-! exists as a bounded linear operator on X for sufficiently small ¢. But
this does not seem to suffice.

If we assumc in addition that @ has the property:

(C4) D(x) + &(—x) = olix|] (xeX)

for some constant § > 0, then it is easy to show that 4 generates a bounded Cy-semi-
group {e*4; ¢ > 0}. Indeed, we then obtain (4.2) as above. Now (C4) implies that
|xlle = &(x) + ®P(—x) is an equivalent norm on X. Moreover, (4.2) implies
(1 — t4)~xy < | x|lo. Hence A generates a contraction Cy-semigroup {e'4;t > 0}
on (X, !p), which is also a bounded Cgy-semigroup in the original norm of X.
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Note that if X is an ordered Banach space with closed positive cone X, and
@ is the canonical half-norm, then property (C4) simply says that X, is anormal
cone.

SEMIGROUPS WHICH LEAVE INVARIANT A POSITIVE
CONE WITH NONEMPTY INTERIOR

5. THE RESULT

Let X be a real Banach space and X', a proper closed cone in X. Let A be a
linear operator in X with domain D(A4). We consider the following property:

(P) IfxeD(4)n X, and fe X% such that {x,f) = 0, then (Ax,f) > 0.

Property (P) has been considered by Evans and Hanche-Olsen [6]. They
prove that (P) is equivalent to e** being positive for all t > 0if 4 is a bounded operator
and X, has the *“‘nearest point property™.

We denote by p(A) the resolvent set of A4, that is the set of all complex num-
bers 4 such that A — Ac¢ has a bounded inverse R(4, A):= (4 -- 4.)~L Here A,
denotes the C-linear extension of A in X, the complexification of X. That is, A
has the domain D(A4¢) = D(A4) + iD(4) and A(x 4- iy) == Ax + idy for x -+ iy e
€ D(40).

For 4 € p(A) we say R(4, A) is positive (R(A, A) = 0) if R(4, 4), € X, whenever
xelX,.

By o(A) we denote the spectrum of A4, that is the complement of p(4) in C.
The spectral bound s(A) of A is the number

s(4) = sup{Rek; e o(A4)}.

If A is the generator of a Cy-semigroup of type w the following inequality
holds:

5.1) — 00 £ 8(A4) € w < oco.

For the rest of this paper we assume that X, has non-empty interior. Then
we have the following characterization of operators 4 with positive resolvent.

THEOREM 5.1. If A is densely defined the following assertions are equivalent.

(1) A satisfies (P) and there exist arbitrarily large real A such that
(2 — A)D(A) = X.

(2) There exist arbitrarily large real A € p(A) such that R(4, A) =z 0.

REMARK. Suppose that it is known that for sufficiently large real A e p(4)
there is an estimate of the form ||R(4, 4))} < M/A. Then (2) is equivalent to:

(3) p(A)-contains an interval of the form (4,, o0)and, for all 4 > 4y, R(4, 4) > 0.
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That (3) implies (2) is trivial. To see that (2) implies (3), let 2, > 0 be such
that [R(4, A)I| < M/2 for all /e p(A) with 4 > i,. Now take any pe p(A4) with
i > Ay and R(u, A) = 0. Then we see by the usual geometric series expansion that
R(4, A) exists if (1 — M-Yu < A < pu, and

R(L A) = ¥ (1~ H'R(u, )"+
=0

n==

is obviously a positive operator. By iterating this argument we get the existence and
positivity of R(4, 4) for A, < 2 < p. Since u can be arbitrarily large, (3) is estab-
lished.

COROLLARY 5.2. If A is the infinitesimal generator of a strongly continuous
semigroup \e* ; t > 0} of class 10, A) the following are equivalent.
@@ e“ =0 for all t > 0.
(ii) A satisfies (P).
(iii) For infinitely many (equivalently, for all) sufficiently large real 2, R(i, A) = 0.

REMARK. Concerning the proof of 5.2, note that A certainly satisfies the
estimate ||R(4, 4)|| € M/A for some M and all large 4, so that the preceding remark
is applicable. The equivalence of 7i), (ii), and (iii) then follows from 5.1 together
with the formulas connecting e’/ and R(4, 4) discussed in Section 4.

From the assumption (1) (equivalently (2)) of Theorem 5.1 alone we can con-
clude that A4 is a generator if the cone X, has a stronger property. We need that
for an interior point u of X, the order interval {xe X; —u < x < u} is norm-
-bounded. This is equivalent to X, being a normal cone (see [12, 2.2]).

THEOREM 5.3. Suppose that X, is a normal cone and A is densely defined. Then
A is the generator of a positive Cy-semigroup if and only if A satisfies condition (1)
(equivalently (2)) of Theorem 5.1.

In that case, the following formula holds for the type w and the spectral bound
s(A) of the semigroup generated by A.

(5.2 s(4) = w = inf{l e R; Au < Au for some u e D(4) nint(X,)}.

REMARK. 5.4. If A4 is densely defined D(4) nint(X,) is non-empty, so that
the set which appears in (5.2) is non-empty.

(5.2) is well known for positive matrices; in fact, (5.2) is the upper estimate
for s(A) of Collatz’s inclusion theorem [5]. Moreover, in our situation an analogous
lower estimate for s(A) is valid (and easier to prove): If xe D(4), x > 0 and AeR
such that Ax > Ax, then A < s(4). In fact, if 2 > s(4), R(4, A) exists and is positive.
Since Ax — Ax = 0 it follows that —x = R(4, A)(dx — Ax) > 0, a contradiction.

This lower estimate also shows that o(4) is not empty; in fact, ifue
e D(A) n int(X,), then Au > Ju for some A. But note that this argument fails if
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X, has no interior, and indeed it can happen that g(4) is empty even for genera-
tors of positive Cy-semigroups if int(X,) == @ (see [7]). In this case it can also
happen that w > -- o0, so that @ # s(A4) (see [7]).

6. THE PROOFS

For u e int(X,) we define a function ¢, : X -» R, by
6.1 @, (x) = inf{l > 0; x < Au}.

ProposiTiON 6.1. @, is a continious half-norm which induces the given order
of X by (1.3). Moreover,

(6.2) P (X —xeX, forevery xeX.
Finally, if X, is normal &, satisfies (C4) (see Section 4).

Proof. Since u e int(X,) there exists ¢ > 0 such that |lu — y| < ¢ implies
yeX,.. Let xeX, |x| €& Then |u— (v — x)| <e Hence u —x =0, and
®,(x) < 1. This implies
(6.3) P.(2) < (1/e)]|z] for all ze X.

Thus @, is well defined. Tt is easy to see that &, satisfies (C1) and (C2). So (6.3)
implies that @, is continuous.

We prove (6.2). Let x e X. By the definition of &,, (®,(x) + (1/a))u = x for
all positive integers n. Hence n{x — @(x)u, /) < {u,f) forall ne N and all fe X%,
This implies (@,(x)u — x,f) > 0 for all fe X*%. Hence P, (x)u — x > 0 by [11,
Corollary 1.3].

&, induces the given order. In fact, let x € X. Clearly, ¢,(—x) =0if xe X,.
Conversely, if @,(—x) = 0, then —x < @,(—x)u == 0 by (6.2). Hence x > 0.

(C3) follows now because X, is a proper cone. We have thus proved that
&, is a continuous half-norm.

Suppose that X, is normal. Then there exists M > 0 such that ||x|| < M
whenever —u € x < w. Using (6.2) we obtain:

max{®,(x), ,(—x)} < 1 implies ||x|| < M.
By the positive homogeneity of || || and (C3),
[xllo, = Pu(x) -+ P (—X) > max{D,(x), (—x)} = M~*[x].
That is, (C4) is valid.

Note: the norm || ||, is equivalent to the order-unit norm || ||, defined by «,
namely
lxll, = inf{A ; —du < x < Au}.

Tn fact, |x||, = max{®,(x), B,(—x)}.

LEMMA 6.2. If x€X is such that ®,(x) > 0, then there exists fe d®, (x) such
that {u, f) = 1.
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Proof. Since @,(x -} tu) =- ®,(x) + 1 (1 > 0), [(d/de)* D, (x - tu)];0 = |. By
(3.2), there exists f'e d®,(x) such that {u, f) = 1.

LEMMA 6.3. Let ue D(A) nint(X,) be such that Au < 0. If A satisfies (P),
then A is @ ~dissipative.

Proof. Let x € D(A). We show that the criterion of Theorem 3.1 is satisfied.
If ¢,(x) =0, then f:~ 0ed®,(x) and {Ax,[f) == 0. So suppose that & (x) > 0.
By 6.2 there exists f'e d®,(x) such that {u, f) = 1. So {@,(x)u — x,f) -= 0. Since
P (¥)u-—x 20 by (62) and />0 by (3.4) the hypothesis (P) implies that
(AP, (x)u — x),f) > 0. Because Au < 0 this gives {Ax,f) < @,(x){Au,f) < 0.

Lemma 6.4, If ue D(A) nint(X,) and A is strictly @ dissipative, then A
satisfies (P).

Proof. Let xe D(A), x 2 0, fe X%, (x,f) = 0. Assume that f # 0 (other-
wise nothing has to be proved).Then {(u. /) > 0 ([12, Corollary 1.4]). Let g -~
= (1/Cu, /). Then {u,g) =1 and g > 0. So ged®,(—x). In fact, {--x,g) =

®,(--x), and for ze X, {z,g) < ®,(z), because @,(z)u ~z > 0, hence
(P~ z,g) 2 0. Tt follows from the assumption and Theorem 3.1 that
{A(--x).8) < 0. Hence {Ax,f) >0

Note that A satisfies (P) if and only if (4 — 7) satisfies (P), where 2 ¢ R. This
follows immediately from the definition of (P).

COROLLARY 6.5. If A is densely defined and satisfies (P), then A is closable
and its closure A satisfies (P).

Proof. Since D(A) is dense in X and int(X,) is a non-empty open set, there.
exists v e D(A) nint(X,). There exists 2 > 0 such that Au < Au. Let B=: A - . j
Then Bu < 0. B also satisfies (P) and is densely defined. So by 6.3 B is & -dissi-
pative, hence closable by 2.4. Consequently, A is also closable. Moreover, the closure
Bof Bis & -dissipative by 2.3, hence strictly ¢ -dissipative by 2.5. From 6.4 it follows
that B satisfies (P). Hence, A = B -+ A also satisfies (P).

PROPOSITION 6.6. Suppose that A is densely defined. If there exist arbltranlv
large real 2€ p(A) such that R(4, A) = 0, then A satisfies (P).

Prooj Let u e D(A4) nint(X,). Property (P) as well as the hypothesis of the
proposition hold for A4 if and only if they hold for (4 — 2) (A e R). Since Au < Au
for some A € R, we can assume that Au <0. We show that A4 is ®,-dissipative. Then
(P) follows from 2.5 and 6.4.

Let x € D(A4). We have to show that there exist arbitrarily small t > 0 such
that @,(x — rdx) = @,(x). Let + > 0 be such that 4 = 7~ ¢ p(4) and R(4, 4) >0.
Let o' == (A — A)u. Since Au < 0, we have iu < u’. Hence

(6.4) AR(A, A)u < R(A, A)v'.
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Now let @ > @,(x — tAx). Then au > x — tAx; consequently, lau > Ax — Ax.
Since R(4, 4) = 0, this implies

x €aAR(A, Hu <aR(A, A’ = au (by (6.4)).

Hence @,(x) < a. Since a > &,(x — tAx) was arbitrary, we conclude that &,(x) <
< P, (x — tAx).

LemMmA 6.7. Let A satisfy (P). If A€ p(A) is such that R(2, A) = 0, then there
exists u € D(A) nint(X,) with Au < Au.

Proof. Let u' e D(A) nint(X,) and let u = R(4, Au'.

We first show that ue€ int(X,). By [12, Corollary 1.4], this is equivalent to:
{u,f) > 0 for all fe X¥\{0}. So let fe X*, f+# 0. Since «’ eint(X,), it follows
that (u',f) > 0. If {u,f) =0, then {(Au,f) > 0 by (P). Since lu — Au=u’,
this implies that 0 == A{u, f) = {u', f) + (Au,f) > 0, which is absurd. So {u, f) >
> 0, as claimed.

) Since (A — Au =u', Au < Ju.

Now we are able to prove the two theorems of Section 5.

Proof of Theorem 5.1. (1)implies (2). Let u € D(A4) n int(X,). There exists A, € R
such that Au < Auu. Since A satisfies (1) (resp. (2)) if and only}if 4 — 1, satisfies (1)
(resp. (2)), we can assume that 4; = 0. So Au < 0 and A4 is ¢,-dissipative by 6.3. Let
A > 0 be such that (1 — A)D(A) == X. We claim that A € p(4) and R(4, 4) > 0.This
will show that (2) follows from (1). The operator (1 — A) is injective by 2.2. So
A —- A) is bijective. Thus, in order to show that A e p(4), it is enough to show that
A is closed. By Theorem 2.4, 4 is closable and its closure A is @ ,-dissipative. More-
over, (4 — A)D(A) == X = (A — A)D(A). Since A — A is injective (by 2.2), this
implies that DfA) = D(A). Hence A is closed. It remains to show that R(4, 4) = 0,
Let y = 0. We have to show that x:= R(4, A)y > 0. Since A is @, -dissipative,
we have @,(—x) < P,(—x + A714x); hence AP,(—x) < P ,(—Ax + Ax)=:P,(—)) =
=: 0. Thus x = 0. :

It follows from 6.6 that (2) implies (1).

Proof of Theorem 5.3. If A is the generator of a positive Cy-semigroup, (2)
is trivially satisfied (cf. [9, 11.7.2])). So, let us assume (2) (equivalently (1)). Let
ue D(A) nint(X,), Au < Au. Let B=A -- A. Then Bu < 0 and B satisfies (P)
because (1) is valid. By 6.3, Bis ®,-dissipative. Since @, satisfies (C4) by 6.1, it follows
from Remark 4.2 that B generates a positive, bounded Cy-semigroup {e’2; ¢ > 0}.
Hence A generates the semigroup {e*e*8; 1 > 0} which is positive and has type <A.
This shows that w < inf{1; Au < Au for some ue D(4)nint(X,)}. Now, (5.2)
follows from (5.1) and Lemma 6.7.
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REMARK 6.8. Let U be a C*-algebra with unit . Denote by X the set of all
hermitian elements of . X is an ordered Banach space and u« an interior point of
its positive cone X,. Let &, be the half-norm (6.1). Obviously, &, (x): = fjx*|
(x & X). Let us also consider the half-norm & given by ®(x) == {|x}|. Then &(x) ==

4.2). Hence Theorem 5.3 is valid for densely defined operators on X.

We want to compare @, and @ and the corresponding notions of dissipativity.
For the subdifferentials we have the following relation:

(6.5) do,(x) = d&(x*) for all x e X such that x* # 0.

[In fact, let fe d®,(x). Then f > 0 (by 3.4). Hence (z,f) < {lz|,f) < ®(z) for all
z e X. Moreover,

G ) =0 ) = [ = ) — lxtl < et — et =0

Since f >0, it follows that (x~, f) =0. Hence (x ¥, f) == {x, [ = |x*ji. We have
proved that fe d®(x+). Conversely, let fe d®(x*). Let f== f+ — f~ be the Jordan
decomposition of f; that is, £+, f- e X¥ I fll = £+l + |f~|. Then

[Ty =t [y = ot )y = (x%, f5) — Ix*l <0,

so that {x*, f~) == 0. Hence {x*, f+) = {x*[, and it follows that || f*| == 1 if
x* 5 0. But then || f~}| = 0 and we conclude that /' > 0. Since || f]| < 1, it follows
that (z, f) < (z*, f) < ®,(z) for all z e X. Hence fe dd,(x).]

Let A be an operator on X with dense domain D(4). It follows from (6.5)
that 4 is ®,-dissipative if and only if

(6.6) for every x € D(A) there exists fe d®(x*) such that {(4x, f) < 0.

(6.6) is Jorgensen’s definition of dispersiveness [10). Thus Theorem 2.5 implies
the equivalence of (i) and (ii) in [10] (namely dispersiveness and strict dispersiveness).
We now compare dissipativity (that is @-dissipativity) with &¢,-dissipativity, assuming
that ue-D(4).

The following assertions are equivalent:

(i) A is ¢ -dissipative

(i) A is dissipative and satisfies (P)

(iii)) Ax < 0 and A satisfies (P).
[In fact, if A is & -dissipative, then

D(x) = P X)) v P (—Xx) € P (x — tAX) v D (— (x — tAX)) = P(x - - tAX)

for all x e D(A4) and ¢ > 0. Hence A is dissipative. Moreover, A satisfies (P) by 6.4
and 2.5. We have proved that (i) implies (ii). If 4 is dissipative, then Av < 0. {In
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fact, let f > 0, || fll == 1. Then {u, f) = 1 == ®(u). Hence f'e dP(u). Since A is strictly
dissipative by 2.5, it follows that {Au, f) < 0. Consequently, Au < 0. This proves
that (iii) follows from (ii). Finally, Lemma 6.3 gives the remaining implication.]

To prove another relation, assume that A4 is dissipative. 1f Au 2 0, then A
satisfies (P).
[In fact, suppose x € X, N D(4) and feX¥, |f§ =1, such that {x, f) =0. Let
y == ||x|lu -~ x. Then y e D(4), and fe d®(y) because

P(y) 2 {3, f) = [xlu, ) = Lx, 1) = Ux) — 0 = jyll = ().
Hence

0 = (Ay, ) = lixl{Au, 1 — (Ax, f)

and so {Ax, f) = |x[|[{Au, /) = 0; that is, (P) holds.]

In particular, we get the following conclusion (using the fact that (iii) implies
(1):

If Au = 0, then A is dissipative if" and only if A is @ dissipative (cf. [10, Co-
rollary]). Of course, if 4 is the generator of a Cy-semigroup, this follows from the
well known fact that a bounded *-preserving operator T on ¥ with Tu = u is positive
if and only if T is contractive.
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