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A TRACE FORMULA FOR WIENER-HOPF OPERATORS

HAROLD WIDOM

INTRODUCTION
For a function o € Lo(R) the Wiener-Hopf operator W(s) on L (R*) is
defined by
W(o)¢ = P(cp)"

where

30 = | eerpon, 9= | e

and P is the projection from Ly(R) to L,(R+).
We consider here the following questions: For which functions f and ¢ is
the operator

M S(W(0)) — W(fo0)

of trace class? If it is trace class, what is its trace?
First, it is not hard to show that if ¢ is real-valued then a necessary condition
that
W(o)? — W(6?)

be trace class is that the distributional inverse Fourier transform & be equal on
R\{0} to a function satisfying

2 S Ix! |&(x)[2dx < oo

(this integral and analogous ones are understood to be taken over R\{0}) and
that if ¢, and o, (real-valued or not) satisfy (2) then

W(a,)W(0s) — W(0,0,)
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is trace class. (The Toeplitz analogue of this is very well known and quite trivial.
It is less straightforward here since & is a distribution rather than a function.
Proofs will be given in the next section.} It follows that if (2) holds then

Wy — W(e")

is trace class for all n and so (1) is trace class for all polynomials f; We shall
assume about o only that (2) holds and, of course, that 6 e Lo, .

To state the main result of the paper we introduce two pieces of notation.
First, dw denotes the measure on R® given by

. 1. .
dw(&y, Eo) = - =~ 18y — & ~2d&ydE, .
8n?
The usefulness of this measure lies in the identity
o I l v v
) SS [o4(&) — ox(ENloa(Er) — oo(EldeEs, &9 = - 2<S 41 (8( -3,

satisfied by all ¢y, o, for which (2) holds, which will also be derived in the next
section. Second, for complex numbers « and # and a function f belonging to C*
on the line segment joining ¢ and B we write

if((l — 0o + 6p) — [ — O)f) + OB 4,
61 — 6) '

Ule, B.f) =

[}

THEOREM 1. Assume (2) holds and that either of the following conditions
is satisfied :

(8) f is analytic on a neighborhood of the closed convex hull X of the essential
range of o;

(b) o is real valued, fe L(R) and t‘“‘f(t) € Ly(R).

Then the operator (1) is trace class and its trace equals

SS U(o(2); o2, f)do(E, &).

Observe that since the spectrum of W(o) is always contained in X the condition
(a) on f guarantees (and is needed to guarantee) that f(W(¢)) may be defined by the
analytic functional calculus. As for the more interesting condition (b) when o
is real valued, the operator f(W(o)) is defined by the spectral theorem for any f
which is bounded on X. This operator depend'é only on the restriction of f to Z.
Thus condition (b) need not be satisfied by f itself but only by a function equal
to it on X. What we really have, therefore, is a local condition on f*'(x).
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This condition is probably not overwhelmingly more than is necessary. For
if f does satisfy condition (b) then the supremum of

tr[ f(W(o)) — W(f ¢ 0)]
taken over all real-valued ¢ satisfying
iollo < 24, Sixllc‘r’(x)i“’dx <1

is at least a constant times
max{|f"(x)] : — A4 < x < 4}.

This can be seen by using the formula
1 .

() U@ B.f)=(B —a)p Sf"((1 — O)x + 6P)[0 logh + (1 — 6) log(1 — 0)]d6
0

to deduce that if for some constant x we have limg,(£) == x uniformly in ¢ then

Uo,(E), 0l f) = [—— ; 1) + o(l)][an(:l) o EP

uniformly in &, & and then setting
6,(8) = x + n~U2E-1eitn+ DL . gind)

and applying the theorem and identity (3) with o, = ¢, == 0,,. This suggests that
a necessary, and perhaps also sufficient, condition that (1) be trace class for all o
satisfying (2) is that f/ be locally bounded.

Two special cases of the theorem, corresponding to f(z) equal to z? and logz,
are especially simple. Elementary computation show that

U, B, 2%) = —(a — B)*
Ute, . logz) —- - (logs — log)
and so the theorem and identity (3) give

tr[W(o)* — W(g®] = — %—S [x]o(x)&(— x)dx = — S xo(x)o(— x)dx
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and similarly

oo

trflog(W(e) — W(logo)] = —2 S x(loga) ¥ (x)(logo) * (— x)dx.

0

These formulas, with suitable conditions imposed on &, have been known for
some time. The similarity of the right sides is striking and is due directly to the
fact that for these two special f, U(a, B,f) is the form [F(B) — F(x)}? for some
function F. Modulo translation and addition of a linear function these are the
only two smooth functions with this property.

Following the proof of Theorem 1 we shall consider the finite Wiener-Hopf
operator W, (o) on L,(0, 2), defined by

W,(0)p = Pyc9)~

where P, is the projection from Ly(R) to Ly(0, o), and prove the following.

THEOREM 2. Under either of the conditions of Theorem 1 we have

lmt[f(W,(0) — Wo(fe 0)] = 2 SS Ulo(&), o(&), /), &).

¢— 00

A discrete analogue of this, for self-adjoint Toeplitz matrices, was proved
by L. M. Libkind [3). His conditions were different from ours, as well as his expres-
sion for the limit. The methods of the present paper apply equally well (and more
easily) to the discrete case.

In view of the second assertion of Theorem 1 the content of Theorem 1 is
really that

lil‘gtr[f (Wo(0)) — W (f o 0)] = 2tr[ f(W(0)) — W(f>0)]
That this holds, at least with stronger conditions on fand o, is already known [6].
The proof under the present conditions will be only slightly more involved than
the proof of the first (and simpler) assertion of Theorem 1.

If in Theorem 2 we take f(z) = logz we obtain information on the asymptotics
of determinants of finite Wiener-Hopf operators. Recall that an operator is of
determinant class if it differs from 7 by an operator of trace class, and its determinant
is then defined [I, Chapter IV].

THEOREM 3. If there is a determination of logo which is bounded and satis-
fies (2) then

W, (0) e~ Va0
«
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is of determinant class and

4) limdetW, (6) e~ Va8 — exp{ S x(loga) ¥ (x)(loga) ¥ (— x)dx} .

=00

If in addition logo € L,(R) then W (6) is of determinant class and

im detW (o)

a0 exp{- x* S.loga(é)dzf
2n

} = exp{s x(logo) ¥ (x)(loga) ¥ (— x)dx} .

This is of course the continuous analogue of the strong Szegd limit theorem
for Toeplitz determinants, long known to hold under suitable conditions on ¢ [2].

We end this introduction with a conjecture of which Theorem 2 is a very
special case. Recall that the pseudodifferential operator on R" with symbol o(x, &)
1s the operator A given by the formula

Af(x) = 2m)=" Seié""a(x, Hfiede.
If o satisfies appropriate conditions then A4 js trace class and
trA = 2nx)~" SS o(x, H)dxdé.

More generally if © is a domain in R" and P denotes projection onto L,(Q) then

(5) trPAP = (27[)—"5 So'(x é)d»\’df-

R 0

The question is, given a suitable function f and operator A, what is the
trace of f(PAP)? It is of course hopeless to expect an exact expression for this.
in general, but not at all hopeless if for 4 depends on a parameter in a suitable
way and one is looking for, say, an asymptotic formula.

A reasonable first approximation to f(PAP) is Pf(A)P and a reasonable
first approximation to f{A) is the operator with symbol f(g). This leads us to the
formula, for a first approximation,

(6) trf{iPAP) ~ 2n) " S Sf(a(x, &)dxde.
R" @
Examples of this abound. To give just one, probably the most famous, if 6(x, &) = [¢|2

and
0 x>121

f(X)r:{l x < A
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then (6) is Weyl’s formula on the asymptotic distribution of the eigenvalues of
the Laplace operator on Q with appropriate boundary conditions. Our conjecture
is that a certain formula is in the same (imprecise) way a universal second
approximation. We need some notation. Denote by Z the set of all pairs X : = (x, 1)
where x e ¢Q and # € T, (the tangent hyperplane to ¢Q at x). Thus & seems to be
the tangent bundle of JQ although it is better to think of it as the cotangent bundle.
There is a natural measure dX = dndx on %, where dx denotes surface measure
on 0Q and dn Lebesgue measure on T,. Given a symbol o(x, ¢) we define for
cach X :=(x,n) e & the function o, of the real variable ¢ by

ox(8) = a(x, =+ &v)

where v, is the unit inner normal to Q at x. The proposed formula for a second
approximation reads

n (4 ”"\ o- ("o-
wpar) = @\ \ [0 L) § 07 7 avat 4
R" o
)
i oy S S V(o1& 03(Ex), N)d0o(Es, ENAX
Z R?

In case the symbol ¢ is o(¢/x) and Q is the interval [0, 1] in R? then PAP is uni-
tarily equivalent to W,(¢). And (7) is just Theorem 2 if f(¢) € L,(R) since o is
independent of x and ¢&{0, 1] consists of two points making the same contribution.

Although to a first approximation the operator f(4) has symbol f{(s), to @
second approximation its symbol is the integrand in the first integral above. (See,
for example, [5, § 2].) In view of this, formula (5), and Theorem 1 an alternative

formula is

tr{ f(PAP) — Pf(A)P] =~ (2r)~"*! Str[f (Wiox)) — W(foax)ldX.

X

A precise version of this was proved in [6] for a class of symbols of the form ¢(¢/a)
in R” and f satisfying condition (a).

Curiously enough if o(x, &) = — I£% so that A4 is the Laplace operator,
and f(x) = e'* then (7) is a correct second approximation as ¢ — 04- if PAP is
interpreted as the Laplace operator with Dirichlet boundary condition. This is
seen by comparing what (7) gives (it is easy to compute the integrals exactly) with
the known asymptotic expansion for the heat operator with this boundary con-

dition [4].
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PRELIMINARIES

We denote by A~ the set of all functions o € Le(R) for which (2) holds.

PROPOSITION 1. Suppose 6 € Lo(R). Then oeA if and only if o(£) —
— 0(¢,) e Ly(dw) and then

S 10(8) — o(E) ey, &) = 1/2 S x| () l2dx,

Proof. Assume ¢ € A4 and fix #. The inverse Fourier transform of (¢ 4- ) —
—a(&) is
(&= — D3()

which is equal, in R\{0}, to an L, function. Thus (¢ + ) — ¢(£) equals an L,
function 7,(£) plus the Fourier transform of a distribution supported at {0}, i.e.,
a polynomial. Now the integral of a(¢ + n) — o(&) over an interval J is bounded
by a constant independent of J, and the integral of z, over J is bounded by
a constant times |[JJ/% It follows that the polynomial in question equals 0. Thus

o€ +m) — o(§) = 7,()

and Parseval’s identity gives

Sla(é + 1) — o(mPdE = 27 S lo-ne — 1133(x)Pdx.

Dividing by #?° integrating with respect to #, and changing variables yield the
asserted relation. The converse is proved similarly.

Formula (3) follows easily from the proposition by a standard argument.
We shall denote by |jo|l| the norm of 6(¢,) — 6(&,) in Ly(dw). Thus o e A’
if and oaly if
lolle + flafll < oo.

A trivial but extremely useful fact is that if ¢ € # and fsatisfies a Lipschitz condi-
tion with Lipschitz constant 4 on the essential range of ¢ then f(s) € # and

(®) @l < Alleall.

Proposition 2. Given o € A" there exist o, A such that
@ jloy—oll >0 as n—co,
(i) o, —» o almost everywhere as n — oo,
(i) ol = O(1) as n — oo,
(iv) each ¢, is of the form c,d + s, where c, is a constant and s, is an L,
Sfunction supported in a compact subset of R\{0}.
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Proof. Assume first that ¢ has compact support, and let ¢(x) be a smooth
function with compact support equal to ! on a neighborhood of x = 0. Set

7,(8) = [} — @(nx))&(x)]".
Since the inverse Fourier transform of the distribution ¢'(¢) is the L, function
— ixg(x)

(the proof of Proposition | showed that (e~¥7* — 1)g(x) is always an L, function)
use of Parseval’s identity shows that

A8 = 0'(9)
in L, Integrating shows that

6,(&) = 1,() — 1,(0) -+ 0(0) = (&)

locally uniformly. And the other properties (i), (iii), and (iv) are easily checked.
If ¢ does not have compact support we first replace ¢ by

[p(x/m)a(x)]",

find a sequence o, , for each of these, and then choose an appropriate sequence
{Ou,a,)- The details are left to the reader.

We now prove the two assertions made early in the introduction.

PROPOSITION 3. If ¢ is a real-valued function in Lo and if W(62) -- W(a)*
is trace class then e e X'. If 6,,0,¢€ X then the operator

9 H(ey, 63) = W(0:07) — W(6,)W(ay)
is trace class and

(10) | H(oy, o)l < Nl lll 1ol
(1 trH(o,, 6;) = Sx&l(x)&'z(— x)dx.

[}

Proof. If we define the operator A(s) by

Ala)p — (69)"

H(o,, 6;) = PA(a,)(J — P)A(c,)P.

then

To prove the first assertion observe that this identity gives for real-valued o

W(o?) — W(a)* = [PA(o)(I — P)I[PA(c)I — P)]*.
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Since the operator on the left is trace class, PA(6)({ -~ P) is Hilbert-Schmidt. Now
if o belonged to L, then A(s) would be the integral operator with continuous kernel
&(x — y) and we would have

oo 0 o]
| PAIU — P)IE = S |3 (x - p)ltdydx == S x{F(x)[dx.
0 —oo 0
If o is real-valued this equals

172 S X116 (x)*dx = ||ja|||?

since |6(— x)| = |o(x)|. For general ¢ we introduce the functions
6:(8) = (e e leypu(x) (&) == ! P
1 4 1
Since
(I — P)A(e})P =0, PA(e;)I — P)==
we have

PA(c})PA(o)I — P)A(e;)I — P) == PA(6})A(0)A(o7XI — P).
The operator on the left has Hilbert-Schmidt norm at most
[ PA(o)I — P)|,
since || A(6F)]| = |6 llo = 1. The operator on the right is

PA(c I — P)
where

1
(8 = 1 {_ 8252' a(&).

Since this is an L, function we deduce that ¢, e A for all ¢ and
ol < || PA@)I — P)i,.
If we let ¢ » 0 Fatou’s lemma tells us that

ltelll < || PA(e)I — P,

and so 6 X .
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To prove the second assertion assume first that ¢; == ¢;0 - 5; where ¢; are
constants and s; are L, functions supported in compact subsets of R\{0}. Then
H(o,, 6,) is the integral operator with continuous kernel

Ssl(x - 2)85(- - 2 - y)dz.
J .

Its trace norm is at most ille, Il lio !} and its trace equals

CIS ¥}

S 5:(x -F 2)85(- - z — x)dzdx =+ S X0 1(x)0s(-— x)dx.
0 0

For arbitrary g, 0,€ & find sequences {o,,} and {o,,} as in Proposition 2. Then
{11} and (iii) imply that the operators A(c;,) converge strongly to A(c;). However
since {o,,} is Cauchy in the norm {; ! the operators PA(cy )(I — P) form a
Cauchy sequence in the Hilbert-Schmidt norm. It follows that

PA(s,,)(I — P) > PA(e))( — P)
in the Hilbert-Schmidt norm, and similarly
(I — P)A(0,,)P — (I — P)A(0,)P.

Hence the relations (10) and (11) for o, and o, follow from the corresponding
relation for ¢, , and oy, .

THE TRACE FORMULA

The proof of Theorem 1 consists of three parts. We show first that under
either condition (a) or (b) the operator (1) is trace class. We then show that,
because of convenient density and continuity properties, to prove in general that
the trace is given by the proposed formula it suffices to prove it in the special case
where ¢ = ¢d - 5 with s supported in a compact subset of R\{0} and f(2) - -
: o {z - A=Y with 2 sufficiently large. Finally this is done with the aid of a Wiener-
Hopf factorization.

We begin the first part of the proof by assuming that condition (a) is satisfied
for f(z) = z~1. Thus we assume 0 ¢ X. By (8) this implies that 6= e .#" and

ot < et g liell.
Hence by (10)
W — W(@W(e% < o S llol.
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Since ||W(o)~1|| is at most the reciprocal of the distance from 0 to Z, which in
turn is at most ||e~|lw , We obtain

[W(e)=* — W(e= I < e~ &l olll* .

Now let f be any function for which condition (a) holds. Let I’ be a rectifiable
path enclosing X, say at a distance & from it, such that f is analytic inside and
on I'. Then if Ae I we have, since |||¢ — 4]|| = l||o]il,

G — W)™t — W4 — o)~ Yl < 7% ]?

and multiplying by f(4)/2ni and integrating give

1FW(@)) — W(f o o)l < (2m)-28-3a |2 S A 1dAL.

r

(12)
We now pass to conditions (b) and consider first the case f(x) = e¥* where ¢

is a real parameter. We have

_:__, W(eito')e—itW(a) — [W(eitaia-) — W(ei'“)W(iO')]e-i’W(") —
t

—_ iH(ei{o', 0') e-—ilW(a) .
Replacing ¢ by 7, integrating with respect to t from 0 to ¢, and multiplying on

the right by ei*WVe) give
t

(13) W(eita) = eitW(e) _ jS H(ei“’, o) eitt —IWdr.

0

It follows from (8) that .
el < lel el

Since ei*~-7W@) jg unitary its operator norm is 1. Hence, from (10),
i i | 1 T
| H(e"e, ) et =aW@ i) < —242!!!0!11“-

Now for an arbitrary function f satisfying condition (b) we multiply by

@m)~t A

and integrate over ¢ to deduce

(14) 1 W(@) — W(f o)l < (4n)‘1lllalll2Sﬂlf(t)ldt.
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We are left with the proof of the identity
(1) UL A(W(0)) — W( S o)) — SS V(GG 0. )y, &)

under either condition. We show first that it suffices to prove this for entire func-
tions f. So ussume (15) holds for entire functions and that, first, condition (a) holds.
Let I' be a contour surrounding X, with f analytic inside and on I'. Let {f,] be
a sequence of polynomials converging uniformly to f inside and on I. Then (12)
implies that

(16) trl/(W(e)) — W, = 6)] - tr[fiW(0)) - fIW(f o 6))]

as i1 — 00. On the other hand it follows easily from (3’) that

) | SS Ulo(&. 06D NMoEr &1 < | palimaxiy]

and so

(18) SS Ula(&y), 6(,), f)de(Sy s &) — SS Ulo(<), 0(&o), &y, &) -

Thus, since (15) holds for each f,, it holds for f itselt.
Suppose [ satisfies condition (b) and replace [ by
jn == (fZ[—n.n])v

so that f, is entire. Then (16) holds because of (14), and (18) holds because of (17)
and the fact that

Ff =10 o < (27r)‘1812ifA(l) — fi{n)ide 0.

Hence, since (15) holds for each f, it holds for f.

We have shown that it suffices to prove (15) for f entire. Let o, be as in
Proposition 2. We shall show that if (15) holds for each o, (and our given entire
function f) then it holds for 6. We have the estimate

[ H(6,, (g, — )Y < fila, (o, — DI < fio, 1% (e, — A5 .
[t follows that if
(19) [A] > sup(lio,leo -+ [iloplL)
then /-~ H(o,, (6, — A)~1) is invertible. Since

I —W(s, — HW((e, — A7) = H(o,, (6, — ™)



WIENER-HOPF OPERATORS 291

and W(s, -— A)~! is invertible also we have
W(g, — )L = W((0, — A — H(s,, (g, — D)1 ==

= W((o, — H)=H{I + H(s, , (6, — )Y — H(a,, (6, — )™ H]"*}

and so
W(Gn - ﬂ')_.l - W((G',, - }‘)-1) = W((O-n - ],)-l)H(O'" ’ (an - A’)-l)

(20)

[I - H(O'", (Gn - '1)_1)]_1'
Now |ilg, -— alff - 0 as n - oo. Alternatively,
o'll(él) - 6!1(52) - a(él) - 6(62)
in Ly(dw). We claim that also ||[(s, — )~ -~ (¢ ~- )~*|| = 0. In fact
(Gu(él) - j')—1 - (au(fﬂ) - j')_1 = (o'n(él) - }')—-].(0-"(52) - l)—l[o'n(fe) - au(él)]'

The first factor on the right converges boundedly and almost everywhere to

(0(&) — H o) - H)7F

while the second factor converges in Ly(dw) to o(&) — a(&;). Tt follows that the
product converges in L.(dw) to

(0(61) — H~Ho(&e) — D7 o(Eo) — o(€)] = (a(&) — D=t — (a(&) — H~Y,

which establishes the claim.
It follows from these two limit relations, and from (10), that

Ho,, (6, — ™" - H(o, (e — 1))
in trace norm. Moreover the fact that
(6, — A > (c— )1
boundedly and almost everywhere assures that
W((o, — H~Y) = W((e — )71

strongly. Putting these things together and using (20) and its analogue with o,
replaced by o, we deduce that

W(g, = )=t = W((g, = )~ = W(e — )~ — W((e — )~}

7 - 2324



292 HAROID WIDOM

in trace norm. Moreover this holds uniformly for any compact set of A's satisfying
(19). So if f is entire multiplying by -- f(A)/27i and integrating over a suitabie
coniour give

f(W«a,,)) - W(fb Gn) —>f(W(O’)) - W(fo 0)'
In purticular

(21 ] f(W(a,)) — W(f'= 0,)] - tr[fiW(0)) — W(f e o)l

Next we show that

@ v o e - || Uit ote. ot .

Formula (3') gives
U(o'n(él)s 6;1(&2)9.,.) =

1
:wmm—mmﬂwm~mmm+%xmmw+u~w%wwmm
o

with a similar identity if ¢, is replaced by o. Now
(04(&1) — 0,(E))? = (a(E1) — 0(&2))*

in L,(dw) and it follows from properties (ii) and (iii) of the o, that the integral on
the right side converges boundedly and almost everywhere to the corresponding
integral with g, replaced by o. It follows that

U(an(él)s an(é‘z)y f) - U(G(él)a 6(62): f)

in L,(dw) and (22) is established.

Combining this with {21) shows that, as claimed, to prove (15) for o it suffices
to prove it for each ¢,. So we shall drop the subscript and simply assume that
& == ¢6 -I- s where s is an L, function supported in a compact subset of R\{0}.
In fact, it is convenient to assume less about s, namely that

&}s(x)ldx < 00, S]xljs(x)Fdx < oo,

The corresponding functions ¢ form a Banach algebra &/ under pointwise multi-
plication with the norm

1/2
nm~m+vwm+ﬁmmmm},
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As before it suffices to prove (15) for the functions f(z) = (z — A1)~ (with 4
sufficiently large), or with f(z) = z=! and ¢ replaced by ¢ — 4, or with f(z) = z?
and ¢ replaced by (¢ — A1)/(c — A). Thus we may assume that ¢ == 1 and (since A
may be arbitrarily large) that

(23) 1 —o] < 1.

On the subalgebra 7, of &/ consisting of those ¢ for which the corresponding
d-summand of ¢ vanishes there are the continuous mappings ¢ — ¢* given by

o* = (F1gs)"-

Since our ¢ has corresponding ¢ = 1 and satisfies (23) there is a loge € &7y and we
have the Wiener-Hopf factorization ¢ = o_o, where

o, = exp{(loga)*}.
Moreover using well known properties of these factors gives
W(e)~' — W(e~Y) = W(eHW(eZY) — W(oileZY) = — H(c37', 67%).

The trace of the right hand side is given by (11). Since (671" vanishes for x < ¢
we can write this as

24) tW(@) 1 — W(o=1)] = — S (659 (X)o7Y (— ).

We now consider the bilinear form on &

(@, ) = S X(\l;(x)l/‘;(- - x)dx
and prove the identity
(e?, e¥) == -é— (ee+V i — ).

We may suppose that ¢ and i have no s-summand. If x{(x) and xy/(x) both belong
to Ly then ¢’, ¥’ € L, and

(x@)" =i¢’, ()" =iy
Parseval’s identity and integration by parts give therefore

(2 ¥) = —— S o OV = — - — S POV (O)E =
2n 2n

=\ ew© —oovone

[ &3
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Replacing ¢ resp. ¢ by ¢® — 1 resp. e¥ —1 and using

S(p’f:%é ::SW’cUdé =:0
give )
(e ev) - - !

-

(1Y

e 1
- Se@@)*-m{(,o'(é) I (@)

To remove the restriction that x¢(x) and x:ﬁ(x) belong to L, we need only observe
that such pairs @, ¥ are dense in &7 X o7 and both sides of the identity are continuous
on & X

Applying the identity with

o == —(loge)*, ¥ - --(logo)~

shows that (24) may be written

25) t[W(o) ™t — W(e=9] == | (o7, (logo)~ — (iogo)*)
and since

[(logo)~ — (loge)*]” = - -sgax(ioge) "(x)
we have

(67, (1ogo)~ — (loga)*) % ¥ “()(ioge) (- - 2)dx.
Hence, because of identity (3), relation (25) may be rewritten

te[W(e)=t — W(o~1)] == SS [0(&) " — 6(&s)~Mloge(&y) — loga(E)ldm(E;, &),

However it is an elementary fact that
Ula, B, z)71 = (a=* — B~")(logx -- logP)

and so we have established (15) in the required special case and Theorem | is proved.

THE LIMIT THEOREMS

Recall that Theorem 2 is equivalent to the assertion that

(26) lim te[ (W, (0)) — W.(/ > 0)] == 2r[f(W()) — W(f = 0)]

if cither condition (a) or (b) holds.
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To prove this under condition (a) we consider first the case f(z) = z~1, assuming
that 0 ¢ Z. Then 0 does not belong to the convex hull of the essential range of ¢—?
so both W(c) and W(c~?) are invertible. Since

I — W(e)W(o~) = H(s,0" %)
we conclude that 7 — H(o, 6~%) is invertible and
ex)) W(o)~* — W(g~Y) = W(eY)H(o, 6 "Y1 — H(o, e~ 1)]-1.
The analogue of (9) for finite Wiener-Hopf operators is
(28) W(0165) — Wo(0)W,(0,) = P, H(0y, 02)P, + Q. H(0z, 01)°Q,

where P, is the projection from Ly(R+) to L,(0, &), where Q, is P, followed by
the unitary operator ¢(x) — @(o — x), and where the ““t” denotes transpose. This
is easily checked. In particular we have

I-- Wa(a)wa(a—l) = PaH(O-a 6—1)Pa -+ QaH(a_lx a)tQa = Aa -+ Ba’
say. The analogue of (20) is now
(29) W“((T)_l - Wa(a—l) == Wa(o--l)(Aa + Ba)[I - (Aa + Ba)]_l .

Since @, — 0 weakly as o — oo and H(¢~?, ¢) is compact, both B, and B
converge to O strongly. And since H{(o, o) is trace class it is an easy consequence
of this that

(30) ”AaBa:HI —’ Oa ”BaAaHI - 0
Now since 7 — H(o, 0~*) is an invertible operator on L,(R+) and
A4, » H(o,67%)

in trace norm (and so in operator norm) the operators I — A, are invertible with
vniformly bounded inverses. Similarly for B,. It follows from this and (30) that

(e + BIU — (A, + BI}' — A, (] — A)™* — B,(I — B) ™|} - 0.
Hence from (29)
W, (0) =1 — Wo(o™ )] = trWo (6 )AL — A,)7! ++ ttWo(e~HB,(I — B)* + o(l)

as a4 — co. Since as o0 — 00

W (6=NA4,(I — A)~* = W(o-Y)H(o, 6~ Y — H(s, 6"V = W(e)~* — W(c~1)
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in trace norm we have
trW (e HA,(I — A)~* - tr{W(o)~L — W(ec )]

As for the expression involving B, note that
Wa(a_l)Qz = sz\z(.gmzl)&,

that Q, is P, followed by a unitary operator, and that the trace is invariant under
transpose. Using these facts we deduce that

trW (o~ Y)B, (I — B,)~' = tt[l — H(c"%, 6)} - H(c ™", 6)W(c~Y).

On the other hand the identity
I — W(e~YW(o) == H(c"?, 6)

gives

W)t — W(e~Y) = I — H(c~, )] *H(o™%, 6)W(os~Y)

and so we have shown that also
trW,(6~)B,(I — B,)~* — trlW(o)* -~ W(o D).

This proves (26) in the special case f(z) == z~! if 0 ¢ 2. It follows that (26)
holds for f(z) == (z — A)~1if 1 ¢ X and it is easy to check that it holds uniformly
for A belonging to a compact subset of the complement of . Cauchy’s formuia
therefore gives (26) for any f satisfying condition (a).

For the proof under condition (b) we obtain as the analogue of (13) the identity

4
eil\Va(o) _ Wa(eito' — iSPzH(Ci'“, G)Pzei(ll—'r)wa(o')dr _‘:~

]

+ i\ O, H(o, e}, e’ W dr,

O U™ ™

As o = o0 .
P H(c"™, ¢)P, — H(c'™, o)

in the trace norm and

Ci(t—r)\va(ﬂ) - ci(!— IW(a}

strongly, uniformly for bounded 7. Hence the trace of the first term in the right
has the limit

£
tri } H(e'we, 0)ei ~aWeddr = trfe V@ — W(e9)].
0
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(See (13).) As before the trace of the second term has the same limit and so
trfe”"a® — W, (ci*0)] - 2tre"™ - W(e")].

Since the trace on the left is O(s%) uniformly in a we can multiply by ﬁ(t) and inte-
grate, taking the limit under the integral sign, and so deduce (26). This completes
the proof of Theorem 2.
To prove Theorem 3, define
o, = ellogq X

If 1 is a sufficiently small complex number then the essential range of ¢; lies in
the right half-plane and so condition (a) is satisfied it f(z) = logz, the principal
value of the logarithm being taken. The conclusion of Theorem 2 may then be
written

30) lim tr{logW (6,) — W, (logs,)] = S x(logo,) ¥ (x)(logs,) ¥ (— x)dx.
(1}

Now for any two operators A and B whose sum is trace class, the operator e4e®

is determinant class and
detede®? = exptr(4 + B).

If we apply this identity to
A =logW,(e;), B-:—W,(logo,)

and use (30) we see that (4) holds for o, if 1 is sufficiently small.
Next consider the identity

d -—
(31) YS (06D = W (5,log0) — W, (o)W, (logo)le Valo%2

For 4 belonging to any compact subset of the complex plane the second factor
on the right is uniformly bounded in operator norm while the first factor is uni-
formly bounded in trace norm. (See (28).) It follows that the operators

(2) I— Wyope ")
are uniformly bounded in trace norm and so the functions

deth(o_l)e-wa(logal)

are uniformly bounded. Since they are entire functions of A (this follows from the
fact, a consequence of (31), that (32) are analytic trace class operator-valued functions
of 1) the relation (4) for small A implies the relation for all 4, and in particular
for 4 --1.
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Finally if logo € L(R) then W,(loge) is trace class and so

e Wa(loga)

is determinant class and

det(e "Wa(mg")) =exp{-—trW,(loge)} = exp{ — _;.‘_, S loga(éj)d;‘} .
n

Thus the last assertion of the theorem is a consequence of the preceding one.
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