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ALMOST UNIFORMLY CONTINUOUS AUTOMORPHISM
GROUPS OF OPERATOR ALGEBRAS

GEORGE A. ELLIOTT and LASZLO ZSIDO

INTRODUCTION

Consider the following property of a C*-dynamical system (4, G, &), where G
is an abelian locally compact group and a is a strongly continuous homomorphism
G — Aut(A4): o leaves cach primitive ideal of 4 invariant, the homomorphism from
G into the automorphism group of each primitive quotient of 4 induced by o has
compact spectrum (equivalently, is uniformly continuous), and the “covering size”
of this compact spectrum is bounded by a number which is independent of the pri-
mitive quoticnt. By the “covering size”” of a compact subset of G we mean the smai-
lest number of translates of a fixed compact neighbourhood of 0 in G needed o
cover it. (Note that any two compact neighbourhoods of 0 in G give essentially the
same notions of covering size — each bounded by a multiple of the other.)

In this paper, this property of a C*-dynamical system, together with the ana-
logous property of a W#*-dynamical system, is shown to arise naturally in connec-
tion with the folfowing question, concerning the case G == R.

Let A" be a complex Banach space, endowed with an appropriate weak topo-
logy . and let o be a t-continuous one-parameter group of r-continuous linear iso-
metries on X. In [3} a certain operator associated with a, called the analytic gene-
rator of @, and denoted by «_;, is shown to display the following dichotomy:

cither a(a_;) = [0, -o0), or 6{a_;) == C.

The case 6(x..;) < [0, -}-00) occurs for example if X is the L?-space with | < p < oo
associated to a semifinite normal trace on a semifinite W *-algebra M, and ¢ is in-
duced by a weak®-continuous one-parameter automorphism group of M ([26],
Theorent 4.2). In [25] it is shown that if (X, «) is a one-parameter C¥- or W#*-dy-
namical system with X commutative, then the case o{a_;) < [0, 4-00) occurs only
it « acts identically. (That the case o(x-;} = C can occur was first pointed
out in [23].)
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The purpose of this paper is to give a criterion for deciding the above dicho-
tomy for an arbitrary one-parameter C*- or W*-dynamical system. Namely, the
case a(x._.) = [0, -+-00) occurs precisely when a is “almost uniformly continuous”
in the sense described above in the first paragraph. This definition is formulated for
a C*-dynamical system, but if instcad of the set of primitive ideals one considers
just some set of closed two-sided ideals with zero intersection, possibly depending
on «, then one obtains an equivalent formulation in the C*-case (sece Theorem 3.5),
and the definition is also suitable in the W¥-case (see Theorem 4.4).

1. GENERATORS AND SPECTRA

In this paragraph of preliminary character we begin by recalling some facts
concerning the analytic generator of a one-parameter group. In order to include
the cases both of C*-dynamical systems and W#*-dynamical systems, we place our-
selves within the framework of *‘dual pairs of Banach spaces™.

We call dual pair of Banach spaces any pair (X, ) of complex Banach spaces,
together with a bilinear functional X X F 3 (x, @) ~ {x, ¢) ¢ C, such that

OIELEE §up[1(x, @)yl for any xe X;

Gy ilgi = Supl (3, o). for any pe 7

(iii) the coﬁi':): hull of any relatively o(X, #)-compact subset of X is
relatively (X, #)-compact;

(iv) the convex hull of any relatively ¢(%, X)-compact subset of # is
relatively o(#, X)-compact.

If (X, #) is a dual pair of Banach spaces then (&, X), endowed with the same
bilinear pairing, is also a dual pair of Banach spaces.

If X is a complex Banach space then, by the Hahn-Banach theorem, the Krein
theorem on the relative weak compactness of the convex hull of a weakly compact
set, the uniform boundedness principle, and the Alaoglu theorem, the pair (X, X*)
formed by X and its dual space X*, with the natural bilinear pairing. is a dual pair
of Banach spaces. Thus also (X%, X) is a dual pair of Banach spaces.

Let (X, #) be a dual pair of Banach spaces. Then the uniform houndedness
principle hoids in X with respect to (X, %) and in & with respect to o(F#, X)
([15], Theorem 2.8.6). In particular, the analyticity of X-valued or .#-valued maps
with complex variable does not depend on the topology considered on X or on F
{[15], Theorcm 3.10.1). On the other hand, quite general X-valued or % -valued maps,
defined on 2 locally compact space endowed with a Radon measure, are weakly
integrable ([1], Proposition 1.2; 3], Proposition 1.4).

If (X, #) is a dual pair of Banach spaces and T a (X, .7)-densely defined
linear operator in X then one can define the adjoint 7% of T in & by

(@, ¥) € graph(T¥) « {x, ¥ - {T(x), ¢y for all ¢ € Dy .
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T¥ is always o(F, X)-closed. If T is o(X, F)-densely defined and o(X, #)-closed,
then T% will be 6(F, X)-densely defined and o(#, X)-closed, and

(T =T

([22], IV.7.1). With Bg(X) denoting the Banach algebra of all 6(X, % )-continuous
linear operators on X, if 7 e Bz(X), then

I (@) = ¢-T, ¢eZ,

and T¥ e By(%F).
If (X, %) is a dual pair of Banach spaces and T a o(X, F)-closed linear operator
in X then the resolvent set of T is

o(T)={AeC; A — T is injective and (1 — T)~*e Bg(X)},

and the spectrum of T is
a(T) = C\p(T).

The standard power series argument shows that p(T) is open in C, so o(T) is closed.
If T is also (X, #)-densely defined then

o(T) = o(T?%).

We note that if # = X* or X = % * then, by the closed graph theorem, the
Banach-Smulian theorem on the weak* continuity of linear functionals, and the
Alaoglu theorem,

o(T)={Ae C; A — T is bijective}.

Let (X, %) be a dual pair of Banach spaces. A one-parameter group U in
Bz(X) is a mapping U:R — Bg(X) such that

U, = identity map of X,
Upsry=UU,, tn,t:eR.
U is called o(X, &)-continuous if for each x € X the mapping
Rat»Ux)eX
is o(X, &)-continuous. In this case one can define the dual group U¥ in Byx(F) by
UZ =Ww)”, teR

and U¥ is o(#, X)-continuous. We note that if & == X* then a o(X, &)-continuous
one-parameter group in B(X) = Bz(X) is always strongly continuous.
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Since we have C%- and W*-dynamical systems in view, we shall denote in the
sequel by U a o(X, #F)-continuous one-parameter group of isometries in B, (X),
where (X, %) is a dual pair of Banach spaces. Then U¥ will be a 6(#, X)-continuous
one-parameter group of isometries in By (F).

The infinitesimal generator Dy of U is the linear operator in X defined by

for each ¢ € Z the function
Rot—>{U/(x),p)eC
(x, v) e graph(D,) < | is differentiable at 0 and

d .
‘dt” (U L), (f°>f (=0 == (¥, (/’>-

Standard arguments from the theory of operator semigroups (see for example
{15]) show that Dy is a o(X, 7 )-densely defined o(X, #)-closed linear operator ir X,
D, determines U uniquely, and

(D) - DU:;' .
Moreover,
o(Dy) < iR,
S0
o(—iDy) < R.

For each fe L'(R) one can define

S AU dr e Bs(X)
by the equalities -
e +00
<( S fu)U.dz) ) qo> S FUKU 0, 93, xe X, g 7.

Then

LYR)3f+—> Up== S AU At € Be(X)

is & homomorphism of the convolution algebra LY(R) into Bz(X). Denote by f
the inverse Fouricr transform of fe L}(R), defined by

f(s): = Sf(t)cis’dr, seR,
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and by A(R) the function algebra {f ; fe LX(R)}; then the map
AR) 3 f > U € B#(X)

is also a homomorphism, but now with the pointwise multiplication on A(R). The
support o(U) of the above homomorphism, defined by
o(U) - 1R ; for gach n.e‘lghbourho:)d N of 2 .ther_e JS},
Sy e LYR) with supp(fy) = N and U, # 0

is called the spectrum of U. It is the smallest closed subset Fof R with the property

FeIMR), Fnsupp(f): @ = U, =0

([1D). It turns out that

a(—iDy) = a(U)
{12], so

a(Dy) —= io(U).

We note that the above equality has been familiar for a long time to people
dealing with generalized scalar operators (for an introduction to their theory we
refer to [6]).

On the other hand, the analytic generator U_; of U is the linear operator in X
defined by

Rt U(x)e X has a o(X, F)-
-continuous extension on the strip

(x, p)e graph(U_) = § {{e C; —1< Im{ < 0}, which is
analytic on the interior and whose
value at —i is y.

The linear operator U_; is o(X, #)-densely defined and o(X, #)-closed and it
determines U uniquely ([3]). We note also that

(U)F = (U%)_,
([24], Theorem 1.1).

+ oo
Ifxe M D > then R 7> U(x) € X has an entire extension, whose
k00 -1

power series expansion yields
o (_i)n "
Vo) = ¥, (D).

n=0
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B
Since My ¥ p is an essential domain for U_; ([3]), one might expect that by &

L'._,)fi
ke:-co 1

hvpothetical spectral mapping theorem,
o(U-)) = exp(--io(Dy)) : = expa(U).
Indced, this happens for example in the case of strongly continuous one-parameter

groups of unitaries on a complex Hilbert space.
In [3], Lemma 3.1 and Theorem 3.6. it was shown that the point spectrum of

U.., is always contained in [0, --00), and
o(U_) either :-: C,
7 lor < [0, +00).
The above dichotomy was refined in {25], Theorem 4.3, as foliows:
o(U_) either == C,
- or =expo(U) < [0, +o0).

But the case o{U_,) - - C can really occur; a first example was given in [23] and others
in [25]. The spectrum problem for U consists in deciding whether o(U_,) +: C
or not.

In order to get a general criterion for solving the spectrum probiem for U we
recall some definitions.

For each z e C the analytic extension of U at z, U, , is defined by

(Ra1+—> Uf(x)eX has a o(X, F)-
-continuous extension on the strip
(x,y) e graph(U.) = { {{e C ; (Im{)(Imz) >0, Im{ < |{Imz{},
which is analytic on the interior and
whose value at z is y.

Thus the analytic generator of U is the analytic extension of U at —i. The group
property of U is preserved for the analytic extension:

Uz1+:2 = U:IU'.’.,, (In]zl)(lmz‘z) > 0:

U_, = (U)-t, allzeC
(3D

. On the other hand, for each closed set F — R one can define the spectral
subspace

XU(F):={xe X ; Ug(x)-=0 for each fe LR} with Fnsupp(f) = O}
({17). We assume familiarity in handling spectral subspaces, for whose theory we
refer to [18] and [7].
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For each AeR we have

k=0

XY((—o0, A) = {xe N Pu_,, ’_1113;' U _ ()M < e‘} =

{xe ﬂ QU ; HU.(0) < efmelfxfi for Imz < 0},

X0, +o0))= {xe A Zu,, ; Timl| U@ < e }
k=0 koo

{xe (M Dy_; |U.(x)|l < e~#=l x| for Imz > 0}

Imz>0

([3] and [24)]). Roughly speaking, the analytic extension of U constitutes in a certain
sense the Fourier-Laplace transform of the spectral-subspace-valued ‘“‘quasimea-
sure” XY(.), and the above equalities correspond to the Paley-Wiener theorem (for
more details see [4] and [5]).

It follows that for each AeR,

XU(—c0, ) « Dy_,
U_XO(—00, A]) = XU(~o00, A)),

fU_;] XU((—o0, | < &
and
XU, +00)) = Ty,

U, XY([%, +00)) = XY([4, +o0)),
JU; | XYU([A, +oo)f < e?

The following criterion makes explicit ideas used in the proofs of [25], Theo-
rem 5.1 and Corollary 4.4, and it completes [25], Theorem 2.3.

THEOREM 1.1. Let (X, &) be a dual pair of Banach spaces and U a o(X, F)-
-continuous one-parameter group of isometries in Bg(X). Then the following conditions
are equivalent :

(i) e(U.) #C;

(i) for each &€ > O there is P, e Bz(X) such that P,jXV((—oo, —e] U [e, +o0))
is a linear projection from XUY((—oo, —¢] U [e, +o0)) onto XU({(—oo, —e]) with
kernel XY([e, +00)) and such that

a4+ 20 (1Y 10+ v (1455
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(i) there are —oo < py < A; < -+-00 with

X = XY((—o00, A]) -+ XY([1,, +00))

and —o0 < g < Ay < 4-00 with

fe

F = FUT(—00, i) - TV (e -L00)).

Proof. Let us assume that (ii) holds and choose some ¢ > 0. Let further
LXYR) be such that

fA(s)~ : 1 for se[—s, &),

supp(f) < [—2e, 2]

Then for any xe X,

80

X

Ugx)ye XY([—2e, 2¢)),

x — Upx) e XU((—o0, —eJ U e, -1-00)),

=UAX) + Pl — Ugx)))-+(1 — P)(x — Ug(x)) € XY((—00, 2¢]) +- XY(fe, +c0))e

Thus the first equality from (iii) is satisfied with

e

Ay =s 28, g e e
On the other hand, for each ¢ € . # we have
<X, (l = P.)I}((p)> = <(l - Pn)('\-): (P> = O, Ye XU((“OO: '-S])s

by [18], or [7], we get
(1 — P)%(p) e o{F, X)-closure of U FVU7([v, —oc)) € FY ([—¢, =-c0)).

Similarly, for each o e 7,

(x, (P)T(@)) = (PAx), ¢) =0, xeXY(s -} c0)),

(P (@) € 6(F, X)-closure of {J f"y((——oo, v]) = .7*”‘(;((—'00, &l).

Hence

9 = (PY*(p) 1 (1 — P)%(9p) € FVT((—00,5]) - FU([—¢, - o)), @eF,

and we conclude that also the second equality from (iii) is satisfied, with

Ay =18, My = —¢.
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Next, if (ii) holds then
X =%y |} 2y

—i i?

Fr — G AL
F = Dys 4D

and [25}, Theorem 2.3 yields (i).
Finally, let us prove the implication (i) = (ii). Assume that (i) holds. Then

by [3], Theorem 3.6, o(U_,) = [0, +00). Let ¢ > 0 be arbitrary. Take a function
J. € L{R) such that

A

. € C¥(R),
0<f <1,
& &
(=1 for seg|—--> - -|>
149) [ : 2]

swpp(iy < [ =00 ]

(choosc f, first). Since
G(U—i) < [O: '*AOO),

we may consider the operators

(A—U_)"*eBg(X), [Al==1, 451
Let us estimate
(A — U_-)~i(1 — Ufe)”

for |A} +=1, 2 # L.
Let JA] == 1, A # 1. Then by [3}, Corollary 3.3 we have

-+ 00
MA—=U_ )=+ U_ )= S g (U dr,

- 00

where g,: {z€ C ; |Imz] < 1} — C is the analytic function defined by

g,(2) = *1“—1—:,(—_-%)—_——’ Imz] <1, z # 0.
2 sin wiz

Applying the above equality to the group of multiplications by €', we have in

particular
+ oo

= S g.()eds, seR,

- 00

y) . 1
A—¢ef 1+¢e°
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that is,

a 1 - Ae’
8a(8) = — ( )e_ +  sekR.
(G~ e e
Therciore, setting
h}.,e =g, — & “‘fc s
we have
-}—{‘oo
M=V )M =U)) =1+ U )N~ Up)= S Iy, (U, dt,
where -
a 1+ el —f(s)
() = —(——j?— - — - B, .
1y (5) G e seR
Thus,

R LA (AR S b (UL <

-0
S (-l 4 U= =y 0y

Buat by the inversion formula,

+00

o) = - S Py eminds, teR,
2n

- 1 [ & .

1)y () = — \ h}As)e~ds, teR,

2n
so we get successively,
1 +co R . -
(1 + 0= S (oo — By e-nds, e R,

T

} A A” ,
N ells € 1126 — A3lells -
2
An elementary computation, using the formula (%), shows that

e — Mt = S Traals) — (s ds <

. ]
Sb?

.40+ 4

< (lmmax{l, 1 o+ 12 lo}-
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Again by the inversion formula, we have also

+ o0
(L + B70) = 2i S (Fs) — () e-sds, 1R,
T
Ifill < —;nﬁ — f" e < 2emax {1, £ lleo}

so0 we conclude that

G — U_)7 = U )l <

40

< +2 _)t e
<[< F 210+ 0

]max{l, s 1A 1.

On the contour
C—={leC; | =1},
the mapping

C\{l}34— (A —U_) (1 — Ufa) € Bz(X)
is norm continuous and, by the above estimation, bounded, so we can define

X

P =
¢ 2ri

S(l - U1 — Ufe)d}u € Bg(X).
Then ¢

i

12 < - Sna — U1 — Up)dIAl <

9

< [(1 + 291 4+ U_ ) + —‘10_--“—]max{1, 17 e s 173 e}
(1 —ems2)p»

If xe XU((— oo, —¢]) then
1

P(x) = — -
) 2mi

S (—U_)~1(x)dA,

c
and since

[U_;| XY((— o0, -l < e,
standard analytic functional calculus arguments (see [10], VIL.3.9—10) show that
P(x) == x.
Similarly, if x € XY([e, 4 o0)) then
P(x) = 0.
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Since
XU(—00, —¢) + XUz, -i-00))
is (X, %)-dense in
XY((—o0, -—e] U [¢, +00))
and P, e Bs(X), it follows that
PE i XU((— o, _8] U [C, "%— 00))
is a linear projection from XV((—oo, —¢&] U [¢, -~00)) onto XU((--co, - ¢]) with
kernel XY([e, -+00)).
We complete the proof by showing that with an appropriate choice of f, the
above estimation of | P, yields that in (ii).
Let us define the continuous function &: R — R by

0 for se[O, ]-]
2

128 for s~ 2.
16

128 for s~~v~B~1—
16

0 for se[g,—{-oo),
4
k is lincar on each of the intervals «] > --9— ] - 9 s 11-], “ s A3 ],
2 16 16 16 16 4

k(s) == k(—s) for all seR.
Then the function /: R - R defined by

i

I(s) — S ( S k(v)dv)du, seR,

-0

elongs to CYR) and satisfies

0<!<1,
1 1
sy =1 forsef—- -> -|:
) 2 2]
3 3
supp(/Y = | — " » -]
pp( [ 4 4:]
”11”0028’

17 lloo = Ik lloo == 128.
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Denote by f the Fourier transform of /:
] + 00
flit) = - - S Is)civds, reR.
2n

— 00

Then fe LYR) and fA == [, so for f,e LY(R) defined by
J8) = ¢f(et), 1eR,

fa(s) :f/\(-z) o l(i ) ’ seR.

Thus, f, satisfies all conditions we required for the construction of P, and, moreover,

we have

Py 8~

1ol = =
A 12
e

o

Hence we have the following estimation of the norm of the corresponding P,:

‘ U_)- 40 axly S, 128
TR [(1 + 201+ U_ ) —r;;j;;_;—;ﬂ)g]m‘“{l’ 5 }<
3 2
<[(1 1+ 26 (L + U 40(1 +ﬁ) }(1 +-18-6--) <

2 16 5
< 42914010+ )+ 40 (1+)" Z

The next statement is a quantitative completion of {3], Theorem 5.2.

TreorReM 1.2. Let (X, F) be a dual pair of Banach spaces and U a o(X, F)-
~continuous one-parameter group of isometries in Bg(X). Then for each

—co< u< i< 4o
we have
XU([u, ) c2

(1+U_i)_1 4

(L + U_)7XY([n, ) = XY, 2],

2 16
S U XU, D €3 — w1 e T = ]
I+ U= L XU(0k, A < 3( u)( ot (;.—,4)2)
Proof. By [3], Theorem 3.2,

A’U([;l, /’:']) < QU—"I < 9(14.U_i)—1 "
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Now let x e XV([u, A]) and y = ,\(1 <+ U_;)~*(x). By [3], Corollary 2.5 we have

for all fe LMR) with [u, A] n supp(f) = O,
(L + U)Up(y) = Ul + U_)(p) == Uplx) =0,
so by the injectivity of 1 + U_;,
Us(y) == 0.
v e XUy, 2].

Finally, in order to get the desired estimation of the norm of the restriction
of (1 -F U_,)~* to XY({n, A]), we let x e XY([u, A]) and y — (1-+-U_))~*(x) and look
for an estimation of |y in terms of [x,.

In the proof of Theorem 1.1 we have seen that there exists a function f'e LY{(R)
with

Thus,

fec®),
0<f<1,

~ 1 1
fls) =1 for se{—-é«wz.},

amnciy <[ 302,

4 4
1F o = 8,
1" lo = 128.
For cach 6 > 1 we define f; € LY(R) by
—i Abp,
flty=e % 84 — wf(5Ci ), teR.
Then
As_i%i
Jo(s8) =1 — seR,
54 — )
SO

freC(®),

o</ <,

Ju) =1 for se[u—‘s—;a — ), A+»5~'2'-1(A—m],

o 35— 2 35 — 2
supp(f}) = [u— P22o-w 2+ A u)J,

g 8

it diloo 5()" _ I_()

A, 128
”f5 ”oo:

5 — )
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Since y € XY([u, 1]) and f 5 is equal to 1 on a neighbourhood of [u, 1], we have

-+ o0
y= S FAOUGL
But f, is an entire function and
' 400
Cozmr S fs@ —2)U(y)dte X
IS an entire extension of o
+ oo
Rare U,0) = S filt = DU e X,
S0 s
+oo
Vi) = S Filt + DU ().
Hence -
(%) x=(1+U_)Y) == Uf3+f3(- +)(P)-
Now the inverse Fourier transform (f3 +- f3(+ 4 1))" of f5 -+ fa(
Ras— (1 + e’)ﬁ,(s).
Since
d selu— QA =, A4+ @A@—wWl=>(fa-+fo(- +D)E) =1+¢
an

supp(f) = [u — (4 — ), A+ (2 — W,

I
o+ 7+ D)7

the quotient

- +1i)is

is a well defined function in C*(R) with compact support, hence it is the inverse

Fourier transform of some g e L*(R). Thus we have
£ € C(R),
supp(g) = [u— (2 — ), 1+ (4 — )],

) =BO( fatFol- + NMs) = G -+ fi(s), seR.

Since y € XY([u, 4)) andﬁ is equal to 1 on a neighbourhood of [u, ], we have

Y= Ur,(0) = CgUp agirn3)
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Using (#) we get

p = Uy,
vl <

Tt iyt
ST SRS

Hence we need only an appropriate estimation of ligll.
By the inversion formula,

glty: - ! S@(S)e—i“ds, teR,
2n

L AR 3
w>~g(r)::§ : S £"ts)e~itsds, reR.

19

S T G . .
&) oLt g (g(s) — g"(sNe-inds, teR.

-0

Hence

" | < J’ "wa Ary
ng 1= 2 g g 1

O

:;(S)y - A SER,
) Li-et fis)
an clementary computation shows us that
A2 - p)
A Ars it £ CA Ays f
g g igls) — g"(s)ds <
p—(2- )

<3 = g — 8w <

A

I RS A A AV
<3 ( L4 (f:) vf-;:(—":) 3
3 e AT ® \Jf3/ le
But R n
supp(f) < [~ (2 —p), 2+ (G — )< {seR: fuls)=13,
30
j:\z‘ T ;:oo I,
: f3;I°°
||( )f STHER
I\ f3/ oo L=
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We conclude that
R R L (e s

— <3G =14+ T
e < llg gl < 3( ”)( +,1-—u+(/1~u)‘) “

It is well known that U is uniformly continuous, i.e.,
Rt U, e Bx(X)

is continuous with the norm topology on B;(X), if and only if 6(U)is compact,
and if and only if (U _,) is a compact subset of (0, +c0) (see [3], Theorem 5.2 and
Corollary 5.7). We end the section by giving in this case an estimate for [[(14-U_;) 1|l

For a closed subset K of R we shall call the number of the elements of the set

{keZ; Knlk, k -+ 1] # O}

the covering size of K. We shall denote the covering size of K by
(K|covcr M
COROLLARY 1.3. Let (X, %) be a dual pair of Banach spaces and U a uniformly
continuous group of isometries in Bg(X). Then
‘ 1+ U_)~ 1 < 4680ia(U)leover -
- Proof. With

. n = 6(0)leor” »
there are integers

ky <k, < ... <k,
such that
o(U) c Ylk;, k;-1-17.
j=1
With
Cl’ s ey Cm

the connected components of U[ i» k; -+ 1), each C, is the union of a certain
Je=1

.number of intervals [k;, k; + 1], y, length(C,) == n, and the sets
p=1

{seR; dist(s, C)) < ;}, p==1,...,m

are mutually disjoint.
Keep for the moment 1 < p < m fixed. Then C, is of the form
la,,b,), a,,b,eZ, a,<b,.

4 — 2324
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Defining the continuous function g,: R - R by

p

0 for se (—oo,a —:;]

128 for s rtap——»-s—-
16

—128 for s~ a,— i
16

1 1
gp(s) T 0 for s E [ap - "8"’ bp+ —‘é‘jl

— 128 for s = by -
16

128 for s:b,,—}—i
16

0 forse [b,,—l——z-, —l—oo) ,

&p is linear on each of the intervals

3 5 5 3 3 1
(lp'—~8~’ap—'~ié- s [ap—-gaa‘,—?g s ap——1—6-’ ap—--s— *

1 3 3 5 5 3
byd+- b -l b, -k, =] b, F-—sb + |
["Fs ”416] ["{_16 ”+16] ["+16 "+s]

and then /#,: R —» R by

hy(s) = S ( S gp(v)dv)du, seR,

we have
h,e C¥R),

0<h, <1,

n(s)y=1 for se [ap — 7;«, b, -+ _;],

3 3
supp(,) = [ap — —g-a b, + —g—] >

1y lloo = 128.



AUTOMORPHISM GROUPS OF OPERATOR ALGEBRAS

Denoting by f, the Fourier transform of #,,

+ 00
f(t) = 1 S hy(s)e—¥ds, teR,
2

we have

) LHLel'\R), f,=h,.
Moreover, since

+o00
. 1 .
@0 (1) = — S hy(s)e-isds, teR,
2r
we get successively
: -+ o0
1 1 .
1) = -— h(s) — h(s)) e-i*ds, teR,
R S(,,() 20)
-0

1 r
”fp”l < _2" ”hp - hp ”1 <

1
< 5 (bp — ap + D(lplleo + 115" lleo) <

< 65(b, — a, + 1) = 65(length(C,) + 1).

Now let x € X be arbitrary. Since

}m:fp(s) =1 forse LmJ (ap ~i, b, -+ -1_) > o(U),
p=1 8 8

] p==1
we have

m
x=U, =Y U (x),
= fp p§1 '
r=1
SO
m

A+U-)7x) = Y; (L + U-)7 U (%)
But for each 1 < p < m, o

A 1 i
Ufp(x) € XY(supp(f,)) = XV ([ap = b, + ?]) >
whence by Theorem 1.2 we obtain
10+ U_)~1T, (I < 18, — a, + DIy (I <

< 18(length(C,) + DIfplhllx]l <
< 1170(length(C,) + )% x|.

245
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Thus, we have
Fizd

(LA U)o < p}; A UDT (0) <

< 1170 ¥ (length(C,) + DE x| <
fd

p=1
< 170 ( Y, length(C,) -+ m)";ixn <
p=1

< 4680 #% |l
We conclude that

(4 U_) 1 < 468017 == 4680i6(U)|2 v - %

2. COMPUTATIONS FOR C% AND W*-DYNAMICAL SYSTEMS

We assume familiarity in handling C*- and W#-algebras. For their theory
we refer to [21] and [19].

We recall that a one-parameter C*-dynamical system is a pair (A, 2) formed
by a C%-algebra A and a o(A4, A¥)-continuous, hence strongly continuous, one-
-parameter group « of s-automorphisms of A4; a one-parameter W*-dynamical system
is a pair (M, %) consisting of a W*-algebra M and a ¢(M, M.)-continuous. hence
s“-continuous, one-parameter group « of (automatically o(M, M )-continuous)
s-automorphisms of M (see [19], Section 7.4).

First we reduce the spectrum problem for one-parameter W#*-dynamical
systems to that for one-parameter C*-dynamical systems.

PROPOSITION 2.1. Let (M, a) be a one-parameter W%-dynamical system and
consider the set

A :{xeM; Ratr a(x)eM is norm continuous}.

Thein A is a o(M, M.)-dense a-invariant C*-subalgebra of M and, denoting by o' A
the strongly continuous one-parameter group of w-automorphisms of A defined by

(ald)(a) =afa), teR, aecA,
we have
o(xjA) = o(a),

o((ald) ) = o(x)) .
Moreover, for each A ¢ o((a{4)_,) = o(a_;) we have
(2 — @A) )" = (4 —a_)7 "4,
A — (@A) )~ =54 — o)
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Proof. That 4 is a o(M, M*)-dense a-invariant C*-subalgebra of M follows
by [19], Lemma 7.5.1.
For each f'e L'(R) the operator a; is a(M, M,)-continuous and

A = (x| A),
so by the o(M, M,)-density of 4 in M,

(o]4); = 0 <= a, = 0.
It follows that

(%) ‘a(al4) = a(a).
Next we prove that
(xx) o((2|d)_;)) = C=o(x_)) = C.

By [3], Theorem 3.6, (+4) is equivalent to
—1¢o((ad)_) = ~1 ¢a(a.).
Let —1 ¢ o((x]4)_)) and put
e = )1+ (@A) ).

Take an arbitrary xe M. By the Kaplansky density theorem there exists a net
(a,),e5 in A such that

tafl < fixll, 1€3,
a-»x in o(M,M,).
Writing
't (l + (a,A)—i)’—](al)’ le 37
we have
o,ll < clia,il < clixl, 1€3,
a, = bx -+ a—;(bl)y te 3.

But by the Alaoglu theorem there exists a subnet (b.x)ne @ of (8,),e 5 which converges
in the o(M, M )-topology to some y € M. Then, after passage to this subnet,

a_(b)=a,—b, -x—y in oM, M),
and since the operator «_; is o(M, M,)-closed, it follows that y @,‘i and
x_i(y) = X — ¥,

x={0+a_)p).
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Since x was arbitrary, we conclude that 1 +- a_; is surjective. But by [3], Lemma 3.1
it is also injective, so 1 ¢o(x_)).

Conversely, let us assume that —1 ¢ g(«_;). Since the analyticity of M-valued
mappings with a complex variable is the same in the ¢(M, M,,)- and in the norm
topology, we have :

+ 00 + 00
N Zen,= M Dq -

kc:—o00 k-:—00

By [3], Lemma 3.1, 1 4- (a|4)._; is injective and by [3], Theorem 3.2,

ﬂ Dalar,; © L+l -1
kis-o00
50
(1 + (dl4)-)~* ﬂ D@y =1+ a7 ﬂ Dy,

ke=--00 k-

+ o
is bounded. But (I 4 («[4)-;)~ 1 is closed and M Day, by [3], Lemma 22
k= _—00
is norm dense in A4; hence
Dar@a_p-1=A.
Therefore —1 ¢ o((@|4)_;). :
We conclude that (=) holds. Using (=), (*=), and [25], Theorem 4.3 we obtain

o((xld)-;) = o(x_)).
Finally, let A ¢ o((«j4)-;) = o(x_;). Then the operators

A=) A —a )t
coincide on

N Diay,, = ﬂ 7

k=:—00 k=—00
But this linear subspace of A4 is norm dense in A, so it follows that
A — (@AY =4 —a_)Y4.

By the Kaplansky density theorem and the o(M, M.)-continuity of (4 -~ a_ )"IL
we get also

1 — (@A) - ) = (2 — a_ )~ 7

Next we reduce the spectrum problem for one-parameter C%-dynamical
systems to that for one-parameter W#*-dynamical systems:

ProPOSITION 2.2. Let (A, a) be an one-parameter C*-dynamical system. Then

o)) #C
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if and only if the formula
(@) (x) = (0)¥*(x), teR, xe A¥*

defines a o(A**, A*)-continuous one-parameter group o** of w-automorphisms of
the W¥*-algebra A** and
a((@**)-;) # C.

o(o*¥) = a(0),

Moreover, in this case

o(@*)_y) = o0,
and for each )¢ o((e**)_;) = o(a_;) we have
| (G — @) = (2 — a7,
12 = @)D= = (4 — a1,

Proof. Let us first assume that o(x_.;) # C. Then by Theorem 1.1 there are
—o0 < u < 1 < +4-o0 such that, with a4* denoted simply by a*;

A* = (A%*(—00, Z]) -+ (A ([, +00)).
But by [24], Theorem 4.1 (which is a slight modification of [1}, Theorem 5.3),

for each

@ e (A¥)*(—0o0,A) or ¢ e (A¥)([u, +00))
the mapping
R3t > af(p) e A*

is norm continuous. Therefore a* is a strongly continuous one-parameter group,
so one can consider its dual group «** with respect to the natural duality between
A* and A**, Since

o(@**) = o(a*) = o(®),
o(@*)_)) = o((a*)_;) = o(a_)),

we have in particular o((x**)_;) # C.
Conversely, let us assume that a** is o(4%*, 4¥)-continuous and
o((e**)..;) # C. Put

A, = {xe A% ; R2 1 (a¥*)(x) € A¥* is norm continuous};

is a one-parameter C*-dynamical system with
o((@**14,)-) == ol(@**)_)) # C.
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But A is an a**-invariant C*-subalgebra of 4, and a = a*%|A4, so [25], Lemma 4.1
yiclds

o{x_,) # C.
Finally, if A ¢ o((2%%)_;) = a(a_;) then

@ — @) )UA = (2 — 2 ),

and the last equality of the statement of Proposition 2.2 follows. Y.

Using Propositions 2.1 and 2.2 we will be able to reduce the spectrum problem
for one-parameter C*¥- and W¥*-dynamical systems to the treatment of certain
particular cases. The next criterion, whose proof is based on an idea already used
in the proof of [25], Theorem 5.1, enables us to settle the spectral problem in these
particular cases.

THEOREM 2.3. Let (M, «) be a one-parameter W¥*-dynamical system with
o(u..;) # C. Then for cach ¢ > 0 and each x e M*(—oo, —¢]) with x| < 1
we have

lin(l — x)|| < a(l + 23)(1 + ]5’--)2!1(1 o)k 40n(l +.]86.)5,

where In: C\(—o0, 0] - C is the analytic function defined by
In(re¥) =Inr 19, r >0, i) <

Proof. Let ¢ > 0. By Theorem 1.1 there is a bounded linear projection Q.
of M*(—oo, —&] U [e, --00)) onto M*({(—oo, —¢]) with kernel M*([e, -i-o0))

and such that
5

2
TXRYC +2a)(1 + 'f-») 10t a_;)-ln+4o(1 +»»'f--) :

Now let x € M%(~-0c0, —¢]) with 0 # j|x| < 1. Then the formulas
{
. T . .
S+ (2) = S +iln(l — jixz),

fo(2) = ; —iln(l — §xji)

define analytic functions £, , f_ on

{zeC; lz] < - l

: {(zeC; izl < 1}.
uxu}D‘ze A<
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Since

1
Refi(z) 2 0 for all |z] < - >

fhx )

applying the von Neumann inequality ([20], Section 153, Theorem B or Appendix, §4)

we get successively
1
Ref. ( x) =0,
[l

% 4 ImIn(l — x) > 0,

n
Imin(l —x)| < -+
f ( )i )

But by known properties of the spectral subspaces of « we have

In(l1 — x) = i —]-~ x*e M*((—o0, —g]),
Ko k
80

[In(1 — X)}* € M*([e, -} 00)).
It follows that

In(l — x) = Q,(In(1 — x) — [In(1 — x))¥) =
= 21Q,(ImIn(l — x)),
Hn(l — )l < 2)Q,! ITmIn(l — x)|| <

< i@l <

°

16 |\ ) 16 \5 :
<n(l +28)(1 +~-8_—») e ’n+40n(1 - é—) - %

The next statement is an immediate consequence of [25], Theorem 5.1, but
for completeness we give it here with proof:

COROLLARY 2.4. Let (M, ) be a one-parameter W *-dyﬁamical system witly
o(x.;) # € and Z the centre of M. Then

a(2) =2z, zeZ, teR.
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Proof. Each «, leaves Z invariant, so we may define a W*-dynamical system
{Z, alZ) by
@Z)(z) =a,2), teR, zeZ
By [25], Lemma 4.1 we have

o((2'Z)_;) # C.

Let us assume that a|Z does not act identically. Then o(«|Z) # {0}, and since
o(@lZ) - = —o{2|Z), we have

o(lZ) n (—o00,0) # G.

Hence there exists ¢ > 0 such that

Z+%((—o00, —e]) # {0}.
By Theorem 2.3,

It =9l < e x(1 +20) (14 57) 10+ @292+ 0m (14 22)

for all z e Z=%((~—o0, —¢]) with ||z]| < 1.

Let zp€ Z=Z((—o0, —¢]) with jjzeli = 1. By the Gelfand representation
theory there exists a nonzero complex homomorphism y, of Z with |yo(zo); =< 1.
Replacing z, with y,(zy)z, we may assume without loss of generality that

*o(2o) =: 1.
Now for each 0 < 6 < 1 we have
520 € ZzIZ((__oo, '—'3])’ ”620“ < 1;

S0
1

1 = |In(l — J)| ~=
o = Il = 9)]

= |In(1 — dy0(z0))i =
= |xo(In(1 — 6zp))! <
< ”]n(l - 520)” < Cos

which is not possible. Thus our assumption that «|Z does not act identically
is false. %

For C*-dynamical systems we shall need the following consequence of the
above corollary.
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COROLLARY 2.5.. Let (A, ) be a one-parameter C*-dynamical system with
o(x_;) # C. Then for each closed two-sided ideal I in A we have

a(l)=1 teR,

and the formula _ ,
(@) (x/I) = a(x)/I, teR, x/IeAll,
defines a strongly continuous one-parameter group ol of x-automorphisms of the
quotient C*%-algebra A[l, satisfying :
o((a)-;) = o(a-y).
Proof. Let a** be as in Proposition 2.2, Then by Proposition 2.2,

o(@*%) =) = o(@_y) # C,

so by Corollary 2.4 we have
(@¥*)(z) =z, teR,

for all central elements z of A**
But the o(4%*, 4%)-closure of T in A** is a two-sided ideal in A**, so by

80

a(I) = a (A N(4%p)) = AN (4¥p) = L

Obviously, the formula in the statement defines a strongly continuous one-
-parameter group of of x-automorphisms of 4/I, and using [25], Lemma 4.1, it is
easy to see that

o((@h)-;) < o(x-;). 7
Next we apply Theorem 2.3 to inner W*-dynamical systems.

PROPOSITION 2.6. Let (M,x) be a one-parameter W*-dynamical system
with 6(a_;) # C and such that for some s-continuous one-parameter group

u: R — unitaries in M
we have

o(x) =uxur, teR xeM.
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Then there exists a family (p),es of mutually orthogonal central projections in M

with Y, p, =1 such that for each 1€ 3 the formula
€3
(x|Mp))(x) = a(x), teR, xeMp,

defines a uniformly continuous one-parameter group o|Mp, of =-automorphisms
of Mp, and
io(2iMp,)lcover < 18 exp(6-10%ii(1 + a_;) i -+ 4-108).
Proof. First we note that by Corollary 2.4 we have for each central projection p

in M,
a(Mp) -- Mp, teR,

so the formula

(| Mp)(x) == a(x), teR, xe Mp,

defines a W*-dynamical system (Mp, a|Mp). Therefore, by Zorn’s lemma, it i1s enough

to prove that for any nonzero central projection p, in M there is a nonzero central

projection p < p, in M such that o(x|Mp) is compact and satisfies the inequality
lo(al Mp)lcover < 18 exp(2c),

where

¢ = 3-10°(1 4 o) 7Mi] -+ 2108,

To do this, let us assume that there is a central projection py # 0 in M such that
for every central projection 0 # p < p, in M we have

|a(a|Mp)lcover > 18 CXP(zc),

and lock for a contradiction.

We may consider M as a von Neumann algebrain a complex Hilbert space H,
that is, a weak-operator-closed self-adjoint subalgebra of B(H) containing the
identity operator on H ([21], Theorem 1.16.7). By the Stone representation theorem
([20], Section 137) there exists a self-adjoint operator a in H such that

u, = exp(ita), teR.
Moreover, since the u,'s belong to M, a is affiliated with M. Now by [7], 6.19 (iii),
o(a!Mp) < o(ap) — o(ap), 0 # p < p, a central projection in A{;

hence by a combinatorial computation,

ja(ap)icover > 3 €xpc, 0 # p < p, a central projection in M.
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Denote by g, the characteristic function of [k, k + 1] and by e, the corresponding
spectral projection of a:

ek = X’((a) € M.

The above condition means that

card{ke Z ; e,p # 0} > 3expc, 0 # p < p, a central projection in M.
We claim that, with n denoting the integral part of expc, there exist ki, ...
... k, e Z, with

lke; —k,t 22 for1<jm<nandj+#m,

and nonzero equivalent projections

Jis oo fue M,
such that

Indeed, there is k; € Z with
0 # fia= €, Po-
If n = 2 then, with
0 # p, = central support of f,, in M < p,,
using the inequality
card{ke Z ; e.p; # 0} > 3n > 6,
we get k,e Z with
lky — ky| = 2,
&,y # 0.
Since
central support of €, Py inM<p =
= central support of f;, in M,
by the comparability theorem ([21], Theorem 2.1.3) there exist .:onzero equivalent
projections
Jois frpe M,
Jean S fips Sep S @ py.
Next, if n = 3 then, with

0 # p, = common central support of fo, ~ fz, in M < py,
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using the inequality
cardfke Z ; e;p; # 0} >3n > 9,
we get ky e Z with
kg — k| =2 2, lhkyg—Fyl > 2,
e P2 # 0.
Since
central support of e, Pz mM<p,=

== common central support of f,, ~ f;. in M,
by the comparability theorem there exist nonzero equivalent projections
fs,l, f3,2s fa,a e M,
f3,1 < for fs,-_n sz,z, fs,s} £ € D2 .

By induction we get ky, ..., k,e Z with
lk; —k,l 22 for1 <jm<nandj+#m,

and projections in M as follows :

€,

v/
fl,l €,

\ \

f 2,1 ™ f:'ee

v/ v/

€,

v/ \ v

0 #ﬁ,l "’f;.,z N ~f;:,n‘
Thus the claimed statement holds with
fi=fy, 1<jsn
We may assume, reordering the k;’s if necessary, that

h<hky,<...<k

ne

80

k1+1—kj>2 fOI’jxl,...,n—l.
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Let, for any 1< j < n — 1, u;€ M be a partial isometry with

% [ -
Ui u; —fJ 15 U;u; —fj,
and put

n-1

U= Z ue M.
i1

Foreachl <j<n—1and m > 1,

exp(ma) uexp(— ma) = exp(ma)ekjujek ™ exp(— ma)
is defined on the domain of exp(— ma) and satisfies
llexp(ma)ujexp(— ma)|l < |lexp(ma)e; |l [exp(— ma)e,, Il <

mk.+1) —mk,
L e (1 )e Ji1 =

R T

< e——m’
so by [3], Theorem 6.2,
u; € Qaﬁmi and |l mi(uj)” < e ™,

Hence for any 1<j<n— 1,

oo ——
e 2,_,, and limfa

- -0 m—yo0

()™ < e,

- mi

that is,
u;e M*((— oo, — 1]).
Thus

ue M*(— oo, — 1]).

Using Theorem 2.3 we obtain for every 0 < 6 < 1,
In(l — du)|| < 867x||(1 -+ a_,)~ | + 56,794,280,

But #" =0, so

n—31
ut-1

. 2
In(1 —(5u)=5u+%~u2+ ver -

n—

, 0<d<1,

and letting 0 increase to 1 in the above inequality, we get

u—i—-—l—u2 + .. —I——'-]——u"“l'
2 n—1

< 867xll(1 4+ a— )~ -+ 56,794,280n.

I
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On the other hand, choosing
Cn€ Sl with [ &5 == 1

and defining
= uptyyy o w8, 1<j<n—1,

we have
Gefif and §&i=1,1<j<n

so the norm of

R 1 . -
C' V;](él% e Ty éﬁ)

is equal to 1. Hence

b+ L L e
h Mé -+ - uﬁ(,' R u"-—lg "<8677{|.(E -{—g{_i)-—lu -4 56.794,280.7:,
I 2 n— 1 :
But
1 ‘
llé = —/,_(gl :.“ ce. T fn a2t fn—-l)
' n
o 1
s (Gt )
Vn
1
w1 e 8
) '
so we get, successively,
| 1 .. 1 o
uE - w4+ - - U 15 —
i n—1 ‘

2

= 1"(1+-; SR ~~1-~)él+ —%~(1+—;-)6n_2+ Eucr

n—1

1 2 2
- ‘1,[(] NI R -~) + ...+(1 +~1~> +1]>
n 2 n—1 2
> !-[(lnn)‘ﬁ 4 ...+ (In2)? 4- (In1)?] >
n
1 n 2 n 2
Z— lnj = lﬂ“—-‘),
(B ) > (g
1

, .
luf +- »2-u2§ + ... —I—;—:l_—l u"'lé,‘d > ]n--z—.:(lnn)—l.
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It follows that

Inn < 867x{|(L + a_;)~ i + 56,794,2807 4+ 1 < ¢ — In2,
SO

2n £ expe,

which is not possible because n is the integral part of expc = 1. 7

Now we are able to solve the spectrum problem for W*-dynamical systems
in type I factors with separable predual.

CorOLLARY 2.7. Let H be a separable complex Hilbert space and (B(H). )
a one-parameter W*-dynamical system with o(a_,) # C. Then a is uniformly conti-
muous and

16 cover < 18 exp(6- 103]I(1 -1 o)~} -+ 4-108).

Proof. By a well known result of V. Bargmann there exists a strongly conti-
nuous one-parameter group of unitaries on H such that

o(x) =uxuf, teR, xe B(H)

(see for example [16], Remark (4.14) or [17], Section 4.1). Hence our statemecnt
follows immediately from Proposition 2.6. %

The corresponding statement for C*-dynamical systems is

CoROLLARY 2.8, Let A be a separable prime C*-algebra and (A,o) a one-
-parameter C*-dynamical system with o(a_;) # C. Then o is uniformly continuous and

lo(@) cover < 18 exp(6-10*[(1 -4~ o)~ +- 4-10%).

Proof. By a theorem of Dixmier (see for example [19], Proposition 4.3.6)
A is primitive, so it has a faithful irreducible =-representation n: 4 — B(H). Sincc A
is separable, H will be separable.

On the other hand, by Proposition 2.2 o can be extended to a o(4%%, A4%)-

-continuous one-parameter group a** of x-automorphisms of A** with

o((a™)_) = a(a_;) # C
(L A+ @)= )M == 11+ an) =2

and

But n can be extended to a normal s-representation 7: A** — B(H), and there
is a central projection p of A** such that

RIA**p: A**p — B(H) is a =-isomorphism

5 — 2324
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(see the proof of [21], Proposition 1.16.2). By Corollary 2.4,
@) (p) = p, 1€R,
so there exists a one-parameter W *-dynamical system (B(H), §) with

mo (™), = B,oqt, teR.

Using [25], Lemma 4.1, it is easy to see that
o(B-;) = a((@*)_s),

s0
o(B-;) #C,
and
Bt B~ < 1A - @) )7t i+ e

Hence by Corollary 2.7, 8 is uniformly continuous and

10(B)lcover < 18 exp(6-10°fi(L + a_;) =1 -+ 4-10).

Finally, since = is injective and
ﬂod,=ﬁ,°ﬂ, tERz

we have o(o) = (), so the above inequality yields the required one. %

3. THE SPECTRUM PROBLEM FOR C*-DYNAMICAL SYSTEMS

In this paragraph we show how Corollaries 2.5 and 2.8 lead to the description
of the one-parameter C*-dynamical systems whose analytic generator has positive

spectrum.
First we extend Corollary 2.8 to arbitrary prime C*-algebras, eliminating

the separability assumption. To do this, we need the prime C*-algebra version of
a result of Blackadar concerning simple C*-algebras ([2], Proposition 2.2):

ProposSITION 3.1. Let A be a prime C*-algebra and let B, be a separable
Co-subalgebra of A. Then there exists a separable prime C*-subalgebra B of A
containing By .

Proof. Since B, is.separable, its primitive spectrum Prim(B,) is second countable
(see [9], Proposition 3.3.4 or {19], Corollary 4.3.4). Choosing a countable basis for
the topology of Prim(B,), we enumerate the disjoint pairs of nonempty open sets
in this basis as

pg’ pg’ e
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Let us denote by I?, J? the orthogonal nonzero closed two-sided ideals of B, whose
spectra are the two open sets in p? (see [9], 3.2 or [19], 4.1).
Since I%, J? are nonzero and A is prime, we have

RA4JY # {0}.
Choose a separable C*-subalgebra B; of 4 such that B, < B, and

1{ByJ? # {0}.

Next, choose a countable basis for the topology of Prim(B,) and enumerate
the disjoint pairs of nonempty open sets in this basis as

11
DPisPss «

Let I}, J} be the orthogonal nonzero closed two-sided ideals of B, with spectra the
two open sets in pi.

Again, since I, J?, respectively, I}, JI are nonzero and A is prime, we have
184J3 # {0}, 1147} # {0}
Choose a separable C*-subalgebra B, of A such that B; < B, and
13B,J% # {0}, IiBJ; + {0}.

Continue in this way
1) to construct an increasing sequence
B,cB,cB,c ...
of separable C*-subalgebras of A4,

2) to choose a countable basis for the topology of each Prim(B,),
and

3) to enumerate the disjoint pairs of nonempty open sets in the chosen basis
of Prim(B,) as
pi’) pg’ M

so that, denoting by I, J? the orthogonal nonzero closed two-sided ideals of B,
with spectra the two open sets in p}, we have

HBJi# {0}, n>1,0<j<n—1,1<k<sn—j

Set the closure of the union {_J B, equal to B. Then B is a separable

nx1
C*-subalgebra of A4 containing By, and
(%) LBJ # {0}, j=0 k>1

We complete the proof by showing that B is prime.
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Let us assume that B is not prime. Then there are two nonzero closed twee
-sided ideals 7 and J of B with

1J = {0},

Choose j = 0 with
InB; # {0}, JnB; +#{0}.

Since In B; and J n B; arc orthogonal nonzero closed two-sided ideals of B;, their
spectra are disjoint nonempty open subsets of Prim(B;). Therefore cach one of
these spectra contains one of the open sets in some pf, k > 1. In other words,
there exists & > 1 such that each one of the ideals /n B;, Jn B; contains one
of If, Ji, say

HcinB;, JicJaB;.
But then

IiBJ| < IBJ c IJ = {0},

in contradiction with (s). %
Using Proposition 3.1 one gets easily

COROLLARY 3.2, Let A be a prime C*-algebra, (A, o) a one-parameter C%-
-dvnamical system and S < A a countable set. Then there exists an a-invariant separable
prime C*-subalgebra B of A containing S.

Proof. Let us denote by A, the C*-subalgebra of A generated by
{a(x) ; xe S, r rational}.

Then A, is separable and a-invariant.
Next, by Proposition 3.1 there exists a separable prime C*-subalgebra B,
of 4 containing A,. The C*-subalgebra A, generated by
{,(x) ; x € By, r rational}
is scparable and o-invariant.
Continuing in this way we get a sequence
A < Bic Asc B, ...
of separable C¥%-subalgebras of 4 such that
Sc< A,
A, is a-invariant, =1,

k
B, is prime, k2>1.
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Then the closure B of
U4, = UBk

k>1 k>1

is a separable C*-subalgebra of A containing S, which is simultaneously
a-invariant and prime. %

Now we are able to extend Corollary 2.8 to the inseparable case.
COROLLARY 3.3. Let A be a prime C*-algebra and (A, o) a one-parameter
C*-dynamical system with o(a._;) # C. Then o is uniformly continuous and

[6(@)|cover < 18 exp(6-10%1(1 4- ar_;)~ ]| + 4-108).

Proof. Let us assume that
[0(0) lcover > 18 exp(6+ 103 |(1 + o)~ + 4-10%)
and look for a contradiction.
Let 4, ..., 4, € o) be such that
{21 « s Au}lcover > 18 €xp(6-10%(1 + ;)] -+ 4-108).

By the definition of o(a), for any 1< j < n and for any k& > 1 there are

. a i i
Ji.v€ LXR)  with supp(f; )< (Aj — 7, A+ —k—)

and
XJ" L € A Wlth afj, k(xj-, k) ?5 0.
Since the set {x; , ; 1<j<n, k>1} is countable, by Corollary 3.2 there exists an

a~-invariant separable prime C*-subalgebra B of A4 containing it. Defining the strongly
continuous one-parameter group o|B of x-automorphisms of B by

(2|B),(b) = a,(b), teR,beB,

we have
Aieoc(@B) for1<j<n

Thus

[a(alB)!cover > [{2'1, L ln}lcover >

> 18 exp(6-10%(1 - a_;)~ 2| + 4-109).
On the other hand, by [25], Lemma 4.1 we have
o((2|B)-;) # C,
I+ @B)-)~t =(-+a_)"YB,
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s0
1A+ @B~ < (T + 2 )7
Consequently
za(a!B);cover >18 exp(é' 10?!(1 -+ (afB)—i)-lt‘vI‘ + 4. 108)1
which contradicts Corollary 2.8. %

The corresponding statement for W+“-dynamical systems is

CorOLLARY 3.4. Let M be a factor and (M, &) a one-parameter W*-dynamical
system with o(e_;) # C. Then a is uniformly continsous and

(@) cover < 18€xp(6-10% (1 4 & )=2] -i- 4-109).

Proof. Consider the C*-subalgebra
A={xeM;R3t~a{x)e M is norm continuous}.

By Proposition 2.1 4 is a ¢(M, M,)-dense a-invariant C*-subalgebra of M, the
restriction aid of @ to A is a strongly continuous one-parameter group of =-auto-

morphisms of A, and
a(@lA) +- o(@),

o((l4)_)) = ola_,) # C,
1+ @A) =) == (1 4 @)=,

But A is prime: if I and J are norm-closed two-sided ideals of A4 with IJ =
« + 10}, then their (M, M.)-closures are by [21], Proposition 1.10.5 of the form Mp,
Mg, where p and ¢ are orthogonal central projections in M; hence, M being a factor,
it follows successively that

either p-=0 or ¢ ==0,
either 7 =: {0} or J = {0}.
Thus, by Corollary 3.3 we have
lo(@lA)icover < 18exp(6-10°(i(1 + (al4)- )i -+ 4-1C%),

and by the above relationships between « and «jA4, our statement follows. )

It is interesting to note that the statement of Corollary 3.4 was established
first for W*-dynamical systems on type I factors with separable predual (Corollary
2.7), from which case we deduced it for C*-dynamical systems on separable prime
C*-zlgebras (Corollary 2.8), and then on arbitrary prime C#*-algebras (Corollary
3.3); only using this last case were we able to prove the statement for W*-dynamical
systems on arbitrary factors.
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Now we solve the spectrum problem for arbitrary one-parameter C*-dynamical
systems:

THEOREM 3.5. Let (4, @) be a one-parameter C*-dynamical system. Then the
Jfollowing statements are equivalent :
(l) O'((Z_.i) ;é C;
(ii) there exists a family (1),eg of closed two-sided ideals of A such that
mI 5 {O}a
€3
for each 1€ 3, 1, is a-invariant and o induces a uniformly continuous one-parameter
group ot of x-automorphisms of the quotient C*-algebra A[I,, and
suplo(’y)|coyer < 400
(1=
(iii) every prime closed two-sided ideal I of A is a-invariant and o induces a

uniformly continuous one-parameter group ol of =-automorphisms of the quotient
C*-algebra A[I, and

sup 16(af)|eover < -+00.
I prime

Moreover, if the above equivalent statements hold then
10+ a_ )7 < 4680 suplo(a’)lcover
1€

sup lo(@)lcover < 18 exp(6-10%}(1 +- w_ ) [ + 4-108).
prime

Proof. Using Corollaries 2.5 and 3.3, it is easy to see that (i) = (iii) and
sup | o(0)lcoyer <18 exp(6- 10%| (1 +-a_,) | -+ 4-108).

I prime

Since the primitive two-sided ideals of A are prime and their intersection is {0},
we have also (iii) = (ii).

Finally, let us assume that (i) holds.

Since g 1, = {0}, the s-homomorphism

A3 x4+ (x/It)tES € H(A/Iz)
€T
is injective, hence isometric. Therefore
x|l = sup||x/L], xeA.
tEJ

Let xe 7, .. Then x belongs to the domain of (1 4 «_;)~* ({3], Coroliary
3.3) and it is easy to see that

(o)7L =1+ @) )" /L), 1€3;
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hence
N -t a )~ MX) == Sélpii(l F(a')_ )" Ux/L)Y <
€3

S(supi(l -+ () )7 )ixh.
But by Corollary 1.3, h
I+ @) )21 < 468010(28) corer, 1€ T,
80

I - 2)71(x) [ < 4680 sup.o(2't) coyer!] X1
€D

We conclude that
ML 42 )12, | < 4680supic(a’s)lcove; -
1 LES
Since (1 -+ 2._;)~' is a closed operator and '@@—a is dense in A ([3], Theorem 2.4),
it follows that (I + x_,)~? is everywhere defined and

if(l -+ x—i)_lg.! < 4680 sup ia(zll);cover'
t€J

fa particular, e{a_;) # C. 72

4. THE SPECTRUM PROBLEM FOR W#*-DYNAMICAL SYSTEMS

In this paragraph we extend Corollary 3.4 to global W*+-algebras by proving
a W¢-algebra counterpart to Theorem 3.5.

First we consider W¥-dynamical systems on W% algebras with separable
predual:

Lemma 4.1, Let M be a W+-algebra with separable predual and (M,2) a
one-parameter W-dynamical system with o(a_,) # C. Then o is innecr; that is,
there exists an s-continuous one-parameter group

u: R — unitaries in M

with
adx) == uxut, teR, xeM.

Proof. By the classical reduction theory for W+-algebras with separable pre-
dual (se¢c e.g. [21], Section 3.2) we can consider M to be a W*-subalgebra of some
LR, u, B(H)) with

2 a compact metric space,

1 a positive Radon measure on @,

H an infinite-dimensional separable complex Hilbert space,
B(H) endowed with the s-topology,
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in such a way that the centre of M is L®(Q, u, C) « L2(Q, u, B(H)); if (a,),5; is
a sequence in M which generates M, then for p-almost every w e Q the sequence
(a,(w)),, generates a factor M(w) in B(H), and for each ae L>(&, u, B(H)),

ae M = a(w) e M(w) p-almost everywhere;

in particular, the factors M(w) are uniquely defined modulo u-negligible subsets of Q.

Since M is countably generated, by Proposition 2.1 there exists an s-dense
a-invariant separable C*-subalgebra 4 of M, such that the restriction «|4 of « to
A is a strongly continuous one-parameter group of s-automorphisms of A; taking
into account [25}, Lemma 4.1 we get

a((xlA)-;) # C.
Let B be a norm-dense countable self-adjoint Q(i)-subalgebra of 4 (where
Q) :=Q +iQ = C) such that
a(By=B, reqQ.

Choose a Borel set 2, = 2, Q\Q, u-negligible, such that the functions

Q30 blw)], beB
are Borel,
o)l < |16, beB,wel,
and for each o € @, the factor M(w) is generated by {b(w); be B}.
Let e Q, be fixed. Then
B3 b b(w) e M(w)

is a contractive, Q(i)-linear, multiplicative, x-preserving map, so it can be extended
to a z-homomorphism

n,: A = M(w)

with s-dense image. By Corollary 2.5 the formula
(aﬁ)ln(a(a) = nm(al(a))s t € R E] ae A

defines a strongly continuous one-parameter group o of x-automorphisms of the
C#-algebra m,(A), such that

o((24)-;) # C.
Furthermore, since n,(A4) is s-dense in M(w), using Proposition 2.2 and Corollary

2.4, and arguing as in the proof of Corollary 2.8 it is easy to see that o4 can be ex-
tended to an s-continuous one-parameter group o® of x-automorphisms of M(w),
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such that
o((@).) # C.
Finally, by Coroliary 3.4 o is uniformly continuous so by well known results
{see e.g. [19], 8.5.5, 8.6.5) there exists a unique self-adjoint h, e M(w) with
(a®) (x) —= exp(ith,)xexp(—ith,), teR, xe M{w),

1

—-118%%,
2

o=
where the bounded derivation 6% : M(w) - M(w) is defined by
0?(x) =+ norm-lim i((oz"’),(x) --Xx), Xxe€ M(w).
t=0

For each be B and » # 0 rational,

- — BB,

so the function
. ._
950 > [ (@), 60 — b))

ir I

L) — b,

|
. b

is Borel. It follows that for each b € B the function

0,5 0 > [ 50(b(@))| = lim — [ (),(6@)) — b(@)’
Qdr=o 7

is also Borel. Since {b(w) ; b € B, bl < 1} is s-dense in the closed unit ball of M(w),
we deduce that the function

Q62 o +— 124 = supt 2(b(w)) !
bcB

b <1
is Borcl, and hence also the function
P
Q30> hl = 17
Ny , O

Iet us set

Q = {weQy;k—1< I <k}, k=1,

B(H)g,, == {xe B(H) ; x == x* lx[ < k}.
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Then 2,,Q,, ... form a partition of Q, into Borel sets, and B(H)g, , endowed
with the s-topology, is separable and metrizable with a complete metric. The charac-
teristic function p, of Q, is a central projection in M and we have

Y o L
k=1

By Corollary 2.4 each p, is fixed by o, so « leaves invariant the reduced W*-alge-
bras Mp, and it is enough to prove the innerness of « on each Mp,.
Let k > 1 be fixed. The product Borel space

QkXB(H)Su,k

is standard, and
I'= {(w, h) € QX B(H)g, 1. 5 0,(b)(w) == exp(irh)b(w)exp(-irh) for

all reQ and be B, ||hll < (A}

is a Borel subset of Q, X B(H)s,, ;. It follows that I', itself is a standard Borel space.
By the definition of the A,’s

Iia(w,—~ove
is a bijective Borel mapping, hence its inverse
Q30— (wh,yel,
is also Borel (for the properties of standard Borel spaces used we refer to [9], B20,
B21). Consequently,
Q3w h,e B(H), ,

is a bounded Borel mapping a, € L®(Q,, 1, B(H)). Since
h,e M(w), weQ,,

a, belongs to Mp,. Defining the s-continuous one-parameter group #* of unitaries
in Mp, by
| 1.
(), = pe —l"] "'lmk ‘}"zv‘(11a1;)2'+- .., teR,

we get, successively,
o (D) pi = (UF),b(u")}, reQ, be B,
o x) pp = W) x(®)F, teR, xeM. A

Next we consider W#*-dynamical systems on countably generated W*-
algebras:
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LEMMA 4.2. Let M be a countably generated W*-algebra and (M, o) a one-
-pararneter W*-dynamical system with 6(a.,)#C. Then there exists a family (p,),c=

of mutually orthogonal central projections in M with E p, == 1, such that a leaves
tEJ

nvariant each reduced W#-algebra Mp, and each restriction a\Mp, is uniformly

continuous.

Proof. Let P be a maximal set of mutually orthogonal central projections in M.
such that ecach Mp, p € P, has separable predual. Write

G=1— Y. p

-

pEP
Let us assume that ¢, % 0. We consider Mg, imbedded in some B(H) as a
von Neumann algebra. Since g, # 0, there exists ¢y e H with ||, = 1. The ortho-

gonal projection e’ onto Mgy, belongs to the commutant (Mgqy)’ of Mg, Denoting
by z(¢') the central support of ¢’, we have

0 # z(e') e Mg,

and Mz(e’) is x-isomorphic to the induced von Neumann algebra (Mq,),. But M is
countably generated, so ¢'H = Mgy, is a separable Hilbert space. Consequently
{Mg,), has separable predual and thus Mz(¢') too. This contradicts the maximality
of P.

Hence we have

Y=L

pEP
By Corollary 2.4 and Lemma 4.1 it follows that x is inner. Now the statement of
Lemma 4.2 is a direct consequence of Proposition 2.6. %

Now we are able to prove the innerness of a general one-parameter W*-dy-
namical system whose analytic generator has positive spectrum:

LemMA 4.3. Let (M,x) be a one-parameter Wé-dvnamical system  witle
e(z.,) # C. Then 2 is inner.

Proof. Let P be a maximal set of mutually orthogonal central projections in M,
such that the restriction of % to each (by Corollary 2.4 automatically a-invariant)
Rp, pe P, is inner. With

Po Zl’~ go - I — Py,

PEP
the restriction of % to Mp, is inner and for no nonzero central projection g < g,
is %.Mg¢g inner.
Let us assume that there exists a nonzero projection e < g, in M* — {xe M;
a,(x) — x for all 1e R}, such that x|eMe is inner. Arguing as in the proof of
18], Lemma 1.5.2, it is easy to see that in this case also o | Mz(e), where z(e) is the
central support of e, is inner. This contradicts the maximality of P.



AUTOMORPHISM GROUPS OF OPERATOR ALGEBRAS 271

Consequently, for no nonzero projection e < g, in M?* is ajeMe inner. In
particular, for no nonzero projection e < g, in M* is o |eMe uniformly continuous.
We shall prove that if ¢, # 0, then there exists a projection 0 # ¢ < g, in M* with
aleMe uniformly continuous, in contradiction to the above statement. Thus it
will follow that g, = 0, that is, py = 1.

Hence let us assume that g, # 0.

Let » = 1 be an arbitrary integer. Denoting for each x =— x* € M the pro-
Jection

V supp(a,(x)) = V a,(supp(x))
teR teR
by supp,(x) and calling it the a-support of x, Ict X, be a maximal set of self-adjoint

elements of the closed unit ball of (Mgy)*((— oo, — njuy [n, + c0)) with mutually
orthogonal a-supports. Put

x, =Y, xe(Mgy*(—o0, n}y [n, 4-00)).
xeXu

Now let N be the a-invariant W*-subalgebra of Mg, generated by g, and the
sequence (x,),,;. Then N is countably generated and its unit element is ¢y # 0,
so by Lemma 4.2 there exists a central projection e # 0 of N such that « fixes e
and the restriction o|Ne is uniformly continuous. Thus there exists an integer
n, = 1 with

Ne == (NeY{([—n,, n,]).
Therefore we have, simultaneously,
X, +1¢ € Ne < (Maoy([—n,, n.]),
Xy +1 €€ (Mgo)*((—o0, —n, — 11U [n, 4 1, +00,)),
which is possible only for
Xy, +1€ = 0.
Let xe X,,e+1 be arbitrary. By the above equality we get, successively,
xe = supp,(x)x,,cﬂe == 0,
supp(x)e =- 0,
a (supp(x))e = a,(supp(x)e) == 0, teR

supp,(x)e == ( V a(supp(x)))e = 0.
{1ER
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We conclude that e is orthogonal to the a-support of every xe X, +1. By
the maximality of > it follows successively that

(eMe)y((—o0, --n, — 1)U [n, -+ 1, +00)) == {0},
eMe —= (eMe)*([—n, — 2, 1, -+ 2]).
But this implies that xleMe is uniformly continuous. %

Finally we prove the promised W*-algebra counterpart to Theorem 3.5. We
recall that if M is a W*-algebra, Z its centre and Q the maximal ideal space of Z,
then following [13}, one can consider for each we Q the norm-closed (automati-
cally two-sided) ideal [w] of M.

THEOREM 4.4. Let (M, 2) be a one-parasmeter Wé-dynamical system, Z the
centre of M, and Q the maximal ideal space of Z. Then the following statements are

equivalent

(W) o(x-;) # C;

(ij) there exists a family (1),e5 of norm-closed two-sided ideals of M such
that

mlt == {0}’

€J

Jor each 1€y, 1, is a-invariant and x induces a uniformly continuous one-pararneter
group ¥%s of =-automorphisms of the quotient C*-algebra M|I,, and

Sup:a(al')!cover < +w;

€3

(ji) there exists a dense open subset D of Q such that, for each we D, {w)
is a-invariant and o induces a uniformly continuous one-parameter group a® of *-quio-
morphisms of the quotient C¥-algebra M|[w], and

sup i6(2®)|cover < +00;
wedD

(iifi) there exists a family (p,),e= of mutually orthogonal central projections in
M such that

Yp.oo- 1,

ET

for cach 1€ 3, p, is fixed by a and x induces a uniformly continuous one-parameter
group x\Mp, of =-automorphisms of Mp,, and

Sup‘la (xiMpl),cover< —}-OO.
€3
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Moveover, if the above equivalent statements hold then

”(1 4o, 1114680 Sup]a(al')lcover’
€3

Sup]o-(“w)lcover < lSexp(G- 103“(1 -+ “-—i)—lu -+ 4- 108)
w€ED

Proof. Using Lemma 4.3 and Proposition 2.6, we get immediately the impli~
cation (j) = (jjjj), with the estimation

suplo(@lMp,)leover < 18 exp(6-10%||(1 + ar_;)~1|| + 4- 108).
€T

Let us next assume that (jjjj) holds. Each p, corresponds to the characteristic
function of some closed and open subset K, of 2 and the open set

D= UK
tE€EJ

is densc in Q. Let we D. Then w belongs to some K., and since alMp,,, is
uniformly continuous, hence inner, and

[(D] = [CD] n M[)uco) + M(] - pl(w))?

« leaves [w] invariant and induces a uniformly continuous one-parameter group
o® of x-automorphisms of

M{lo] = Mp,,/([w] N Mp,())-
Obviously,
o(a?) = a(alMp,,),
so we have
lo(@)lcover < 10(MPy()lcover < ?ggla(alMp;)lcover'
Hence (jjj) holds.

By the formula from p. 232 of {13] for the norm on M in terms of the norms
on the quotient C*-algebras M/[w], and by [13], Lemma 10, we have

M [w] = {0}.

wED

Therefore, (jjj) = (ij)- :
Finally, let us assume that (jj) holds. Let

A={xeM;R3t+ ax)eM is norm continuous}.
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By Proposition 2.1, A is an a-invariant C*-subalgebra of M, «'A is a strongly con-
tinuous one-parameter group of s-automorphisms of 4, and we have

o((a) A)-;) = o(«..}),
PA = (@A) )T (A —as) Tt for Aéa(any)

Now (1, 0 A),c 5 is a family of closed two-sided ideals of A4 with intersection zero,
and for each 1€ 3, 3, n 4 is a-invariant and « induces a uniformly continuous one-
parameter group a’s"4 of s-automorphisms of

Al n Ay =« M1, ,
aamely,

alifd = gl AJ(1, 0 A).

Then we have, successively,
ola’sn ) < glalt), 13,

Ty 7 . .
sup;a(a 'nA)Icover < Supla(al')fcover < 5-00.
S t€EJ

By Theorem 3.5,
o((x,A)-;) # C,

::(l -+ (“'A)—;)"lii < 4680 Sé‘gio—(al‘nA)!CO\'el 1]

and we conclude that

ala_)) # C,
(L o)~ < 4680 supo(a’vicover -
tEJ
Tn particular, (j) holds. )

Proposition 2.2 and Theorem 4.4 yield immediately the following completion
to Theorem 3.5:

COROLLARY 4.5. Let (A, &) be a one-parameter C*-dynamical system. Then the
following statements are equivalent :
(i) o) # C;

(iiii) there exists a family (p,),c of mutually orthogonal central projections in
A% such  that

Zpt:l’

t€J
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or each 1e 3, p, is fixed by all (o )** with t e R and
t

is a uniformly continuous one-parameter group of x-automorphisms of A**p,, and

supla(@® ¥ | A% p Heover < + ©0. %,
€3

5. FINAL REMARKS

Let us consider for a one-parameter C*- or W*-dynamical system (4, )
the following condition:
N) there exist constants ¢ > 0 and ¢, > @ such that
xe AY((— oo, —¢l), fix|| < I = [[In(l — x)]| € ¢,.
By Proposition 2.2 and Theorem 2.3 we have
o(a_;) # C = a satisfies (N).

On the other hand, a careful examination of the proof of Proposition 2.6 shows that,
assuming « inner, we have also

o satisfies (N) = o(a_;) # C.
Thus we can raise the following

ProsrLeM. Ts it true for an arbitrary C*- or W¥*-dynamical system (4, o) that
o(o_;) # C < « satisfies (N)?

In the proof of Lemma 4.2 we have proved that every countably gencrated
W#-algebra is a direct product of W#*-algebras with separable predual. One also has
the following

ProPOSITION. A W¥-algebra M is countably generated over iis centre Z if
and only if it can be imbedded as W*-subalgebra in a type I“o W*-algebra N, in such

a way that Z becomes the centre of N.

Proof. Tf M allows an imbedding as in the statement, then M is countably
generated over its centre by [I1], Lemma 4.

Conversely, let us assume that M is countably generated over its centre Z. One
can consider M to be a von Neumann algebra in some complex Hilbert space H
such that for some involutive antilinear isometry J: H — H we have

M = JIMJ

6.-2324 8
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(for the whole topic of “standard” representations we refer to [14]). In this spatial
representation M’ will also be countably generated over Z. It follows that the von
Neumann algebra generated by M and M’

R==(MyMYy' :=Z'

is countably generated over Z. R is of type I, M is a W¥-subalgebra of R, and the
centre of R is Z.
Let P be a maximal set of mutually orthogonal projections in Z, such that for
each pe P, Rp is countably decomposable.
Assuming that
Ge 11— 2[) # 03

peEP
ong has §, e g H with i l] = 1, and the orthogonal projection 0 # ¢ < g, onto
R¢, belongs to R’ - - Z; if R is generated by Z and by the countable subring B of
R, then {b¢,; b e B} is a countable separating set for Rq in R&,:
xe Rq, xbéy =0 for all be B=
= x(2b)¢y = z(xby)) =0 for all zeZ and be B =
= XiR¢) = 0 =
= x = 0.
Hence Rg is countably decomposable, in contradiction to the maximality of P.

Thus g, == 0, that is

Yp=1
PEP

Since a countably decomposable homogeneous type I W#-algebra is always of type
I, with n < N, it follows that each homogeneous component of R is of type I,
for some # < N, . Therefore the tensor product of R with a factor of type Iy, satis-
fies the conditions for N. 73

By the preceding proposition the classical reduction theory of von Neumann
as described in [9], Chapter II is available for von Neumann algebras which are
countably generated over their centres (and precisely for these). Note that the ex-
tension of von Neumann’s measurable choice principle due to R. J. Aumann
{see [11]) applies in this situation.
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