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A NON-COMMUTATIVE GELFAND-NAIMARK THEOREM

PAWEL KRUSZYNSKI and STANISEAW L. WORONOWICZ

INTRODUCTION

One of the most fundamental facts in the theory of C*-algebras was discovered
in early forties by Gelfand and Naimark. Tt says that any commutative C*-algebra
with unit is isomorphic to the algebra of all continuous functions on a compact
topological space. Moreover, any homomorphism of commutative C*-algebras is
related to a continuous map of the underlying compact spaces. Briefly speaking,
the category of commutative C*¥-algebras with unit is dual to the category of com-
pact topological spaces.

With this result, any fact dealing with compact topological spaces has a counter-
part in the commutative C*-algebras thcory. In many cases these counterparts possess
natural generalizations for noncommutative C*-algebras and may be proved. It
shows that cven in the noncommutative case consideration of C*-algebras as algebras
of continuous functions is of a great inspiratory value. This point of view provides
us with interesting conjectures and sometimes suggest a way of a proof.

To formalize this point of view one may introduce the notion of compact
pseudospaces [6]. Briefly, a compact pseudospace is an object of the category dual
to the category of C*-algebras with unit. Then any C*-algebra can be viewed as
the algebra of all “continuous functions™ on the corresponding pseudospace. One
should stress however that introducing the category of pseudospaces we do not
create any new theory, we introduce only a new language to the C*-algebras theory.

In the present paper we try to develop more constructive approach to the
problem. We consider so called domains and operator functions defined on them.
To explain better our ideas let us recall two possible formulations of the basic Gelfand-
-Naimark result. In general the Gelfand-Naimark theorem deals with abstract compact
topological spaces and continuous complex valued functions. Therefore the familiarity
with the abstract topology is necessary in this case. On the other hand, for finitely ge-
nerated C*-algebras it is sufficient to consider closed bounded subsets of the arithmetic
spaces CY or R”. Continuous mappings of compact spaces are in this case replaced
by N-tuples of continuous C'-valued functions. The whole theory can be understood
without any knowledge of the general topology.



362 PAWEEL KRUSZYNSKI and STANISEAW L. WORONOWICZ

The theory developed in the present paper corresponds to the second, more
restrictive setting. For the moment we are not able to construct a general concrete
(i.c. not formal) theory of pseudospaces. Instead we introduce compact domains
which should be identified with ‘“‘embedded compact pseudospaces’’. Morphisms
(i.e. “continuous mappings’’) of domains are defined by N-tuples of ‘‘continuous
functions”. The notion of continuous function that we use in our theory is very
natural. It turns out that it is closely related to the notion of operator function
introduced in our previous paper [5]. However one should note that domains and
operator functions introduced in [S]} correspond to Borel subsets of C¥ and Borel
functions rather than to compact spaces and continuous functions. We call them
measurable domains and measurable operator functions, respectively.

Now we are going to summarize the results of this work. At first we introduce
the new notions of compact domains and continuous operator functions defined on
the them. We recall the notions of measurable operator functions and their domains
intreduced before in [5]. Next we investigate relations between these objects. In particu-
lar, it turns out that every continuous operator function is a measurable one. Further,
we prove boundness of continuous operator functions on compact domains and
show that a =-algebra of these functions is a C*-algebra. This algebra is finitely
generated. In this way we obtain an analogue of the Stone-Weierstrass theorem.
Moreover it appears that each finitely generated C*-algebra is isomorphic to a
C#-algebra of continuous operator functions on a compact domain. This domain
is uniquely defined up to a homeomorphism. This is the analogue of the Gelfand-
-Naimark theorem which is one of our main results. A generalization of this result
for the case of separable C*-algebras is easy to obtain.

The homeomorphism of compact domains mentioned above is a particular
case of morphism of compact domains. Properties of these morphisms reveal a lot
of analogies between the category of topological compact spaces and the category
of compact domains: for instance we prove that an injective continuous image of
a compact domainis a compact domain again,and a bijective continuous morphism
has a continuous inverse morphism. ’

Measurable operator functions invariant under a special action of the group R!
on their domain appeared in [S]. Presently, we show a result which describes ope-
rator functions invariant with respect to the linear action of the compact groups
of matrices that is defined on their domains. At last we sketch connections of this
topic with the theory of ergodic action of compact groups on C*-algebras ([3]),
and we characterize compact domains that are related to these algebras by the Gel-
fand-Naimark theorem.

Here is the detailed content of the paper: Section 1 “Domains and Operator
Functions” contains definitions of basic notions together with relations between
them. Proofs of results formulated there will be presented in Sections 2, 3 and 4.
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In Section 2 ““Compact Domains™ we give a nice characterization of compact
domains. Results of this section is applied in Section 3 ‘“Algebras of Continuous
Operator Functions”, where we prove the main results of this paper — namely
Stone-Weicrstrass and Gelfand-Naimark theorems.

Section 4 “The Application of a Voiculescu Result” is rather technical and it
is devoted to the proof of a theorem formulated in Section 1.

Section 5 “Iavariant Operator Functions’ contains certain applications of
the introduced notions to a special case of operator functions — i.e. invariant
operator functions. We indicate also further possibilities of applications.

General terminology and needed facts from the theory of C¥-algebras cun
be found in the book [1]. Moreover we assume the following convention (we will
use it without reminder):

All Hilbert spaces are separable,

All C*-algebras arc unital,

A representation of a C#-algebra always is a unital :-homomorphism
into B(H), '

The topology on sets of operators (e.g. operator algebras) is the norm topology.

In order to keep simplicity and elegance of the introduced notions we regard
the symbol H, which means a Hilbert space, as a variable. It inserts to our consi-
derations the class of all Hilbert spaces which clearly is not a set. Hence, such
fundamental notions as domains and operator functions appear to be families of
sets and mappings respectively, indexed by the class of Hilbert spaces. This may
lead to some set-theoretical problems. This problem is apparent however. It follows
easily from the basic definitions that one could restrict oneself to only one separable
infinite dimensional Hilbert space. In particular operator functions defined on
a fixed domain constitute a set.

Despite we consider functions of a finite number of variables, our results
can be easily generalized for the case of denumerable amounts of arguments. In
this case we use the Tichonov topology in underlying infinite Cartesian products.
Then it would be easy to prove our version of Gelfand-Naimark theorem for non-
-commutative separable C*-algebras.

1. DOMAINS AND OPERATOR FUNCTIONS

The notions introduced here need certain preparatory explanation. “Operator
functions” are understood in a double sense. The first one is that of the notion of
a mapping from somc set of operators in a given Hilbert space into the set of
operators in it. The latter is an idealization of such a mapping, independent of its
actual realization in a Hilbert space. This abstract notion can be figured as a
prescription for computing a value of a map in a general point.
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For example the function (a, b) —» @ + b can be understood as the instruction:
take two operators a and b acting on an arbitrary Hilbert space and add each to
other. The sense of this prescription is independent of underlying Hilbert space.
However, even in this simple example, some reasonable restrictions must be imposed
on the set of arguments of the function. Namely, the admissible pairs (a, b) are
those for which the operation ‘-t is well defined.

We can go one step further: ask what kind of restrictions must be necessarily
imposed on a set to be a domain of functions, independently of a particular
Hilbert space and operator function. At the moment we assume only that the set of
arguments of operator functions is contained in the set ¥(H) of closed operators
in a Hitbert space H (‘‘measurable case™) or in the set B(H) of bounded operators
in A (“‘continuous case™). Clearly, domains of functions of many variables should
he subsets of @W(H)N or B(H)V respectively. Remembering that we have to consider
any (separable) Hilbert space, we see that a domain is a family {D(H) : H is a
Hilbert space}, where for every Hilbert space #, D(H) = “(H)N. In what follows,
such a family will be denoted by the single letter D. To formulate conditions imposed
on D we use the following notation:

Let N be a natural number. For given da%, @*, ..., a" € €¥(H) by a we denote
the N-tuple (a!, @, ..., a") e €¥(H)". For

r®
H —S H(A)du(A)
A

we write

®
a— S a(A)du(2)
A
if and only if {a*(1)}1c. is a measurable field of closed operators and

]
a* — S a"(,{)dy(ﬂ) for all k=1,2,...,N

A

(see [S] for the definition of direct integral of closed operators).
If A is denumerable set (say A == N) and p is the counting measure then
® ® .
we write @ H(r) and @ a(r) instead of S H(A)dp(A) andS a(A)du(4) respectively.
reAd

rea
A

If & is an operation defined on a, d?, ..., a" then ®(a) denotes the N-tuple
(D), D@, ..., P(a)). In particular if ae G(H)V and U is a unitary operator
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from the Hilbert space H onto the Hilbert space K, then
UaU?* = (Ua'U*, Ua?U*, ..., UdVU*) e ¥(K)N.

Similarly if n is a representation of a C*-algebra 4 < B(H)and &, a2, ...,aVN e 4
then

(@) = (n(a"), n(a®), ..., n(a")) e B(H )",

where H, is the carrier Hilbert space of =.
If a e B(H)V then by C*(a) we denote the unital C*-algebra generated in B(H)
by a',a? ..., a".

DeriNtTION 1.1. The family D of sets D(H) < €(H)V is called a measurable

domain (more precisely N-dimensional measurable domain) if the following two
conditions hold:

1) For every Hilbert spaces H, K, any ae D(H) and any unitary operator
U: H > K we have UaU* e D(K);

2) For every measure space (A, 4) and any measurable field of Hilbert spaces
{H(A)}1c4 We have

® ®
S a(/l)du(/l)eD(S H(ﬂ)d;:(/l))
A

A

iff a(l) e D(H(A)) for paa. le A

The above definition is the same as in [5]. In many cases when we deal with
bounded operators another concept of domain is more interesting.

DEeFINITION 1.2. The family D of sets D(H) < B(H)N is called a compact
domain (more precisely N-dimensional compact domain) if for every Hilbert space H
the following three conditions are fulfilled:

1) For every ae D(H) and every =-representation

7 : C¥(a) — B(K)

we have n(a) e D(K); ‘
2) If for a given ae B(H)V there exists a family {n;}1c4 of representations
of C*(a) such that (M Kern, = {0} and =n;(a) e D(H;) for all Ae A (where H,
ieA
denotes the carrier Hilbert space of n) then ae D(H);

3) There exists a constant M > 0,independent of A suchthat sup ||a'|| < M.
a€ D{H)

Jt turns out that the notion of a measurable domain is more general. The
following result is proven in Section 2.
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Turorem 1.1. Every compact domain is a measurable domain.

[t means that if a family D fulfils conditions (), 2), 3) of Definition 1.2 then

it fulfils also conditions 1), 2) of Definition 1.1.
One can ask when the convers relation is true. A necessary condition is given by:

ProposITION 1.2. If D is a compact domain then for every Hilbert space H,
IXH) is closed in the uniform topology (i.e. the topology of B(H)Y induced by the

Cartesian product norm 'al == maxia'l).
i

The proof is given 1n Section 2.
1t turns out that this necessary condition is also a sufficient one.

THEOREM 1.3. Let D be a measurable domain such that for each Hilbert
space H, D(H)is a closed subset of B(H)N. Then D is a compact domain.

A stronger version of this result is proven in Section 4.
Now we are ready to specify the notion of operator functions.

DEFINITION 1.3. Let D be a measurable domain. A family F.: {F;: H i
Hilbert space} of maps Fy; : D(H) — %(H) is called a measurable operator functiosi
it the following two conditions hold:
1) For every Hilbert spaces H, K, every a e D(H), and every unitary U : H —» K
awe have

F(UaU*) = UFy(a)U*;

2) For every measure space (4, ), every measurable field of Hilbert spaces
{H(?)}1c4, and every decomposable

® @
a= S a(A)du(l)e D (S H(Adu ().))

A A

the field of operators {Fy(;(a(2))}r1ea is measurable and

(O]
S Fuagi(@()du().

Feo (@ =
S H(3)dpld)
A

a4

For compact domains the notion of continuous operator function is more
natural :

DeFmITION 1.4, Let D be a compact domain. A family F:= {F,: H is
a Hilbert space} of maps Fy: D(H) — B(H) is called a continuous operator function
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if for every Hilbert space H the following two conditions are fulfilled:

1) For every ae D(H) we have Fy(a) e C¥(a);

2) If ae D(H) and = : C*(@) — B(K) is a representation then Fy(n(a)) =
= n(Fy(a))-

In the following we will drop the index H whenever it does not lead to mis~
understanding.

The terminology used here is justified by the following theorem, proven in
Section 3:

THEOREM 1.4. If F is a continuous operator function then for each Hilbert
space H the map Fy: D(H) — B(H) is continuous in the sense of the norm topologies.

In the traditional mathematics, functions may be defined by means of their
graphs. The analogous description takes place for operator functions.

THEOREM 1.5. 1) Let F be a measurable (respectively continuous) operator
function defined on a measurable (respectively compact) N-dimensional domain D;
then the family D' introduced by

a.n D'(H)={(a,a ...,a", F(@, ...,a")) :ae D(H)}

is the measurable (resp. compact) (N -+ 1)-dimensional domain.

2) Let D' be a measurable (respectively compact) (N -+ 1)-dimensional domain
such that for every Hilbert space H and every ae G(H)N there exists at most one
be C(H) for which (a,a? ...,a",b)e D'(H). Then denoting by D(H) the set of
all ae C(H)N for which the operator b exists and setting

(1.2) Fy(a) = b
we have:
a) D is a measurable (respectively compact) N-dimensional domain,
b) F is a measurable (respectively continuous) operator function defined on D.

Clearly the proof of the above theorem should be divided into two parts:
the one concerning the measurable case, the second concerning the case of conti-
nuous functions. The first case is almost obvious and is left to the reader. The second
case will be proved in Section 3.

In [S] operator functions were introduced in the measurable sense. Hence
it is very useful for further applications to find connections between measurable
and continuous functions. Now we consider this relation.

THEOREM 1.6. 1) Every continuous operator functions is a measurable one.
2) Every wmeasurable operator function F defined on a compact domain D
and such that the maps
Fy: D(H) — B(H)

are continuous in the norm topologies, is a continuous operator function.
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Proof. The proof of both parts of the theorem is based on Theorem 1.5.

1) Let F be a continuous operator function of N variables. Then in virtue
of the Theorem 1.5.1) the domain D’ defined by D'(H) = {(a, F(a)): as D(H))},
where D is the N-dimensional domain of F, is a compact (N - 1)-dimensional
domain; hence by the Theorem 1.1 it is a measurable domain. Thus by the Theo-
rem 1.5.2) F is a measurable operator function.

2) Suppose now that the maps F,, are continuous in norm topologies. Then
by Proposition 1.2 the sets D'(H) = {(a, F(a)) : ae D(H)} are closed in norm and
at the same time they form a measurable (N 4 1)-dimensional domain by
Theorem 1.5.1). Thus by Theorem 1.3 D’ is a compact domain and in virtue of
Theorem 1.5.2) b) F is a continuous operator function. Q.E.I3.

2, COMPACT DOMAINS

At first we derive an obvious property of compact domains implied by
Definition 1.2; this property will be used very frequently in the sequel.

ProrposiTion 2.1. Let D be a compact N-dimensional domain and A be
a deinumerable set. Then for every family a; € D(H}), ie A, we have

® a;e D( @ H).
i€A ieA
Proof. At first we note that due to the condition 3) of Definition 1.2,

a-: (—9 a;e B{ ® H)N. Clearly any element x € C¥(a) is of the form x:-= @ x,,
i€eA i€A
wherc x; € B(H}). Denoting by n(x) the “i-th” component of x, m(x) = x;, we

lmttoducc the faithful family {n;};e4 of representations of C¥(a). Obviously m(a) -
a; € D(H;). Therefore using the condition 2) of Definition 1.2 we get the
desired result: ae D( @ H). Q.E.D.
ied
In what follows we shall use the free =-algebra spanned by N generators
X1, X2 ..., XN, This algebra will be denoted by Py. Any element we Py is of the
form:

2.hH n_Zw, iy D EAD ST ¢ A

where X7* denotes either X' or Xi¥, Wi . .i, are complex coefficients and the
sum contains only a finite number of summands.

Let we Py and ae B(H)N. Replacing in w all X" by o (i--1,2,...,N)
we obtain an operator acting on H. This operator will be denoted by w(a). For
example, if w is given by (2.1) then

wiag) =Y, Wi ..iy @ o a'm®,
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Clearly for any a € B(H)V the mapping Py > w +— w(a) € B(H) is a represen-
tation of the =-algebra Py. We also have

(2.2) Xi(@)y=d for i=1,2,...,N.

PROPOSITION 2.2. Let ¢ be a function on Py with non-negative real values.
For any Hilbert space H we set

D (H) = {ae B(H) : |w(@)|l < ¢(w) for all we Py}.

Then D, is a compact domain.

Proof. Assume that a € D,(H). Then for any representation n : C¥(a) - B(K)
we have:

Iw(m@pll = llx(w@)ll < Iw@ 1 < e(w)

for all we Py. It means that n(a) e D,(K), i.e. the condition 1) of Definition 1.2
holds.

Assume now that a € B(H)V and that {r;};c, is a faithful family of represen-
tations of C*(a). Then | x| = sup In(x)|| for any xe C*(a). If =n(a)e D(H})

(where H; denotes the carrier Hllbert space of n;) for all i € A, then ||w(n{a))] <
< @(w) for all we Py and ie A and

Iw(@)ll = supllm(w(@)l] = sup || w(n(a)ll < p(w)
ieA ieA

for all we Py. It means that ae D,(H) and the condition 2) of Definition 1.2 is
satisfied.
If ae D,(H) then in virtue of (2.2)

la'll =Xl < p(X') < M

where M = max{p(XY), ..., @(X")}, i.e. the condition 3) of Definition 1.2. Q.E.D.

ProposiTiON 2.3. Let H, K be Hilbert spaces and aec B(H)Y, be B(K)V.
Then the following conditions are equivalent :
1) For every we Py

(2.3) Iw@ll > lwd)l;
2) There exists a representation n : C*(a) —» B(K) such that n(a) = b;
3) For every N-dimensional compact domain D if ae D(H) then be D(K).

We say that b is subordinated to a if and only if one (all) of these conditions
is satisfied. In this case we write @ > 5.

Proof. We shall show that 3) = 1) = 2).
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The implication 2) = 3) is obvious.

Assume that the condition 1) is false ie. that |wy(a)li < "wy(b)" for some
wye Py. Let ¢ be a function on Py introduced by ¢(w) = ljw(a)| for all we Py
and let D, be the compact domain considered in Proposition 2.2. Obviously
ae Dy(H) and b ¢ D,(K), ie. the condition 3) is false. This way we showed that
3 = ).

Let Cg(a) denote the =-algebra generated by a', a? ..., a". Clearly Ci(a)
is dense in C*(a) and any element x € C§(a) is of the form x = = w(a) where w € Py.

Assume now that the condition 1) is fulfilled. For any xe C§(a) we set

(2.4) 7o) = w(b)

where w is an element of Py such that w(a) == x. If wy, w, € Py and wy(a) == wy(a)=- X,
then (wy — wy) (@) - - 0 and using (2.3) we get (w; — wo) (b)) = 0 i.e. wy(b): : wy(b).
‘This proves that the definition (2.4) is meaningful. Clearly m, is a representation
of the s-algebra Cf(a) and in virtue of (2.3)

flmo(x) | < x ]

for any x e C#(a). Let n: C*(@)— B(K) denocte the continuous extension of m,.
is a representation of the C*-algebra C%(a) and using (2.2) and (2.4) we have

@) = ) = no(X'(a)) = X'(b) = bf
te. n(a): = b. Q.E.D.
REMARK. The representation 7 satisfying 2) of Proposition 2.3 is unique,

because every representation 7 of the algebra A generated by o', ...,a" is uniquely
determined by the images = (aY), ..., n(a®).

It turns out that every compact domain D contains an element ¢ which is
maximal in the sense of the relation » . This property of compact domains will be
very useful in the future.

THEOREM 2.4. Let D be a compact domain. Then there exists a Hilbert space K
and an clement b e D(K) such that b > a for any a € D(H) and any Hilbert space H.

Proof. Let PY be the denumerable subset of Py composed of all polynomials
of the form (2.1), where all coefficients Wi ..i,are complex rational.

It follows immediately from the condition 3) of Definition 1.2 that the
num bers

@p(W) - = sup{ifiw(a)j : ae D(H), H is a Hilbert space}

are finite for all w e Py. Therefore for each natural number n and each w e Py, there
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exists a Hilbert space K, ,, and an element b, ,, € D(K, ) such that

” w(bn,w)” 2 (/)I)(w) - 1,/” .
Let

K sz @ Kn’ W
no-1,2...
wel"g,

In virtue of Proposition 2.1 we have b e D(K).
Let H be a Hilbert space and a € D(H). Then for every w € P} and any natural
n we have
1w | = (Wb, JII = @p(w) — Vin > | w(@)|| — 1/n.

Setting # — co we obtain ||w(b)| = ||w(a)|! for cvery we P{. By a continuity
argument the same inequality holds for all we Py . Tt means (cf. Proposition 2.3)
that b > a. Q.E.D.

REMARK 2.5. Let D be a N-dimensional compact domain and b be a maximal
element of D. Then according to Proposition 2.3 and Theorem 2.4:

(2.5) D(H) == {ae B(H)N: b > a}.

Conversely, if K is a Hilbert space and b is an clement of B(K)V, then the
formula (2.5) introduces a compact domain D. This fact follows from Proposi-
tion 2.2.

Assume that a, e B(H)Y and b e B(K)V, a,<b, a,——>a e B(H)V. It follows

immediately from Proposition 2.2 that ¢ < b. This way we obtain the result
announced before in Proposition 1.2:

If D is a compact domain, then for each Hilbert space H the set D(H) is closed
in the norm.

To prove Theorem 1.1 we consider a measurable space (A, x) and a mea-
surable field of Hilbert spaces {/(4)}1c4. Assume that {@'(1)}ie are bounded
measurable fields of bounded operators.

Let b e B(K)N. If a(A) < b for p-almost all A€ A then for the same A’s | w(a(A)) | <
< lw(b)|| for all we Py. Therefore

@ i ” @ {‘
]w(s a(z)dﬂ(;u))li-.zl,g wa(W)du(d)| =
| ! N i

i

— ess sup | w(a(D) || < | w(®))
iea

12 - 2324
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for all we Py. It means that

(2.6) S® a(2)du(l) < b.
a

Conversely if (2.6) holds then for all we Py we have:

e X
sup ess' w(a(l)), == S w(a(A))dp(4) ;i =
e :

A
; ® 3

= w (S a(l)dy(;.)) < [w(b).
! 3 -

It means that |w(a(A)] < |iw(b)!} for p-a.a. 2e A. More precisely for every
we Py there exists a subset A, < A such that p(A,) == 0 and

.7 Ew(a(A)h < wb)l!
for all Ae AN\A,,.
Let
Ay = U A,
wEP?\,

(see the proof of Theorem 2.4 for the meaning of P%). Then u(Ay) :- 0 (PY is
denumerable) and (2.7) holds for all we P and 2 e AN\ A,. By a continuity argu-
ment (2.7) holds for all we Py and A e AN\A,, ie.

(2.8) all) < b
for p-a.a. Ze A.

This way we have shown that the condition (2.6) and (2.8) are equivalent.
Taking into account (2.5) we see that for compact domains D the condition:

® ®
S a(A)dp().)eD(S H(A)d,u(l))
A

and

a(l)e D(H(A)) for p-aa. leAd
are equivalent, i.e. for all compact domains the condition 2) of Definition 1.1 is
satisfied.

To end the proof of Theorem 1.1 we notice that obviously UaU* < a for
every unitary operator U: H; — H, and every ae B(H,)N. Therefore UaU% < b
whenever a < b. In virtue of (2.5), compact domains satisfy the condition 1) of
Definition 1.1.

Summarizing: compact domains are measurable ones.
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3. ALGEBRAS OF CONTINUOUS OPERATOR FUNCTIONS

The well known theorem of Gelfand and Naimark says that there is a one-to-
-one correspondence between commutative unital C*-algebras and compact topolo-
gical spaces. Every commutative C*-algebra with unit is isomorphic to the algebra
of all continuous complex valued functions on the corresponding compact space.
We show here an analogous result for the non-commutative case. In this case com-
pact topological spaces and continuous functions are replaced by compact domains
and continuous operator functions respectively. We shall show that the set of
all continuous operator functions defined on a given domain, endowed with a natural
algebraic and topological structure is a C*-algebra. This C*-algebra is finitely gene-
rated and any finitely generated C*-algebra arises in this way.

For a given finitely generated C*-algebra the corresponding compact domain
is defined uniquely up to a homeomorphism. We shall also prove an analogue of the
Stone-Weierstrass theorem (Theorem 3.4). Theorem 1.4 follows immediately from
this result.

We start with the following:

THEOREM 3.1. Let D be a compact domain and F be a continuous operator func-
tion on D. Then there exists a constant M > 0 such that ||F(a)|| < M for every Hil-
bert space H and all ae D(H).

Pmof. Let b be a maximal element of D and put M == [|F(b)|. Then for every
ae D(H) there exists a representation n: C*(b) — B(H) such that =n(b) =a
(cf. Proposition 2.3). Using the property 2) in Definition 1.4 we have:

@aG.h F@| = |F(r(b))|| = lIn(F(b)I| < IFD) = M.
Q.E.D.

Let D be a compact domain. The set of all continuous operator functions
defined on D will be denoted by C(D).

For any F,Ge C(D) and Ae C' we set for ae D(H) where H is a Hilbert
space:

(F+ G)(a) -~ Fla) + G(a)

(AF) (a) = AF(a)
(3.2)
(FG) (a) -~ F(a) G(a)

(F*) (@) == (F(a))*.
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One can casily check that F -+ G, AF. FG, F*e C(D). Moreover for any
Fe C(D) we put

(3.3) iF!-=sup{'|F(a)! :ae D(H), H is a Hilbert space}.

The above supremum is finite for all Fe C(D). This fact follows from Theorem 3.1.

THEOREM 3.2. For every compact domain D, the set C(D) endowed with the
algebraic rules (3.2) and the norm (3.3) is a C*-algebra.

Proof. By simple computations one can show that C(D) is a =-algebra. It is
also obvious that the formula (3.3) defines a C*-norm on C(D). To end the proof one
has to show that C(D) is complete. We can prove this fact directly. Let F,, F,, ... be
a Cauchy sequence in C(D). Then for every a in the domain D, Fy(a), Fy(a), ... 15
a Cauchy sequence in C*(a). Since C*(a) is complete, this sequence is convergent.
We set

F(a) - - limF,(a).

n—00

One can easily check that Fe C(D) and that F == limF,. Q.E.D.

To understand better the structure of C(D) we shall prove that this C*-al-
gebra is isomorphic to C*(b), where b is a maximal element of D.

PrROPOSITION 3.3. Let D be a compact domain and b be a maximal element of D.
Then the mapping:

(3.4) @: C(D) > F > F(b) e C*(b)

is @« C*-ulgebra isomorphism of C(D) onto C*(b).

Proof. Tt follows immediately from the definitions (3.4) and (3.2) that ¢ is a
C*-algebra homomorphism. Moreover if F(b) -= 0 then according to(3.1) F(a) -~ 0
for any ¢ in D and so F = 0. It means that ¢ is injective. To end the proof we have
10 show that ¢ is surjective.

Let x € C%(b). For every Hilbert space H and every a e D(H) there exists a
unigue representation n,: C*(b) — B(H) such that n(b) -- a (cf. Proposition 2.3).
Let

def
Fa) - = = (x).

We shall prove that Fe C(D). Indeed n, maps C*(b) into C*(a), therefore F(a) -
" T,(x) € C¥(a). Moreover if p is a representation of C*(a) acting on a Hilbert
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space H, then p(a) e D(H,) and p(a):- (p ° m,) (b). It means that m,, == p ° 7,
and
F(p(@) -+ Tpp() = (p * 1) (3) - = p(m () = p(F ().

Moreover noticing that w, = identity map we have F(b) == my(x) == x i.e. @(F): x
Tt means that ¢ is surjective: for any x € C*(b) we have found Fe C(D) such thut
@(F) = x. Q.E.D.

The classical Stone-Weierstrass theorem asserts that for any compact subset
K= CN,| the C*-algebra C(K) is generated by the coordinates. In the case of compact
domains one can consider coordinate functions X' introduced by

(3.5) Xia) = &

where 7 = 1,2, ..., N, N is the dimension of D, ae D(H), and H is a Hilbert space.
One can easily check that X1, X2, ..., XN e C(D).

THEOREM 3.4. For every compact domain D, the C*-algebra C(D) is generated
by the coordinate functions X3, X2, ..., X¥, where N is the dimension of D.

Proof. We use the isomorphism ¢ (cf. 3.4) described in Proposition 3.3. Ob-

viously
(XY = X' (b) = b

and because bY, b2, ..., b" generate the C*-algebra C*(b) we get the desired result.
Q.E.D.

COROLLARY 3.5. For any compact domain D the C*-algebra C(D) is finitely
generated.

Now we can prove Theorem 1.4,

Let Fe C(D). According to Theorem 3.4 F = limF,, where F, are polyno-
mials of X7 and X™*(i = 1,2, ..., N). Obviously for any Hilbert space H, X’ and X**
are continuous maps from D(H) into B(H). Since the algebraic rules in B(H) are
continuous, every F, defines a continuous map from D(H) into B(H). It is also ob-
vious that the norm convergence in C(D) implies the uniform convergence of maps
from D(H) into B(H). Since the uniform limit of continuous maps is a continuous
map we see that F is a continuous mapping F: D(H) — B(H). This ends the proof
of Theorem 1.4. ‘

[n Theorem 1.5 a domain has been extended by enlarging its dimension by
one. It has been done by means of operator function F, and in fact we have used the
map idX F: D — D’ that transformed one domain onto another one. Hence it
seems interesting to consider such maps more generally.

Let D be a compact domain of dimension N. We shall consider M-tuple
S=(8, 5% ..., 8™) where S, §%, ..., SM e C(D). For any Hilbert space H and
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any ae D(H) we set

Sta) = (SX(a), $%a), .. ., S™(a)) € BUM.
Then we have:

(3.6) C*(S(a)) < C¥(a)
(3.7 n(S(a)) — S(n(a))

for any representation n of C*(a). These facts follow directly from Definition 1.4.

Let D and D, be compact domains of dimension N and M respectively. Assume
that S'e C(D)M. We say that S is a morphism from D into D, if and only if for any
Hilbert space H and any a e D(H) we have

S{a) € D,(H).

In this case we write S: D — D,.
If S: D = D, and Fe C(D,) then for any Hilbert space H and any a e D(H)
we set:

(3.8) S¥(F)(a) = F(S(a)).

One can easily check that S*(F) e C(D).
Assume now that D, D, , D, are compact domains of dimensions N, M,, M.
respectively and that S: D —- D, and R: D, - D, Then we set R:-S:-

(SHRY), SHR?, ..., S (RMﬁ)). Obviously for any a e D(H) we have
(R » S)(a) = R(S(a)).

Therefore R - S is a morphism from D into D,. This way we introduced the compo-
sition of morphisms. Compact domains together with their morphisms constitute
a category. Taking into account the obvious analogy with the category of compact
spaces and continuous maps we say that a morphism S: D — D, is a homeomorph-
ism if there exists a morphism R: D; - D such that S R=1id, R>S-=id. In
this case D and D, are said to be homeomorphic.

Let D, and D, be compact domains and S: D, — D, be a morphism.Then one
can casily check that the inverse image map S¥: C(D,) — C(D,) introduced by (3.8)
is 2 unital homomorphism of C*-algebras. Tt turns out that every homomorphism
u: C(D,) - C(D,) is of this form.

PROPOSITION 3.6. Let D, and D, be compact domains and »: C(D,) — C(D;)
be a unital C%-algebra homomorphism. Then there exists a unique morphism
S: Dy—D,, such that x - S*.

Proof. Let X, X2, ..., XM be the coordinate functions on the domain D,.
We put S = x(X)e C(D,) and S = (S", S ..., SM). We shall show that S is
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a morphism from D, into D,.To this end we have to prove that for any Hilbert
space H and for any a € D,(H), S(a) € Dy(H). Let b be a maximal element of D, .We
consider the following composition of C*-algebra homomorphisms:

p: CH(b) = C(Dy) ——> (D) —"> B(H)

where ¢ ~1 is the inverse of the isomorphism (3.4) considered in Proposition 3.3
def
and ¢, (F) = F(a) for any Fe C(D;). Now we have

pb) = (@, o % = @71 (b)) = (@, * %) (X) = @ (S) = S'(a)
for i--1,2, ..., M. In other words, p(b) == S(a). Therefore (cf. condition 1) of
Definition 1.2) S(a) € Do(H). Moreover for any a e D,(H) we have
#(X') (a) = S'(a) = X(S(a)) = ($*X") (a),
ie. w(X) = S*(X") for i = 1,2, ..., M and using Theorem 3.4 we get » =- S.
The uniqueness of S is obvious. Q.E.D.
Now we are able to formulate our version of the Gelfand-Naimark theorem:

THEOREM 3.7. Let A be a finitely generated unital C*-algebra. Then there
exists a compact domain D such that A is isomorphic to C(D). The domain D is defined
uniquely up to a homeomorphism.

Proof. We may assume that 4 = B(K), where K is a separable Hilbert space. Let
b, b2, ...,bY € A be generators of A and b --:(bY, b% ..., bY). For any Hilbert
space H we set

D(H) = {ae B(H)N :a < b}.

Then D is a compact domain (cf. Remark 2.5), b is a maximal element of D and in
virtue of Proposition 3.3 the C*-algebra C(D) is isomorphic to C*(b) = A. The
last statement of the theorem follows directly from Proposition 3.6. Q.E.D.

In the theory of compact spaces any continuous image of a compact space is
compact. Moreover if a continuous map is bijective then the inverse map is conti-
nuous. We have an analogous result.

TuzorREM 3.8. Let D be a compact domain of dimension N and S*, §?,. .., SM ¢
e C(D). We assume that for a»y Hilbert space H and for any a, , a, € D(H) we have:

(39) (S(ay) = S(ap)) = (@, = @)
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i.e. that S is injective. For any Hilbert space H we set
(3.10) D\(H):= [S(a) :ae D(H)}.

Moreover if ¢ € D(H) then we set R¥(¢) = da*, where a is the unigue element of D(IT)
such that S(a) == c.

Then Dy is a compact domain, R, R®, ..., RN e C(D)) and R - = (RY, ..., RY)
is « morphism from D, into D. This morphisim is the inverse of S.

To prove this theorem we need the following lemma:

Lemma 3.9. Let A be a C*-algebra and B be a C#-subalgebra of A. Assume

that for any two representations n, ' of A if ;,B==7n' B then n - - 7n'.
In this case B:-- A.

Proof. 1t is sufficient to show that any continuous functional f'e A% such that
Jih) - 0 for all b e B vanishes identically on A.

Let f be such a functional. Remembering that any clement of A% is a linear
combination of positive functipnals and using GNS construction one can find a
representation n: 4 — B(H) and a finite dimensional operator p € B(H) such that

fla) = Tr(pn(a))
for all ae A.
Let Ve B(H) be a unitary operator commuting with z(b) for all ¢ B. For
every ae A we set

'(a) - - Vin(a)V.

Then =’ is a representation of 4 and 7n"'B == n' 8. We assumed that in this case
n ', It means that [V, n(a)] = O for any a € A. This fact holds for every unitary
operator ¥ commuting with n (B) == {n(b) : be B}. In virtue of the von Neumann
density theorem n(a) is contained in the weak closure of n(B). Therefore there exists
a (generalized) sequence b, € B such that

n(a) == w-lim n(h,).
Now we have
f(@) - : Tr(p w-limn(h,)) == limTr(p n(b,)) == limf(b,) = O

because fi{B 0. Q.E.D

Proof of the Theorem 3.8. In virtue of (3.6) we have C*(S(a)) = C*(a) for any
element @ of the domain D. It turns out that the injectivity condition (3.9) implies
more: for any such @ we have:

@3.11) C#(S(a)) = C(a).
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Indeed assume that n, =’ are representations of C*¥(a) such that they coincide
on C*(S(a)). Then using (3.7) we obtain

S(n(a)) = n(S(a)) = w'(S(a)) - - S(='(a)).

Taking into account the assumption (3.9) we get n'(a) == n(a). Therefore = and =’

coincide on the C*-algebra generated by a, i.e. on C¥(a). Now (3.11) follows imme-
diately from Lemma 3.9.

Now we are able to show that D, is a compact domain.

Let # bea maximal element of D. Then for any Hilbert space H and any
a € B(H)M the following five statements are equivalent:

1) ae D\(H);

2) There exists x < b such that S(x) = a;

3) There exists a representation n : C¥(b) — B(H) such that S(n(h)): q;

4) There exists a representation z: C*(S(h)) — B(H) such that =(S(b)) - - a;

Sy a <€ S(b).

Indeed, equivalence 1) < 2) follows directly from definition (3.10) and Re-
mark 2.5.

Using Proposition 2.3 we get 2) « 3) and 4) < 3).
3) « 4) follows from (3.11) and (3.7). Equivalence 1) « 5) means that

D(H) = {ae B : a < S()},

i.e. D, is a compact domain (cf. Remark 2.5).
Assume now that ¢ e D (H). Then ¢==S(a) for some ae D(H) and (cf. 3.11):

RKc) = a* & C¥(a) = C¥(S(a)) = C*(c)

i.e. R* satisfies the condition 1) of Definition 1.4. Moreover if 7 is a representation
of C*¥(c), then n(c) = n(S(a)) = S(n(a)) and R*(n(c)) equals to the k-component
of n(a) i.e. to the operator n(a*) = n(R*(c)). It means that R satisfies the condition
2) of Definition 1.4. Therefore R* e C(D,).

To end the proof one notices that for any ce D,(H), R(c) =- a, where a is

an element of D(H) such that S(a) = c. It means that R is a morphism from D,
into D, inverse to S. Q.E.D.

Now we are able to present the proof of the more difficult part of Theorem 1.5:
the part concerning compact domains and continuous functions. We use the notation
introduced in the text of Theorem 1.5.

Proof of Theorem 1.5. Ad. 1) For any element a of D we set
Sia) = a', S¥a) -- &, ..., S¥(a) = a"
SN+1(a) = F(a)
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Clearly $%, 8% ..., S¥*1e¢ C(D) and the (N -- 1)-tuple S= (S, S% ..., SV
satisfies the assumption of Theorem 3.8. Moreover the sets D’'(H) introduced by (1.1)
coincide with Dy(H) defined by (3.10) and the desired statement follows directly
from Theorem 3.8.

Ad. 2) For any ae D'(H) we set

SYa) - a', S¥a) - &> ..., SVa) =- aV.

The N-tuple S == (S?, §%, ..., SV) satisfies the assumption (3.9) of Theorem 3.8.
Indeed if @, @’ € D'(H) and S(a) = S(a’) then a and a’ have the same first V compo-
nents and according to the assumption of Theorem 1.5.2) in this case the last
components must be equal. This shows that S(a) == S(a’) implies that a =: ¢'.

To end the proof we notice that the sets D(H) considered in the second part
of Theorem 1.5 coincide with D;(H) introduced by (3.10). Moreover Fy{«) intro-
duced by (1.2) equals to RV*Ya). Q.E.D.

We should point out that in general the image of a compact domain needs
not be a domain.

CoOUNTEREXAMPLE. For any Hilbert space H we set
(3.12) D(H) — {(U, ¥) e B(H)* : U, V unitary operatory UV = ¢iVU}
S(U, V)= U, for (U, V)e D(H).

Clearly D is a compact domain and S'e C(D).
Let for any Hilbert space H

Dy(H) = {S(U, V) : (U, V) e D(H)} =
-~ {Ue B(H) : there exists Ve B(H) such that (U, V)e D(H)}.

It turns out that D, is not a domain. Indeed due to the commutation
relation with V, for any Ue D,(H) the spectrum of U must coincide with
St fze Cl:iz| = 1} (it must be closed and invariant under rotation by the angle
of 1 radian). On the other hand U may be written as U;® U, with SpUlg St and

SpU, ¢ S*. Therefore U,, U, ¢ D,(H) and the condition 2) of Definition 1.1 is

not satisfied. Hence D, :— S(D) is not a measurable domain.

4. THE APPLICATION OF A VOICULESCU RESULT

In this section we prove that any measurable domain closed in a certain sense
is @ compact domain. The following proposition contains the strongest version
of such a result. Theorem 1.3 follows immediately from it.
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ProPOSITION 4.1. Assume that for any Hilbert space H we have a given
subset D(H) = B(H)N and that the following conditions are satisfied:
1) UNITARY COVARIANCE. If' U is a unitary operator acting from H onto K
(H, K are Hilbert spaces) and a € D(H) then UaU* e D(K).
2) DIRECT SUM PROPERTY. If a(w)e B(H(o))N, ae A, (H(x) are Hilbert
spaces, A is a denumerable set) then @® a(e)e D( @ H(x)) if and only if
a€a

z€A
a(x) e D(H(x)) for all ae A.

3) CrosepNess.  If ae B(H)Y and for every ¢ > 0, there exists a,e D(H)
such that @ — ai are compact operators and ||@ —dl<e (i=1,2,...,N)
then ae D(H).

Then D is a compact domain.

The proof of the above proposition is based on a result of D. Voiculescu [4].
We say that a representation n of a C*-algebra A is strongly faithful if for any
non-zero eclement a€ A the operator n(a) is not compact. Obviously, for any faithful
representation p of A the infinite direct sum p @ p @ ... is strongly faithful.
Moreover, if 7 is strongly faithful then p @ = is strongly faithful for any represen-
tation p.

The following lemma is a simplified version of Corollary 1.4 of [4].

LeMMA 4.2, Let A be a unital separable C*-algebra and m,, m, be strongly
Jaithful representation of A acting on separable Hilbert spaces H,, H, respectively.

Then for each positive number & and every finite family of elements
XY, ..., xNe A there exists a unitary mapping U : H, - H, such that for all
k==1,2, ..., N the operators ny(x*) — U*ny(x*)U are compact and

[7o(x*) — UFm (x| < e.

Proof of Proposition 4.1. Assume that D == {D(H) : H is a Hilbert space}
satisfies the three conditions given in Proposition 4.1. Let H be a Hilbert space,
ae D(H)and mbe a representation of C*(a) acting on a separable Hilbert space K.
Let us consider the following strongly faithful representations of C*(a):

mm=id@id® ...
My == @D My

acting on Hilbert spaces H;, = H@®@ H® ... and H, = KO H® H® ... res-
pectively. It follows from Lemma 4.2 that for any ¢ > O there exists a unitary
U, : Hy —» H, such that ny(a’) — Un,(a)U, is a compact operator of norm less
than ¢. We assumed that ae D(H). Using the direct sum property we see
that n,(@) € D(H,). Therefore according to the unitary covariance condition
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Uln (@)U, e D(H,). Now we use the closedness of D. We obtain n.(a) € D(H,).
Using once more the direct sum property we finally get n(a) € D(K). This way we
showed that D satisfies the condition 1) of Definition 1.2.

Now let H be a Hilbert space and a e B(H)Y. Assume that there cxists a
family {p,}ica of representations of C*(a):

p, 1 CH%@) - B(H,)

such that py(a)e D(H)) and (M) Kerp, = {0}. The C*-aigebra C%(a) is finitely

iea
gencrated hence separable. Therefore one can find a denumerable subset A, < A

such that (M) Kerp, :-: {0}. Let
AGAO

Then p is a faithful representation of C*(a) and according to the direct sum property

pla)e D(K) where K : @ H. Clearly p~! is a representation of C%(p(q)} and
rea,

p~Yp(a)) - - a. Using (already proven) condition !) of Definition 1.2 we obtain
a & D(H). This shows that D satisfies the condition 2) of Definition 1.2.

To cand the proof we have to show that D is bounded. Assume the contrary
that for any natural n there cxists a Hilbert space H, and a, e D(H,) such that

>0 oo
let H= @ H,and a== @ a, Then a€ D(H) and a ¢ B(H)V. This contradicts
Rl

n=1

the assumed inclusion D(H) = B(H)N for any Hilbert space H. It shows that our
conjecture was false, i.e. that D is bounded. Q.E.D.

5. INVARTANT OPERATOR FUNCTIONS

In [5] we considered measurable operator functions homogeneous with respect
to a group of variables. Those are functions invariant under a special action of
the group R. To be more precise we set:

gla,a® ...,a5, b, ..., bY) = (a', a? ...,a% e'bt, ..., e'bY).
A measurable operator function F defined on a measurable domain D is called

homogeneous with respect to the last N variables if and only if for any Hilbert
space H and any ae D(H) we have o,a) e D(H) and F(g,(a)) = F(a).
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In [5] we discovered a nontrivial, very interesting result concerning homo-
geneous operator functions. One may try to obtain similar results considering
operator functions invariant under more complicated groups. In the present section
we consider compact groups acting on operator domains in the linear way. An
application to the theory of ergodic action of compact groups on C*-algebras is
indicated ([2], [3)).

Let G be a compact group of N X N complex matrices. The group G acts
on Py and B(H) in a natural way.

Let ge G and we Py. Then w is of the form (cf. (2.1))

. . i # iy ¥
(5.1) WH—ZM,I.__,MXl . ¢

where X'# denotes either X' or X'*, Wi .. i, are complex coefficients and the

N
sum is finite. Replacing in (5.1) X' by Y giX* we obtain another element of Py .
k=1

This element will be denoted by g#w. Clearly the mapping

Pyoswr g*we Py

is an antomorphism of P,. We say that an element w € Py is G-invariantif g*w=w
for all ge G. The set of all G-invariant elements of Py will be denoted by P§.
Let ge G and a e B(H)N, where H, is a Hilbert space. Then ga will denote

N
an element of B(H)N such that (ga) = Y gid~.
K=
It follows immediately from the above definitions that

w(ga) = (g*w) (a)
for all we Py, g€ G, ae B(H)V.

DeriNiTioN 5.1, 1) Let D be a measurable domain. D is called a G-invariant
domain if gae D(H) for each ge G, each Hilbert space H, and all ae D(H).

2) Let D be a G-invariant measurable domain and F be a measurable operator
function defined on D. F is called an invariant operator function if F(ga) = F(a)
for each g € G, each Hilbert space A, and all a e D(H).

The main result of this section is contained in the following theorem.

THEOREM 5.1. Let G be a compact group of N X N complex wmatrices,
D be a G-invariant N-dimensional measurable domain, F be a G-invariant measurable
function defined on D, H be a Hilbert space, ae D(H) and be B(H)Y. Assume
that u(a) -= u(b) for all ue P§. Then:

1) be D(H),
2) F(a) = F(b).
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Before the proof we have to introduce convenient notation.
Let u be a normalized Haar measure on G. We consider the Hilbert space

H = S@ H du(g) = L¥G, H).

G

The elements of H are square integrable functions on G with values in H. The constant
functions form a subspace of H canonically isomorphic to H. For any he H,

/1 will denote the corresponding element of H: I;(g) = hforall ge G.
For any ce B(H)Y we set

F (" g0 duce).
G
Obviously ¢ e B(H)V.
Let K be a subspace of H We say that Kis ¢-invariant if ¢'k, ¢“ke K
for all ke K and i=1,2,...,N. In this case the orthogonal complement
Kt -= HO K is also ¢-invariant and using the obvious notation we have

(5.2) ¢ = GK® GIKL.

Let H, denote the subspace of H spanned by {w(c) h:wePy, he H}.
One can easily check that H, is the smallest ¢-invariant subspace of H containing
all constant functions.

LEMMA 5.2. For any G-invariant measurable domain D, ce D(H) if and
only if ¢iH,e D(H,). Moreover in this case

(5.3) F(E|Hh <= (F(e)hy™

Jor any G-invariant measurable operator function F defined on D and any he H.
Proof. Assume that ce D(H). Then gce D(H) for all ge G, because D is

G-invariant. Using the condition 1) of Definition 1.1 we get ¢- &@ (go)ydp(g) € D(H)
G
and (cf. (5.2)) ¢|H, e D(H). .
Conversely assume now that ¢|H_ e D(H,). A ¢-invariant subspace K < H
will be called admissible if and only if ¢{Ke D(K). Our assumption means that
H,. is admissible. _
If K, and K, are subspaces of H then the smallest subspace of H containing
K, and K, will be denoted by K; v K.
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Let X, and K, be admissible subspaces. If K; | K, then clearly K; ® K;
is admissible. In fact it follows directly from the condition 2) of Definition 1.1.
We shall prove that in general:

(5.4 (Kq, K, admissible) = (K; v K, admissible).
To this end we consider the subspaces
Ky =K, © (K;nKy)
K, =(K,v Ky) © K,.

The subspaces K, and K, are c-invariant and K, is admissible (because it is a ¢-
-invariant subspace of admissible K;). Let P, be the orthogonal projection onto K.
We consider this projection restricted to Kj:

(5.5) PyK,: K, > K.

One can easily check that the kernel of this operator is trivial and the image is
dense in K. Let S be the unitary factor in the polar decomposition of (5.5). Remem-
bering that all subspaces considered so far are ¢-invariant one can prove that

ZIK, = S*(T|K,) S.

We noticed that K, is admissible. It means that ¢|K; € D(Kj). Usingthe above formula
we get: ¢|K, € D(K,),i.e. K, is admissible. Therefore K; v K, = K; @ K, is admissible.

Now let uy, s, ... be functions on G with values in S' = {ze C' : |z| = 1}
such that their linear combinations form a dense subset in L3*(G). They give rise
to a sequence of unitary operators U;, U,, ... acting on L¥G, H): U, is the multi-
plication by u, (k== 1,2, ...). Since the operators ¢ are decomposable, they co-
mmute with all U,. It means that

U,cUF = ¢
for k:=1,2, ... . Restricting both sides to U.H, we get
U(C|H)U¥ = ¢|U.H.
and using the condition 1) of Definition 1.1 we obtain

Z.IUkHC € D(Ul.'”(‘)7

ie. UM, is admissible.
Let L, =H.v UH, v ... v UH,. According to (54) Ly« Ly, ... 1is
an increasing sequence of admissible subspaces of H. Then the subspaces L., © L,
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are admissible and using once more the condition 2) of Definition 1.1 we see that
Lo =L @®LOL)D(L;OL)D...

is admissible. We shall prove that L, = H. Indeed Lo o L, for k- :1,2, ... .
Therefore L,, o U,H_ fork = 1,2, ... . Remembering that H_ contains all constant
functions we see that Lo, contains all functions of the form /i(g) : : u,(g)h, where
heHand k-~1,2,.... Due to the assumed property of ., the functions of this
form span a dense subset in H. Therefore Lo o H. This way we proved that H
is admissible. It means that

¢ = ¢|He D(H).

Now using the condition 2) of Definition 1.1 we see that gce D(H) for p-a.a.
geG. Let ge G be such that gce D(H). Then ¢ = g-lgce D(H) because D is
G-invariant. This ends the proof of the first part of Lemma 5.2.

Now assume that ¢ € D(H) and that F is a G-invariant measurable operator
function defined on D. Using the condition 2) of Definition 1.3, we obtain

“ ® @ @
FE) -~ F(S (gc)du(g))=8 Flge)dn(g) S Fe)dn(g).
G G 7

Tt means that F(c) is the direct integral of a constant field of operators. Therefore
the subspace of constant functions in H is invariant under F(c). More precisely
we have

F(&)h = (F(e)h)~

for all h e H. Remembering that he H_ and using the condition 2) of Definition 1.3
one easily obtain

F(&)h==(F(¢y H)h=-F(& H)h
and (5.3) follows. Q.E.D.

Proof of Theorem 5.1. Let ce B(H)Y and we Py; then

(&) = S@ w(ge)du(g)

G
and for any f, he H we have:

(T w@h) = S&’ (7 (&) wgi()du(g) —

G

- S(fl (@ W)(Oh)du(g) = (1] #(h)

G
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where w S(g*w)du(g) € P§. We assumed that u(a) = u(b) for all u € P§ . Therefore
G
using the above computation we get

(5.6) (Flw(@h) = (f1 wb) )
for all f,he H and we Py .

Let wy,wy, ...,w,e Pyand h,h,y, ..., k. e H. Inserting in (5.6) h;, hi; and
wi*w; instead of f, i and w and summing over i and j we obtain

1Y wil@)ail? = 1Y wiB) i
Thercfore there exists a unitary operator

V:H, > H,
such that

(5.7) Vw(a)h = wib)h

for any we Py and h e H. Inserting here X'w instead of w (X' is a gencrator of Py)
and using once more (5.7) we obtain

V aiw(@)h = bw(b)h - - B Viw(a)h.
It shows that
(5.8) b|H,==V(@|H)V*.

Assume now that « belongs to a G-invariant domain D. Then according
to Lemma 5.2 a|H,e D(H,). Taking into account the relation (5.8) we obtain

EIH,, e D(H,) and using Lemma 5.2 once more we get b € D(H). This proves the first
part of Theorem 5.1.

. Now let F be a G-invariant measurable operator function defined on D.
Using (5.3), (5.8) and the condition 1) of Definition 1.3 we have

(F(b)h)~ = F(b|H,)h=F(V(a |H,)V*)h =
— VF(@a\|H)V*h.

Inserting in (5.7) the unit of Py instead of w we see that constant functions are

invariant under V: Vh = h and V*h = /i for all s € H. Therefore using once more
(5.3) we obtain

(F(bYh)~ = VF@|H,)h = V(F(@)h)~ = (F(a)h)"
for all h € H. This shows that F(b) — F(a). Q.E.D.
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Let us indicate certain possible applications of the notions introduced above.
Assume that G is a compact group of N X N matrices with complex entrics
and that D is a compact G-invariant N-dimensional domain. Then for any ge ¢
the map a+ ga is 2 homeomorphism of D (in the sense considered in Sec-
tion 3). Let g* denote the corresponding automorphism of the C*-algebra C(D):

(g*F)(a) ~= F(ga)

for any Fe C(D) and any element g of D.

This way we found an action of G on C(D). This action is continuous;
more precisely for each Fe C(D) the mapping G 3 g > g“Fe C(D) is norm conti-
nuous. This fact is obvious if F is a coordinate function (cf. (3.5)). The general
case follows easily from the Theorem 3.4.

Let us recall [3] that an action of a group on a C¥%-algebra is said to be
ergodic if the multiples of the unit are the only elements of A invariant under
the action of the group.

Using Theorem 5.1, we obtain the following nice criterion:

THEOREM 5.3. Let G be a compact group of N X N matrices and D be a
G-invariant compact domain.
Then the action of G on C(D) is ergodic if and only if there exists a function

{5.9) ¥ : P§ = C!
such that for any Hilbert space H:

{5.10) D(H) ={ae B(H)" : for any we P§, w(a) = y(w)-I}.

REMARK. For an arbitrary function (5.9) the formula (5.10) defines usually
the empty set. In order to obtain a nontrivial domain, the function y must satisfy
certain compatibility conditions. They are listed in the following theorem.

THEOREM 5.4. The equation (5.10) defines a compact non-empty domain
if" x satisfies the following conditions:

1) y is a linear multiplicative functional on P$ such that y(w*) == y(w) for all
we PG,
k
2) For any finite sequence wy, W, ..., w, € Py such that ¥, w}¥w; e P§ we have

i=l

k
7(2 wf”’wi) = 0;
i1

3) For any finite sequences wy, W, . .., W, € Py and uy, u,,. . ., u, € Py such that

13 k
wu,e PG and Y, uw; € P§
< =i

i={
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we have

k 3
2 3 ) =2 ( 3 )
i1

i=1

REMARK. A domain D is called non-empty if there exists a Hilbert space H
such that D(H) = ©. For example the domain D introduced by (3.12) is non-empty
although D(H) = @ for every finite dimensional Hilbert space H.

Theorem 5.3 follows easily from the Theorem 5.1. To prove Theorem 5.4
one has to combine GNS construction with the main result of [3]. We left the
details of the proof to the reader.
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