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COMPOSITION OPERATORS ON H*®

CARL C. COWEN

1. INTRODUCTION

For ¢ analytic in the unit disk D such that ¢(D) < D, the composition operator
C, is the operator on the Hardy space I7® of the unit disk given by C,f = fo¢
for all fin A*. Ryff [24] showed that C, is always a bounded operator.

Several authors have found that the properties of C, depend, to a great extent,

on the behaviour of ¢ near its fixed points. We will say a point b in D is afixed point
of ¢ if lim @(rb) = b. We will write ¢’(b) for lim ¢’(rb): the limit obviously exists

re1" [

if [b] < 1, and if |b] = 1, the theorem of Julia, Carathéodory, and Wolff [20, page
57] shows that this limit exists and 0 < p’(b) < co. Although it is not a priori evi-
dent that ¢ has fixed points, it has at least one.

DENJOY-WOLFF THEOREM ([11], [29], {1D. If ¢, not an elliptic Mobius trans-
Jformation of D onto D, is analytic in D with (D) < D, then there is a unique fixed
point a of @ (with la| < 1) such that ¢'(a)| < 1.

We will call the distinguished fixed point @ the Denjoy-Wolff point of ¢, and we
reiterate that if |a] = 1 then 0 < ¢'(a) < 1 and if |a] < 1 then 0 < |¢'(@)| < 1.

The results of this paper, the most important of which are noted below, streng=
then the observation that properties of C, depend on the behaviour of ¢ near its
fixed points. The hypotheses of all the following theorems include the assumption
that ¢ is analytic in D with ¢(D) = D and that a denotes the Denjoy-Wolff point
of ¢, but we omit this statement for brevity.

THEOREM 2.1. If la] < 1, the spectral radius of C,, is 1. If |a| = 1, the spec-
tral radius of C, is ¢'(a)~V2

If T is any operator, the essentia! normof T is |T|[, = inf{|| T+ Af| : A is a
compact operator} and the essential spectrum of T is 0(T) = {u: u — T is not a
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Fredholm operator}. The following result is based on a new estimate of the radial
maximal function due to B. J. Davis (Theorem 2.2).

THEOREM 2.4. If ¢’ is continuous on D, then
MY ICylle < 2M12

where M =max{ Y |p'e®)i-1: 4 =1}
efeo ()
Under more restrictive hypotheses, tats is used to compute the essential spec-
tral radius of C,,.
In [21] Nordgren found ¢(C,) when ¢ is an inner function with {aj < 1 and
when ¢ is an inner Mébius transformation.iThe following result covers the remain-
ing cases.

COROLLARY 5.2. If ¢ is an inner function, not a Mébius transformation, and
lai =1, then o(C,) = g (C,) = {4 : Al < ¢'(a)~¥2}.

For general ¢, our information is most specific in case |a| == 1 and ¢'(a) < 1.

THEOREM. If [a' =1 and ¢'(a) < 1, then:
(4.3) C, is similar to €°C,, for 0 real,
(4.5) if o'(a)'/® < |A] < @'(a)~Y% then X is an eigenvalue of infinite multiplicity
Jor C,.

‘We obtain further results when ¢ is smooth enough, for example we have the
following.

COROLLARY 4.8. If ¢, not a finite Blaschke product, is anolytic in a neighborhood
of D and has la| =1 with ¢'(a) < 1, then o(C,) == {1 : |2 < ¢'(@)~2}.

In [17, page 142] Kamowitz asks if ja| = 1 and ¢’(a) = 1 implies ¢(C,) == D.
In Section 6, we show that if ¢(z) = (2 — z)~* then 6(C,) = {2 :0 < 2 < 1},and
give other examples for which the spectrum is a heart-shaped subset of D.

This paper has two major themes. The first is the analogy between C¥% and
weighted shifts, which is developed in Section 3. The results of Section 3 give infor-
mation about the point spectrum and approximate point spectrum of C%. These
results are based on the trivial observation that C3K, = K, where K(z): :

fact that if {z,} is an interpolating sequence in D then {(1 — |z]*)"*K,} is a basic
sequence in H? equivalent in the Banach space sense to an orthonormal set.

The second theme of the paper (developed in Sections 4 and 6) is the exploita-
tion of the solution of Schroeder’s functional equation fo¢ = Af given in [8].
Solutions of this equation that are in H?® are eigenfunctions for C,. The crucial (and
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usually difficult) issue is to determine which of the solutions of Schroeder’s equa-
tion (an infinite dimensional manifold for all A # 0 if |a| = 1) are actvally in H2.

Composition operators have been studied in this context for at least 15 years
[21], but implicitly for much longer. Koenigs [18] gave a solution to Schroeder’s
functional equation for the case |a| < 1 in 1884 and much has been written on this
equation since then (see the bibliography of [22)]. Littlewood [19] and Ryff [24]
estabiished inequalities that, in our context, give estimates for the norm of a compo-
sition operator.

Nordgren [21] studied C, when ¢ is a Mobius transformation mapping D
onto D and when ¢ is inner and |a| < 1. In particular, he found the spectrum of C,
in these cases. In his thesis Schwartz [25], gave a characterization (A4 is a composi-
tion operator if and only if 4(z") = (4z)" for n = 0,1,2, ...), gave norm estimates,
studied convergence of sequences of composition operators, and showed that C,
is a normal operator if and only if @(z) = az for |«| < 1. Deddens [10] studied the
composition operators given by ¢(z) = az -+ f where la| + |8l < 1 and found
spectra in these cases.

Several authors have studied compact composition operators [25], {27}, [4]
developing interesting criteria (but nct sharp) for determining compactness and
finding the spectrum. This paper contributes little to this aspect of the subject, al-
though Section 2 and 3 use the kernel function point of view developed in [3] and
[4]. It is helpful to observe that the F-sequence and B-sequence arguments of Sec-
tions 2 and 3 can easily be used to give a more elementary proof of Theorem 2.1
of [27, page 478]: “if ¢ has a finite angular derivative at any point of D then C,
is not compact”. This, together with thz Denjoy-Wolff theorem, implies Theorem 2
of [4, page 128]: “if C, is compact, |a] < 1”.

The most extensive study of spectra of composition operators was undertaken
by Kamowitz [17]. This paper adds little to his treatment of the case ja} < 1, (17,
Theorem 3.8, page 149). Unfortunately however, the proof of his Theorem 3.1
{17, page 139], which covers the case |2j = 1, contains an error. The error occurs

on page 140, line 9 which reads: “thus [(A — C,)~1g](z) = A~* Yy g(@(2))A~* when-
k=0
ever the right-hand side converges’’. To be correct, it should read: ““... whenever

the right-hand side converges and is in H?”’. Since there are infinitely many analytic
functions f that satisfy Af — feo¢ = g if there are any [8, Theorem 4.7, page 89],
we have no reason to suppose, a priori, that the given series is the solution in H?.
Fortunately, the theorem is true: (it is Corollary 4.8 of this paper), although the
proof given here does not fill the gap in Kamowitz’ proof.

In [5], Cima, Thomson, and Wogzn give necessary and sufficient conditions for
C, to have closed range. This result is especially interesting because it comes to
grips with non-inner functions whose boundary values include dD, a class about
which most results say little.
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The last section of this paper points out some of the many problems concern-
ing composition operators that remain open and gives conjectures concerning
some of them.

This paper makes no attempt to consider composition operators on H? for
» # 2, although it is clear that most of the results have easy |generalizations for
1 < p < co.Forp < 1orp == oo, many of the techniques break down and the situa-
tion is less clear.

I am especially grateful to Burgess Davis for considering the problem of esti-
mating the norm of the radial maximal function and for permitting me to include
his result (Theorem 2.2) which has not appeared elsewhere. I would also like to
thank R. P. Kaufman for suggesting the proof of Theorem 6.1. However, my great-
est debt is to Eric Nordgren whose excellent lectures at Long Beach in 1977 [22]
inspired this work.

2. NORM INEQUALITIES

In this section, we give estimates for the norm of a composition operator,
deterimine its spectral radius, and in some cases, estimate the essential norm and the
essential spectral radius. We begin with an easy estimate of the norm which leads to
tke spectral radius computation. The upper bound for the norm is due to Ryff
[24], the lower bound to Schwartz [25].

THEOREM 2.1. Suppose ¢ is analytic in D with (D) < D and suppose ¢ has
Denjoy-W olff point a. Then C, is a bounded operator on H* with

(1 — 9@ < [Coll < (1 + 1p(O)) (1 — lo(O)I) 2.

The spectral radius of C,, is 1 when |a} < 1 and ¢'(a)~/* when |a| = 1.

Proof. For a proof of boundedness and the upper bound, see [22, page 48].

Since 1 =~ K, the kernel for evaluation of H*® functions at zero, Cyl = K.
1t follows that ||C,ll = [CX]l > IC¥1l| = (1 — l(0)[%)~Y2.
The spectral radius of C, islim [|C3||'/* = lim||C, [}'/". Using the norm estimates,
n-—oo R=00

We see

lim sup(1 — |@,(0)*) 7> < lim|iC, |V" <

< lim inf(1 + ], (0" (1 — {,(0)}*) Y/ == liminf(1 — 1@, (0)IF) 72"

n=>c0
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That is, the spectral radius of C, is

llm(l — 19, (0)F)=12" = lim (L — |@,(0)])=*/>".

n—~oo

Since g = llm(p,,(O), we have lim(1— |¢,(0))~¥?" = | when |a| < 1.

n—oo

When |al =1 and ¢'(a) < 1, the se quence {9,(0)} converges to a in a Stolz

angle [8, page 73] which means that lim — L~ 10 0)]

=: ¢'(a) [1, page 32). Thus,
nsco | — |, _,(0)]

n—1 _— —1)2n
(1 — )+ = i L 2O )
n=00 n-cc\ ko 1 — I(pki—l(o)l

—lim (.(_'_—]";1-_1@[)1’2: —

Supposc now that |a| == | and ¢'(¢) == 1. If z, is a sequence in D converging
to a such that ¢(z,) - @ and « = lim —I—J:liplgrl exists then a> @'(a)==1 [2, pages
n—oo — lz,
— |
25-32). Tt follows that liminf( J—Jﬁ’ﬂ(—(’l'f) > 1. Thus
neo 1 — {@,-1(0)]

n-1 . l(pk(())] 1/2n
1m(l ) R hm( ——————) <
Y n~0 kI:=Io 1 — |91(0)]

nmoo \ 1 — |(0n(0)|
On the other hand, since | — |@,(0)] < 1 for each n, lim(1 — |@,(0))~"*" > 1.
n—+00
Therefore, lim(l — |@,(0)])"V* = 1 = p'(a)-V2 as was asserted. %
n-—co

Although better estimates of the norm exist for functions in special classes
(see [25, Theorem 3.10] or the results below), the given estimates are the best possible
based only on the value of ¢ at zero. Indeed, if @(z) = ¢(0), an easy computa-
tion shows [|C,ll = (1 — |p(®»~¥* and if ¢ is an inner function, ||C,|| =
= (1 - {@0)D(1 — {@(0)i®)~/* [21, page 443].

COROLLARY. If ¢ satisfies the hypotheses of Theorem 2.1 and |a| == | then
IColl 2 @'(a)~/2

G —~2484
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Proof. For any bounded operator the spectral radius is less than or equal
to the norm. 23

The corollary is sometimes an improvement over the theorem. If ¢(z) - : sz~
-+ (1 — 5) for 0 < s < 1, then the Denjoy-Wolff point is 1 and ¢ (1) =: 5. Since C¥
is subnormal [10, page 801], the norm of C,, is its spectral radius, that is,
HCH o872 > U2 — 5)= 12 - (1 — 1(0)1%)~ V2,
We need two preliminary results before proceeding to the theorems cn essen-
tial norm and essential spectral radius. The first of these is an estimate for the radial
maximal function due to Burgess Davies.

DeriniTiON. If [ is in H?>, the radial maximal function of fis the function
R (e : - sup{if(re?)!: 0 < r < 1}.
THEOREM 2.2. (B. J. Davis). Let f be in H* and let R, be its radial ma-
ximal function. Then
2 27
S R (e®)2d0 < 4 S If(e%)1de.
0 0
Proof. Let m be normalized Lebesgue measure on ¢D, let Z, = X, — i¥, be
standard two dimensional Brownian motion (started at 0), let Z¢ be Browaian mo-
tion conditioned to first hit D at e?, also started at 0. A reference for Z? and its
properties is [14]. Let 7 be the first time Z, (or Z%) hits éD, and define
J# = sup |f(Z)
Ost<st
and
f& = sup . f(Z]D);.
O<st<t
Now since j /i is subharmonic, }f(Z,4.)i, 0<t < 0o, is a submartingale ([13])
50 that, using the continuous time version of Theorem 3.4 on page 317 of [12], and
the fact that Z, is uniformly distributed (i.e. ) on ¢D, we have

Ef* < 2E|f(Z)P = 28 (&) 2dm.
uD
Next we show

SRJ(P—“’)?dm < 2Ef7,

which will complete the proof. We show, in fact, the stronger fact that for each
positive 2,

m{0: R (e¥) > 1} < 2P(f* > 2),
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and this in turn, will follow upon showing
(#) P(fE >4 > % if Ry(0) > 4,

and integrating over 0.

To prove (x) let R(6) > A and let re’® be a point on the ray from 0 to &?
such that |f(re'%)] > 4. Let y be a curve from re? to D on which |f| > ) and
let y’ be the reflection of y about the line through 0 and €. We note that since,

P(Z}hits {se', r < s < 1} for some ¢ < 1) = 1,

we have
P(Z!{ hits y U ' for some t < 7) = 1,
Since 4
P(Z? hits y for some ¢ < 1) =
= P(Z? hits 7' “or some t < 1),
it follows tﬁat P(Z? hits y for some ¢ < 1) > 1/2, and this implies (x). 8

LEMMA 2.3. Suppose ¢ is analytic in D with o(D) < D and ¢’ is continuous

on D.Givene > 0and 0 < ry < 1, there is a finite collection of disjoint open intervals
I, ..., 1, such that
(1) for some r, with ry < r < 1, we have

{0:lpe®! >} = U I,
j=1
(2) for 0 in\JI;, we have (%(argup(e“’)) = (1 -+ &) Yo'(e"), and
i=1

(3) for each j =1, ..., m, the function exp(iargp(e'®)) is univalent on I;.

Proof. 11 follows from the lemma of Julia, Carathéodory, and WolfT [20, page
57] that whenever |p(ei®)| == 1, we have

d . ) d . , I .
— (arg ¢(e")) = i~* — (log @(e")) == p(e"*)~1g'(e¥)e == |’ (e?)] > 0.
dé do

Thus there is a number r,, with ry < r; << 1, so that if |¢(e")] > r, then

j‘(—)(arg (%) > (1+ &)~1g'(e?)).
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Let Ji., k=12, ... be the collection of disjoint open arcs of ¢D comprising
{e” :lp(e®! > r}. Let Ji» Jiys - - be the set of these arcs that do not intersect

¢~(0D). If there are none, take r == r,, otherwise let r = sup{|p(e?)i: e’ e Uka}.
7

Weclaim r < 1. Indeed, if enis a sequence in {_J ka with lim|¢(ei°")5 -=1, we choose
Jj n—-oo

ig* .. . it .. ig* 9% . . .
¢? a limit point of e ™). By continuit , lo(e® ) =1s0e? isinJ. for some, k*.
y Y, 1@ s
Since J . is open, e is in J + for some n, but this isimpossible because en belongs
k k

to UJ J"'j which is disjoint from Jos-
J

Let I.,:, k== 1,2, ... be the collection of disjoint open arcs of D comprising
{e: |p(e®)} > r}. We claim that there are only finitely many intervals f,. Indeed,
if there are infinitely many, choose % in i,‘ with §<p(ei0k)| =1 and let ¢?* be a limit
point of the sequence {emk}. Again [p(e®*)j=: 1 and 9" is an element of I;‘ for
some k*. Since 7k. is open, for all k large, e is in ik‘, which contradicts the dis-

jointness of the I,.

Since ¢’ is continuous, ¢(éD) has finite length which means, since » > 0,
that for each k, the set I, n @~({1}) is finite. Let I, j = 1,2, ..., m, be the col-
lection of disjoint open intervals that comprise the set

{0:0 < 6 < 27 such that ¢ e | I, and o(e) # 1}.

This collection is finite because there are only finitely many I; and because
¢~Y({1}) is finite. Properties (1) and (2) are direct consequences of the construction
and (3) is evident since arge(e'®) is strictly increasing on each interval J; and
argp(e'®) £ 2mn for any n. 2

COROLLARY. If ¢ satisfies the hypotheses of the lemma, there is an integer m
such that for every 7 in dD, ¢ ~Y({A}) has at most m elements.

Proof. There can be at most one element of ¢~({4}) in each of the
intervals I,,..., I of the lemma. Z|

If T is a bounded operator, the essential norm of T is the number [[T{l, :=
«+inf{{IT4- Al|: A is a compact operator}.

THEOREM. 2.4. Suppose @ is analytic in D with ¢(D) < D and ¢’ is continu-
ous on D. Then

M2 < Gl < 201

where

M=max{ Y, |o'€®)|: =1}
eeo Ay
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Proof. We have
IC,lle = - lim sup {|C,(z"f)|| = lim sup [lo"f° ¢||.
=00 ||f|l=1 n-oof|flj=1
Givene>0and 0 <ry < 1,let I, ..., 1, and r be as in Lemma 2.3, and find N

large enough that n > N implies r?" < ¢.
For n > N and ||f}| = 1 we have

21
IC, 21t = 5‘; Sl(p(e“’)lz"lfﬁp(e"’))lzd0 <
« 1 i0y}12 g re iovy (2
<3 5 o e+ 2 Fo(e)a6 <
T [0, 221\ T

<% L Slf(go(ef*'))nz d0 + oliC, I
K=1 2W

h

Let I, = (0,, 0z) and let ¢, = arg (p(eia"), let t; = arg (p(eig’,‘) and define #(6)
on I, by 1(0) = arge(e'?). Now

0,; (),’c
S F(oE)ds < S (702 do =
0k 0k

% 1

de ! )
== SR,((:“)2 ( ;l—:;) de <(1 +¢) S Rf(e")zl(P'(ew"(’))l -14;

% %

where 0,(1) is the inverse of #(0) defined on (1., ).

Thus
%
n m + 8 . ;
IC,ENIE < Y, SR,(e")zltp’(e %N -1dt 4 6]|C, 2 <
k=1

%

2

<1+ a)(S Rf(e*‘)zﬂ)max{ ¥ o' (e’ D)|-1 :eite aD} + el Gl <
3 2z (arg ) e 0 [ +0
< (1 + ¢) 4 max{ Y lo'(€%K)|=1 : eite oD} + &||C, |2

@ree) drhn 1, 0
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Since the right hand side of this inequality is independent of f and n > N,

this expression dominates ||C,|l5. As ry — 1-, by the continuity of ¢’, the right
hand side tends to

4(1 -+ e)max{ Y, |o'(e?)|~*:e"e ID}+ ]| C, 1%
o(ei)=eif
Since ¢ was an arbitrary positive number, we obtain {|C, |2 < 4M.
On the other hand, if |4 = 1 and ¢(e%) == A for j = 1,2, . .. ,m, then fol
7o close to 1, the set ¢~ ({rd : 1y < ¥ < 1}) consists of m disjoint arcs terminating
at the points e : let y;(r) denote the branch of ¢~1(rA) whose image includes e'%.
For a4, ..., 2, complex numbers,

i m

lim ‘ 2 Oljvl — () Kv (") II =

r=+1" lij=1

~lim Y Y, 6w TPV T= R — 0m) - 3, Il

rel1” jo:l kel

j=1
Since ]/‘1 Lfi/?i‘-‘](p tends to 0 weakly as |j— 1, we have
lim lA(Z djl/l—-|'yj(r)|2Kyj(r))i| =0
r=1" Jj=1 l
for all compact operators A. This means that
. m -1 . —— e
iC2iE > (): '“f'z) fim C'(E @) T= Iw(r)n“K’f"’)l
j=1 o1 | J
Now
<3 & N TPk ) =
]c
[ ajl/l — |yj(r)|‘~’Ko(yj(r))I = a l/l Iy_,(r)'“ =
J/=1 | =t g
_ i’; 2, V1—ly(n0F
j=1 1—r%
. . i, . W;(")l 1
Since ¢ is conformal at e"J, we find [2, page 30] that hm = (e J)I
r—+1-—

which implies that

ICEII2 > (GOl

2 m -1
(5)
j=1
m

. 6, —1/2 . 2 R . H
Choosing a; == [¢'(e )| yields [C3 |2 212'1 lp’(e"7){~1. Since A was an aroitrary

=

point of éD. C,l2 = M. %
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As in the corollary of Theorem 2.1, since ||C,|| > ||C,l|., this sometimes leads
to an improved estimate of ||C,||. Indeed, if ¢(z) = sz 4 (1 — 5) where 0 < 5 < 1,
we find

ICell 2 IColle 2 (9" (— 1) + @' (D] ~HH2 = 57172,

Comparing this with the earlier example, and noting that C, is an isometry,
F4

we see that this indeed equals ([C[l.

By the essential spectrum of an operator T, denoted ¢,(77), we mean the set of
complex numbers y for which u— T is not Fredholm. We can now compute the es-
sential spectral radius in certain cases.

COROLLARY 2.5. If ¢ satisfies the hypotheses of Theorem 2.4 and for some integer
N the set {€°: | py(e'%)| = 1} consists only of fixed points of @y then

sup{ji | p € 6,(C,)} =sup{loi(e™)] =12V : (") = ¢},

Proof. Applying the spectral mapping theorem to the Calkin algebra we obtain

sup{lul: 1€ 0,(C,)} = sup{lul¥: pe 5,(CI)} = lim|| C5M|EnN = lim |[C, [V,
n=»00 n—->»c0

Now by hypothesis, for any 4 in 8D and any integer n, the set {e?: @,y(e?®) = A}
is {4} if A is a fixed point of ¢y and empity if it is not.
The theorem then implies

max{{@n(A)|=12"N : on(2) = 2} < ICp IF"™Y < 2rmax{|on(A)"] - 11> N : op(2) = A}

Taking the limit as n — oo, we obtain the desired result. %

3. A WEIGHTED SHIFT ANALOGY FOR C:

As we shall see (Proposition 4.2), for some ¢, C3 has an invariant subspace on
which it is similar to a weighted shift. In this section, we exploit the fact that this is
almost true for all ¢. We begin by formalizing the notions of forward and backward
iteration sequences.

DEFINITION. A non-constant secuence {z,}%., is a B-sequence for ¢ if ¢(z,) =
=z, k=12,... . Apoint b of 3B is a B-point of ¢ if ﬁl::l o(rb) == b and there
rel-

is a B-sequence for ¢ converging to b.
A non-constant sequence {z;}3.0 or {z,}f-_o IS an F-sequence for ¢ if
0(z) = 234, for all k. '



88 CARL C. COWEN

We note that for a B-sequence {z,}, we have hm'zkl = 1, and for an F-sequence

lim z, - a, the Denjoy-Wolff point. If 4 is a B—pomt of ¢ and {z,} is a B-sequence

J:d00

converging to b, then hm—u > ¢'(h) and if lal - - | and {z,} is an F-se-
koo ] — zkl
lzk-:-ll

quence then lim
koo ] — |z,

[2, pages 25—32)].)
Determining whether a given ¢ has a B-sequence is usually difficult. If {z,}

= ¢'(a). (These remarks follow from the results of

o 00
is a B-sequence then z, € (M) ¢,(D) for each k, so if (M) ¢,(D) is empty or is the sin-
Rl n=1

gleton {a} then ¢ has no B-sequences. On the other hand, it can be shown (al-
though we will not) that if ¢ is univalent and has a fixed point b with 1 <¢’(b) < oo,
then b is a B-point. We will be content to prove the following weak result.

LEMMA 3.1. Let ¢ be analytic in D with o(D) c D. If b in 0D is a fixed point
of @ with ¢'(b) > 1 and ¢ is analytic in a neighborhood of b, then there are uncountably
many B-sequences for ¢ converging to b with the property thatklimil:ﬁ?'— == @'(h).

~300 — |2

Proof. Since ¢'(b) > 1, there is ¢ > 0 so that ¢~ is single-valued and analytic
on the disk U~ {z:|b — z| < ¢} and ¢~} (U) = U.

Theorems 3.2 and 3.3 of [8, pages 78 —80] produce a univalent analytic func-
tion o : U — C so that ¢~1(z) = o~ (¢'(b)~*a(z)). Since o is conformal at b, there
is point z* in Un D so that the line-segment {ro(z*) : 0 < r < 1} is contained in
a(U n D) and is not tangent to o(U n dD). The sequences z, = a'l((p'(b)"‘ra(z"”))
k=12,... for o'(b)~1< r < 1 are distinct B-sequences converging to #. More-
over, since z, —+ b in a Stolz angle

_L— Z—1 ‘.=llm ! (P(b) - (p(zk_)_ ': (pl(b).

b—z k200 b—z, :

i

lim = -l = lim

k-300 1 — Iz, k-300

%

Our use of B-sequences in studying composition operators is based on the
fact that C3K, := K_(,y and the following observations.

LeMMA 3.2. (Shapiro-Shields). If {z,} « D is an interpolating sequence
Jor H*, then {Vi?szK:k} is a basic sequence in H* equivalent to an orthonormal set ;
that is, the series zakVT——TzkI?—K. converges if and only if Yo |* < co.

Proof. This is the content of Theorem 2 of [26, page 521]; see [7, page 23] for
details of this equivalence. 1%

1 —
COROLLARY 3.3. If {z,} is a B-sequence with —|—,ZEI—‘ <r< for alk,
— 1Zg-1
then the conclusion of Lemma 3.2 holds. In particular, this is the case when {z,}
converges to the B-point b and ¢'(b) > 1.
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Proof. From the comments following the definition of B-sequence, we see
11—zl

thatlim — ——— < ¢’(b)~! when {z,} converges to the B-point b. Hayman and
koo 1 — |z, 4]
B .
Newman showed [16, page 203] that if ———-I—EEL,— < r < 1 for all k, then {z,} is
— 1Zk-1
an interpolating sequence and Lemma 3.2 applies. 7

We are now ready to develop the analogy between shifts and C3. If z; is a.
B-sequence, for the remainder of this section, let v, = (1 — lzkiz)llzK:k. Thus

Ckrp = (1 — Iz )H12K, = el 1/21)
@k _( Lk Spey 1 — |zk_1I2 k-1
THEOREM 3.4. Let ¢ be analytic in D with (D) < D. If {z,}¥. , is a B-sequence
for @ and lim ——— 12|
koo 1 — |z,

Jor |A] = ri2,

Proof. By Corollary 3.3, the set {1}, is a basic sequence in H? equivalent
to an orthonormal set, that is, there are positive constants m and M so that

= r<1, then C} —2 is not bounded below, and /. € 0 (C,),

) ) 0
m Y Il <Y aolt < MY @k,

k=0 k=0 K=0
whenever () is in /2.

oo
Let n be a positive integer. Now for |1} < r/2 let w, = Y, o, where o, =

k=n+1
— 2 1/2
= jk-1 (—;——-%"—:2—) . (Since
-z

2 — 2
tim % _ fim 2 (1___'&:11.«) — A < 1,

koo o 4|2 k-soo I — |z/?

the series for w, converges.) Thus

* had 1— |zki2
C(p w,; = Z O | — VTS Vg1 = Uy -+ ,lwl. \
k=n41 1-— |zl

It follows that for [Ag] == r¥/2 and |A| -< r'/%, we have
1(Cy — A)wallwaDIl < 1(Cy — B walllwa DI+ 12 — Al =

=l ll/llwall + 14 = Aol = [Iwl[~* + 12 — Aol.
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If 1 - 4, since Y, |/t — co, we also have
iiwyl — oo, which means ||(CF — Ay) (w /llw, DI = 0.

Therefore (C¥ -- J,) is not bounded below on the subspace spanned by {v,: k >n}.
Since {v;} is equivalent to an orthonormal set, ¢, — 0 weakly as k — oo. Since n
was arbitrary this implies A(CF — 2,) # I + K for any operators A and X with X
compact. That is, Zg€ 6o(Cy). Y

THEOREM 3.5. Let ¢ be analytic in D with (D) < D but not a Mébius trans-
formation mapping D onto D. Suppose for each j == 0,1,2, ..., the sequence {zf}% ,

1 —i zj 3
is a B-sequence with lim sup - —A =r; < 1, and suppose the set {z :j :

koo ] — 'zk—ll
= 0,1,2, ...,k =0,1,2, ...} is not a Blaschke sequence. If for eachj—=012,...,

p? < liminf - —IJ—I— ihen 6(C,)n {A: |4} = p} # O.
koo ] — |zl]c al

Proof. Given non-negative integers j and &, let {z,} be the B-sequence

z, = Z’{+ko’ and v, = (1 — (2K, .

— |zai
I — izn 1
lent to an orthonormal set (Corollary 3.3). Given A with |i| = p, let w(d) =
© . f1— |zol“ ‘/2 . .. ~ [z,

Sy A .- Since p, < liminf

1 — !an nso 1 — l n—1

3.4, the series for w, converges and (C% — )w(4) —= v,.
If 6(C)n{: l/lt = p} = @, then (C¥ — pe'%)~? exists for each § and we

Since llmsup < 1, the sequence {v,} is a basic sequence in H?®equiva-

, as in the proof of

A=l

define Q by @ = — S(C‘ pe®)-1 dg. Now

[

2 25
Qu, = 1 (C* — pei®)~lv,df = 1 w(pe'?) df =
27 2z
0 (i)

2z
had . — 2y V2 — 24\ Y2
=y 1 =1 gitr =19 (l_ﬂ) v,d0 = (_1_|z_°|_ vy
n=121 1 —|z,/® I — |z ®
0

“That is, QK =K, 2 which means CFQ(K, ) = K From the definition of Q, we
sce CaQ = QC“ and since z, was an arbxtrary element of a non-Blaschke set, this
means CaQ = QCF = I. But ¢ is not a Mdbius transformation mapping D onto D,
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so C, is not invertible. This contradiction means
o(C)n{A 14| = p} # @.
COROLLARY 3.6. Let ¢ be analytic in D with ¢(D) c D, but not a Mobius trans-
Sformation of D onto D. If b,, ..., b, are fixed points of ¢ on dD with ¢ analytic in a
neighborhood of each b;, and ¢'(b;) > 1, then o(C,) > JL:Jl{l A= ¢'(b))~Y*} and

o(C,) intersects every circle of radius p centered at O with p < max{e'(h;)~¥:j =
== 1,2, ..., n}.

Proof. By Lemma 3.1, for cach j = 1,2, ..., n thete are uncountably many
1 — |z

B-sequences converging to the B-point b; with lim T—I—_I = @'(b;)~*. The
k—o0 — |Zg=4l
corollary is now an immediate consequeace of Theorems 3.4 and 3.5.

It is not difficult to see that if ¢ is not univalent then ker C¥ # (0). The fol-
lowing result extends this idea.

THEOREM 3.7. Let ¢ be analytic in D with (D) < D. Suppose {z,} and {z;}

are B-sequences for ¢ with zy = zy but limz, =:b # b’ = limz;. If
k—co k-0

1= i =iz
A2 < lim 7 ¢ lim
koo ] — |zk~:J koo 1 — lzl'c 1l

then 1 is an eigenvalue of Cj.

Proof. Since b # b’, we may assume without loss of generality that z, # z;.
The growth conditions on the sequences ensure that each separately is an inter-
polating set, and since b s ', we find {z,} U {z} is an interpolating set (see [16)).
Letting v, = J/1 — |2,/°K;, and v; = = |z,',12K,;‘ , Lemma 3.2 implies that {v,} U
U {vz} is a basic sequence for H? equivalent to an orthogonal set.

Now let

00 . |2‘l/2 o _— 712\ 1/2
w,=Y Akq(ﬂ) v — 3 Ak=t (Eﬂ) o

1 — [z, k=1 1 — |zl?

As before, the series for w, converge aad an easy computation gives (C} — 2)(w;)=0.
%
This theorem can be applied to finite Blaschke products (order > 2) but the
results of Section 5 are considerably better.
So far, we have used the shift analogy to investigate the point spectrum of Cs.
The next theorem uses it to limit the size of the point spectrum of C,,.
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THEOREM 3.8. Let ¢ be analytlc in D with (D) c D, and suppose {z,} is «
B-sequence for @ with liminf — - -Jzk' = r. If there is [ in H* with f(z,) # 0 and

koo | — 124 - "

Cof o= A, then |ij = r¥2

Proof. Zero is an eingenvalue for C, only if ¢ is constant, so we may assume
#> 0 and {4 > 0. Since f(z,_,) = (C f) (2) = M(z), we get f(z,41) = A7%f(z,,)
for all m, k > 0. In particular, f(z,) # 0 for all &.

Since v, — 0 weakly in H? we must have (1 — lz,|9)¥%f(z,) - 0 as k—oo.
— Iz

!

. - .y 1 o
Given r < r, chovose M so that m > M implies - =¥ For k=0,

| Ol A
we have

(] - !zm+k!2)1/2:f(zm -‘rk)l =

“ L+ ;zm!)"ﬂ(l—!zms)1/°11[1—.~'i"ii] M1z > (17")'

Je1 12 4m 1| Y}

where C is a non-zero constant. Since the sequence on the left converges to zero, we
must have r*/? < |1). Since ¥ was an arbitrary number less than r, we find |i! > rV2,
as was to be proved. 2]

This results is best possible: let ¢ be the Mobius transformation ¢(z) -
= [(1 4 21)z — 1}{z — 1 4+ 2i]~% Then z, = {(1 + 2i/k)~'}., is a B-sequence for ¢
and lim - 1= Iz"rl—— = 1. Nordgren showed [21, page 447] that every i with

koo 1 — Iz, |

j4; =1 is an eigenvalue of infinite multiplicity.

4. THE SPECTRUM OF C,: NON-INNER FUNCTIONS

In this section, we combine information about ¢(C,) gained in the last section
with information about eigenvalues of C, to get a more complete picture of the
spectrum. The information about eigenvalues is based on a model for iteration deve-
loped in [8]. In some sense, that paper provides a complete solution to the eigenvalue
equation fo ¢ = Af where the solutions f are allowed to be arbitrary analytic func-
tions. Our difficulty is in determining which solutions are in H® .

We may paraphrase the main results of [8] for our purposes as follows. If ¢
is analytic in D with ¢(D) < D, there is a function ¢ analytic in D and a linear frac-
tional transformation @ such that @ o ¢ = ¢ - ¢ and £, analyticin D, is a solution of
fe@ == ifif and only if f = Fo o where Fis a solution of Fo @ = AF, [8, Theorem
3.2 and Lemma 4.1]. There are four essentially different cases depending on, among
other things, the location of the Denjoy-Wolff point a and the value of ¢’(a). We
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obtain the most information when |a| = 1 and ¢’(a) < 1, the least when la| =: 1
and F-sequences for ¢ are not interpolating sequences (which means ¢’(a) == 1).

We begin with the case |a| < 1. The following result is a slight extension of
Theorem 3 of {4, page 129] which dealt with power compact operators.

THEOREM 4.1. Suppose ¢ is analytic in D with o(D) c D (¢ non-constant and
not a Mébius transformation mapping I onto D), and suppose the Denjoy-Wolff

point a is in D. Then each of the numbers &'id)’i n=01,2, ..., is an eigenvalue of
C3. If ©'(a) # 0, then for some N, a positive integer or infinity, A is an eigenvalue of
C, if and only if . = @'(a)" where n is an integer,0 < n < N. If ¢'(a) = 0, the only
eigenvalue of C, is 4 = 1. In either case, all eigenvalues of C, have multiplicity one.

Proof. Let yi(z) = (z + a) (1 — az)~*. Then C,C,C;' =C, -1, zerois the
Denjoy-Wolff point of ¥~1o @ oy and (Y~1o¢ o )'(0) = ¢’(a). Since o(C,) =
=2 0(C ), We may assume a = 0. When ¢(z) = az + ..., we see that for each
integer n, the subspace spanned by 1, z,...,z" is invariant for C¥, and that
with respect to this basis, the matrix for C¥ is upper triangular with diagonal entries
1, &, ... & Thus, for each n, @" is an eigenvalue of Cy.

If ¢’(a) # 0, Theorems 3.3 and 4.". of (8, pages 81 and 88] show that there is ¢
analytic on D so that 6o ¢ = ¢'(a)s and fo o == Af if and only if A == ¢'(a)" for
some n = 0,1,2, ... and f = co” for some constant ¢. Since 6" € H? implies c* € H?
for 0 € & < n, the assertions for this case follow.

If ¢'(a) — 0 easy power series calculations show fo ¢ == Af implies A =1
and f is constant. %

The number N above can be cstimated by using Theorem 3.8 if ¢ satisfies
the hypotheses of Corollary 2.5, we can give a very precise estimate. Corollary 2.5
gives the essential spectral radius of C,,, which we denote by p., and we know that
if A€ a(C,) with |A] > p, then 4 is an eigenvaluc of C,. On the other hand, since
pY, under the conditions of Corollary 2.5, could be attained by a B-sequence for @y,
Theorem 3.8 shows that in this case |A|Y < pl implies AV is not an eigenvalue of CY
so 4 is not an eigenvalue of C,. Under the additional hypothesis that ¢ be analytic
in a neighborhood of D, Kamowitz computed the spectrum of C, [17, page 149).

If the Denjoy-Wolff point a of ¢ is in dD and s = ¢'(a) < 1, then there is ¢
analytic in D with ¢(D) < D such that ® o ¢ = g o ¢ with

@z = [(1 + )z + (1 = D[ — )z + (1 + )]

(Corollary, page 81 of [8]). The symbols @ and ¢ will denote these maps for
the next few paragraphs.

PROPOSITION 4.2. If ¢ is analytic in D with (D) = D and has Denjoy-Wolff
point a in D with ¢'(a) < 1, then every F-sequence for @ is an interpolating sequence.
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In particular, each F-sequence for ¢ gives rise to an invariant subspace of Cy on which
it is similar to a weighted shift.

Proof. Let {z,} be an F-sequence (possibly doubly infinite). Since o(z, ,):
- 0(@,(2,)) : - P,(a(z,)) for ail integers k and all non-negative integers #, and since @
is univalent. we see that o(z;) = ®,(0(z,)) for all integers k. Now

{Du(0(z0))} = UL + 5o(z0) + 1 — sPH[(1 = s8)a(zg) - (J -+ s5)]}

which satisfies the growth condition of Hayman and Newman [16, page 203] both
fork > 0 and k < 0. Since lim &,(6(z,)) = -1 and lim ,i6(z,)) = -—1, this means
k—o00 k

- — o0
{®(0(20))} Is an interpolating set in D.

Now suppose (a,) is a bounded sequence. Since {®,(a(zp))} is an interpolat-
ing set, there is a bounded analytic function F such that F(@,(c(zy))) - - %, But,
since D,(a(zy)): 06(z;),this means Foo is a bounded analytic function with Fog(z,):- -

o, . The sequence («,) was an arbitrary bounded sequence, so we conclude that
{z,} is an interpolating set.

If {z,} is an F-sequence, let v, -~ ]/]':}},;!ész and let ¥ be the closed subspace
spanned by {v,}. Lemma 3.2 asserts that {r,} is a basic sequence in ¥ equivalent
to an orthogonal basis for ¥, which means, since

- 1 —iz.2 \V2
Coti - Vl = (RS (———"‘ s ) st

° e I — zj.af?
: . oy . 1 — iz W2
that C%, V is similar to a shift with weights {(—l——-- - k |'7) } . 3
== Zpsnt

The following theorem carries the shift analogy somewhat further. 1t is interes-
ting to note that the operator that implements the similarity is an analytic Toeplitz
operator.

THEOREM 4.3. If @ is anaiytic in D with ¢(D) « D and has Denjoy-Wolff
point a in 6D with ¢'(a) < 1, then for 0 real the operator C, is similar to the operator
¢C,,. In particular, j.€ a(C,) implies €} € a(C,).

Proof. Given 0 real, let § == 0(log ¢'(a)~*)~* and let F(z) = exp(iff Log[(! -+
- 2)(1 = 2)71]). Now F(P(z)) == e F(z) and for all z in D, e~#%/2 < |F{z) <el™2,
Letj: : Fog so that fo ¢ : = e®fand fand 1/f are in H®.

We see that
(TFIC,Ty) () == (Tp)((f e @) 0 9)) = T (T Cyh) == (€°C,) (h)
for ail 4 in H® (where T is the operator of multiplication by f). : %

COROLLARY 4.4. If ¢ satisfies the hypotheses of Theorem 4.3, then each eigen-
value of C,, has infinite multiplicity.
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Proof. The proof of Theorem 4.3 gives infinitely many linearly independent
bounded analytic functions, f; , with fio¢@ =f,. If h is in ker(C, — A), with
h #0, then (C, — O)fih = fi(heop — Ah) =0 also, so ker(C, — 1) is infinite
dimensional.

We use the functions ¢ and ¢ in a simila1 way to find an annulus of eigen-
values for C,.

THEOREM 4.5. Suppose ¢ is analytic in D with (D) < D and suppose ¢ has
Denjoy-Wolff point a with @’(a)< 1. If '(a)¥/? < |A] < @'(a)~*2, then A is an eigen-
value of C, of infinite multiplicity.

Proof. For —1/2 < r <1/2, the function go(2) =+ (1 4 z)"(1 — z)~"is in H>
For f real, the function
F(z) = exp((r +1f) Logl(} +2)(1 - 2)77))
is also in H? since e~'8l"2|g (z)| < |F(z)| < e!8ln2|g,(2)|. Since ¢ is analytic in D
and o(D) < D, it also defines a bounded composition operator on H? so that
Foo is in H2
It is easy to check that

Co(Foo)=: Fogop = Fo®oo =exp(—(r+ if)Logp'(a))F - 0.

Now, for any A with
@'(@)'? < 1] < ¢'(a)~3,

there are infinitely many r + if8 with A = exp(--(r -+ if) Log ¢'(a)), so X is an eigen~
value of C, of infinite multiplicity. Z

Under a somewhat stronger hypothesis, we can get a sharper result. Compa-
rison with Theorem 3.8 suggests this is close to best possible: if there is a B-sequence
converging in a Stolz angle to the appropriate fixed point of ¢, then it is best pos-
sible. We note that if a is the Denjoy-Wolff point of ¢ and b is another fixed point,
then by Theorem 3.1 of [9], ¢'(6)~! < ¢@’'(a) so the annulus of eigenvalues in Theorem
4.6 is larger than that of Theorem 4.5.

THEOREM 4.6. Suppose ¢ is analytic in D with (D) < D and ¢’ is continuous
on D.

Suppose also that {ei%:|@(e'®)| = 1} = {a, by, by, ..., b}, where a is the
Denjoy-Wolff point of ¢, the points by, ..., b, are other fixed points of ¢, and
0@ < 1. If

max{@'(b;)~12: j=12,...,k} <]i < ¢'(a)72,

then 1 is an eigenvalue of C, of infinite multiplicity.
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Proof. Let ry = min{e'(b)) :j == 1,2, ..., k}, let s = ¢’(a), and let ¢ and
o be as above. Examining the proofs of Theorems 4.3 and 4.4 reveals that for each
g with |uj--1, there are infinitely many bounded analytic functions f , Wwith
fu © @ -= uf,. From this and Corollary 4.4, it is sufficient to show that each positive
number 4 with ry¥2 < 4 < 1 is an eigenvalue.

For such a A let x = logl/logs so that 4 ==s*. Now

(,}_:_‘L(‘P(Z)) )"( L -- @(o(2)) )": sx( _1;1(?)_)"

1+ a(e(2)) 1 -+ &(0(z)) 1 + a(2)
s0 we need only to show that(—]—~ 9(2)
1 + o(2)

) is in H?. In fact, we willshow

x k
< MII!bi—‘Zi—p

Jeol

RO N
l 1 4+ o(2)

where p < 1;2, and the latter function is in H2 (Theorem 3.8 of [8, page 87],
extended to cover several fixed points, shows 6(z) - —1 as z — b;.) Since o(z) - 1
as z > a and o(e®)] < 1 if {p(e?)| < 1, it suffices to conmsider the growth of
1 i~ a(2);~* as z approaches a single fixed point be {b,, ..., b,}.

Choose r so that rgV/? < r=1/2 < } = s* so that x(log s~Y)/log r < 1/2. Choose &
so that if b — zj < & then j'(b) — ¢'(2)| < ry — r, and so that if 0 < jb— €i <5
then 'p(e'%)i < 1. Let K=:{{:|b—-{| > 6 and { - @(w) for some w in D with
i — bi < 8}. Now K is a compact subset of D with the property that if z is in D
and |h — = < 9 then either |b — @(2)| < J or @(z)€ K, that is ¢,(z) € K for some
no 12, ... . Let &' sup{lb — (' :{e K}

If n is a positive integer so that ¢,(z) is in K, then o(¢,(z)) : : D,(6(z)) and,
since @ is univalent, o(z) = @_,(6(@,(2))) € P_,(6(K)). Since 6(K) is a compact
subset of D, this means i1 - 6(z)' "' < M, s~" where M, is some constant. We will
¢stimate the integer # for which ¢,(z) is in K.

If b~ z. < 0, then

1
b —o(2) = 'Srp’(tb + (1 -02)(b—z)det| =

O
1

|
S '(p’(b) - Sw’(b) bt (1 —z)dt! >

i
V]

2 |b— z|(¢'(6) — (ro — 1)) = rib — zl.
Similarly, if (b - ¢(2)] < & then

b — @(e(2) | 2 rlb — o(z)] > r*ib — zi.



COMPOSITION OPERATORS ON H? 97

Thus, if » is the least integer so that |b —- ¢,(z)| > &, which is the least integer

with ¢,(z) in K, we have &' = |b — ¢,(2)| = r*|b — z|. Rewriting this, we find
n < log(6'|b — z|~Y/logr.
Finally

1 — a(2)
‘ 1 4+ 0(2)

X

S 21+ 0(2)|7* < Mps™"* = Myexp(nxlogs—1) <

< M, exp(x logs~—1log(d'[b — z|~Y/logr) =
=M3|b . Zl—xlog s=1flogr

where M, and M; are constants. Since xlogs—%/logr < 1/2 and b was an arbitrary

element of {b,, ..., b}, this completes t1e proof. %

We may extend this result somewtat. If ¢ has Denjoy-Wolfl point g in éD
with ¢’(a) < 1, for some 6 > 0, we have ¢' continuous on {z: |z —a| < § and
[z} < 1} and the set {¢(z): z€ D and |z —- a| > J} is contained in a compact subset
of D then 4 is an eigenvalue of infinite multiplicity whenever 0<|4| < ¢’(a)~%/2. This
follows because in this case (_l:a_(zj)_)"is bounded for all x > §.

1+ 0(2)

Combining Theorem 4.6 and Corollary 3.6 we are able to determine the spec-

trum of a class of composition operators.

THEOREM 4.7. Suppose @ is analytic in D with (D) = D and has Denjoy-Wolff
point a in 0D with ¢'(a) < 1. If there is some positive integer N so that @) is conti-

nuous on D, the set {e®: |on(e®)) = 1} = {a, by, ..., b} where byb,, ..., b, are
Jfixed points of oy and @y is analytic it a neighborhood of each b; then o(C,) = {A:
A< ¢'(a)=112}.

Proof. The function ¢, satisfies the hypotheses of both Corollary 3.5 and
Theorem 4.6. Thus 6(C,,) intersects the circle of radius p centered at the origin for
0 < p < maxey(b;)~¥% and maxep(b;)~%< p < op(a)~V2 = @'(a)~ N2

Since Cq,N = CJ, the spectral rhappi:ng theorem implies o(C,) intersects every
circle of radius p centered at the origin with 0 < p < @’(a)~V2 But Theorem 4.3
implies the spectrum is radially symmetric, so ¢(C,) = {4 :|4| < ¢'(a)~¥3}.

COROLLARY 4.8. Suppose ¢, not a finite Blaschke product, is analytic in a neigh-

borhood of D and has ¢(D) < D. If the Denjoy-Wolff point a of ¢ is in 0D and
@'(a) < 1, then

a(Co) = {A: 1Al < ¢'(a)*2}.

7—2484
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Proof. Since ¢ is analytic in a neighborhood of D and not a finite Blaschke
product, {e!:|p(e')| = 1} is finite. For some N, it follows that {ei: '¢y(e!)] =- 1}
consists entirely of fixed points of ¢y, so Theorem 4.7 applies. %

In the next section, we will determine the spectrum of C,, for ¢ an inner func-
tion and we will find the hypothesis “¢ not a finite Blaschke product” can be replaced
by “¢ not a Mobius transformation of D onto D.”” In the latter case, the spectrum
was determined by Nordgren [21, page 448], so ¢(C,) is known for all ¢ analytic
in the closed disk with |a] = 1 and ¢'(a) < 1.

When ¢'(a) --: 1, the situation is much more difficuit: indeed, there are two
distinct cases that can best be distinguished by the kind of intertwinning relation ¢
satisfies. In one case (case 4 of {8, page 80]), there is ¢ analytic in D with ¢(D) < D
sothat oo - = 0 o @ where ¢(z) = [(1 4- 2i)z — 1][z — 1 <4 2i]~* and in the other
case (case 2 of [8, page 80]), there is ¢ analytic in D so that cop =¢ -4 1 and

[=e]
U (D) -~ n) -= C. Ingeneral the best we cansay about ¢(C,) is the result
B -— OO
of Theorem 2.1, thate(C,)c D. In Section 6, we will give examples for which the
inclusion is proper. The following proposition provides a (not necessarily practical)
procedure for distinguishing the cases. In case 4 of [8, page 80], we can say more
about o(C,).
PrOPOSITION 4.9. Let ¢, analytic in D with ¢(D) < D, have Denjoy-Wolff
point a in éD with ¢’ (@) = 1. Then the following are equivalent.
(i) ¢ is in case 4 of [8, page 80].
(ii) every F-sequence for ¢ is an interpolating sequence.
iii) mf{:——z-’-———z#'l—l : k=0,1,2, } > 0 for some F-sequence of ¢.
! 1 _Z{:ZI:-H. !

Proof. (1) = (ii). If ¢ is in case 4 then P o ¢ = 0 o ¢ where and @ and ¢ arc as

. 2, !
above. An easy computation gives @,(z) = [( 12 Tl-l) z— 1][2 — 1 3»1] .
n

=1) o0
We claim {£,(0)}%,, = {( 1— %—1) }. is an interpolating sequence. We verify

the Carleson conditon: {w,} is interpolating if and only if I %’5 “Nissso0
kei b — ;!
for each k, [16, page 196]. Now
2\ AREE
— L —{1-=
(1 k‘) ( j‘)_ _tk—pr 4
1o 1-—--2-1')—1(1 -;-35)_1 44k — j)? 4 4 th — j)
k j
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Thus for each k, the product is

[ - =) = (1)

which is positive since
,,go 4 4-n?
For any w, in D, {®,(w,)}Zc is the image under a Mgbius transformation

< o0

2 ™ Zpy

of {®,(0)}Ze, so it also is an interpolating sequence. We conclude that any
F-sequence of ¢ is interpolating by the samne reasoning as in Proposition 4.2.
(ii) = (iii) This is an easy consequence of the Carleson condition since
inf > infdyp| 2% }

{ 1 — 2244 } {1!:#1] 1 —zz;

(iii) = (i) Either ¢ in is case 4 or case 2, so we will show that (iii) cannot
happen when ¢ is in case 2. Suppose ¢ is in case 2 with ¢, @ = C, and V as
in [8, page 80] that is ¢ is analytic in D with 6o =0 4 1. Let {z} be an
F-sequence for ¢ and 6 > 0. Since o(V) is a fundamental set for &(w) = w -+ 1
on C (sce [8, page 70]), we can find n large enough that o(D) includes a
schlicht disk with center o(z,) and radius 2/5. Now define f:D—-D by
(W) = 6=4267*w 4 a(z,)). Since 0(z,4,) = a(¢(z,)) =0(z,) + 1, we have, by
J(C) — f(5/2)

Pick’s inequality, ' 2 Zf“ = — 2| < §/2 < 4.
‘ = ZuZp41 | 1 - f(0)f(5/2) ’
But ¢ was arbitrary, so inf —1—”———% == 0 which contradicts (iii).
= ZnZyt2

THEOREM 4.10. Let ¢, analytic in D with ¢(D) < D, have Denjoy-Wolff
point a in OD with ¢'(a) = 1. If there is an F-sequence {z,} for ¢ for which

inf{ :k=0,1,2,...}>0, then each A with |Al=1 is an

eigenvalue of C, of infinite multiplicity.

2y = Zg41

1 — 22

Proof. By Proposition 4.9, ¢ is in case 2 of [8, page 80]. Suppose ¢ is analytic
in D with 6(D) c D and ®oo =0 where (say) @&(z) =[(1 + 2i)z— 1] X
X[z—14-2i] -1 (the case with — is similar). Let f(z)==exp (—68(c(z)+1)(c(z)—1)"1).
One can easily verify that | f(z)| < 1 for a1l zin D, so fis in H* and, using the commu-
tation relation @ o ¢ = 00 @, we find f(¢@(z)) = ei¥f{(z), so f is an eigenvector with
eigenvalue €',

Using the properties of ¥V from Theorem 3.2 of [8, page 78], it is not difficult
to show that the cigenfunction f constructed above is never bounded below. We
are therefore unable to get similarity results by the technique used in the proof of
Theorem 4.3, although scme results 2long these lines carry over. For example, if A
is an cigenvalue of C,, then ¢} is an cigenvelue of C, of infinite multiplicity: mul-
tiply the eigenfunction by the appropriate bounded eigenfunctions found above.
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5. THE SPECTRUM OF C,: INNER FUNCTIONS

In [21], Nordgren showed that if ¢ is an inner function and has Denjoy-
-Wolff point in D, then C|, is similar to an isometry and he found the Wold decom-
position for the isometry. In particular, in this case, ¢(C,) =: D when ¢ is not a
Mobius transformation, and ¢(C,) == {Zp_’(&-)—"? when ¢ is a Mobius transformation.
When ¢ is a M&bius transformation with Denjoy-Wolff point g in éD, he showed
o(C,) = {4 1 '(@)'? < jA| < ¢'(a)~V2}. On the other hand, Nordgren did not treat
the case ¢ a non-Mobius inner function with (@’ == 1. In this section, we will con-
sider this case.

THEOREM 5.1. Let ¢ be an inner function, itot a Mébius transformation, with
Denjoy-Wolff point a in 0D. If |4, < ¢'(a)*?, then A is an eigenvalue of C% of infi=
nite multiplicity.

Proof. We will show that if |1 = r < ¢'(@)"/%, then C, — 1 is left invertible
but not Fredholm. Thus C§ — A is right invertible, but not Fredholm, which means 2

is an eigenvalue of C¥ of infinite multiplicity.
In the proof of Theorem 2.1, we saw

4 —.J‘Pn(ﬂ)"z".

(@) = lim (
1+ |@a(0)]

R0

i ‘(a2 [—lg,(0)\ "
Since r < ¢’(a)/®, we may choose n large enough that r < | ~—"—%>

1 — [@.(0)] )1/2 . L+ 10, (O)

1 + lo,(0)
Now ¢, is an inner function and for all f in H?,

that is, that " < (

1—|(Pn(0)| e e = ||C”?
(Toraar) Wl <icq fi=1c

(see [21, pages 443, 444]). Let P be the orthogonal projection onto R == range C7
and let A4 be the inverse of C; on R, that is, AC2 = I and C3A = I. The above

. | 1 4+ @, (0)] \* : - ink ;
estimate shows |!|AP)|<||4|| < 1————|—(07 so the series Ly = '}, rie™0(4P)*+1
= 194 k=0

converges absolutely for each real 6.
It is easily checked that L, is a left inverse of C, — r"¢i". On the other hand, if
v is in ker P, which is infinite dimensional since C,, is left invertible but not Fredholm,
then Lyv == 0, so Cj — r"" is not Fredholm. Thus ¢,(C?) includes the circle |uj- ="
Since

n
II (C. — rei(0+2nkn 1)) = C% — rneind,
k=1
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the operator L, :- L,,"II‘ (C, — rei0+2kn ) is a left inverse for C, — reif. Since
k=1
0.(C) includes the circle of radius r”, the spectral mapping theorem implies o.(C,)
intersects the circle of radius r. If ¢,(C,) did not include this circle, there would
be A, on the boundary of ¢ (C,) with |4,| = r. This would mean, as 2 approaches 4,
with [1] = r, that [(C,, — )=, ~ oo. But [[Zg]l < AII(1 — rflA]) (| C,ll + r)'~?
for all real 0. Thus, the boundary of ¢.(C,) does not intersect the circle |4 = r,
and ¢ (C,) includes it. We conclude that C, — re is left invertible but not Fredholm
for 0 < 0 < 2m as was to be proved. 2

COROLLARY 5.2. Let ¢ be an inner function, not a Mdébius transformation, with
Denjoy-Wolff point a in 0D. Then o(C,) == 6 (C,) = {4 : |2] < ¢'(a)~%}.

Proof. We have shown {1 : || < ¢'(@)'?} is a set of eigenvalues of infinite
multiplicity for C} and (Theorem 4.5) {1 : ¢'(a)"/* < || < ¢’(a)~*/} is a set of eigen-
values of infinite multiplicity of C, (when ¢’(¢) < 1). Since (Theorem 2.1) o(C,) <
< {4 1Al < ¢'(@)~"2} the result follows. %

We have found enough about the sets of eigenvalues of C, and C? to find
a(C,), but we have not found these sets exactly. In some cases, we can say more.
For example, if ¢'(a) = 1 and ¢ is in case 4 of [8, page 80] (as all parabolic M&bius
transformations mapping D onto D are) then the point spectrum of C,, includes the
unit circle (Theorem 4.10). If ¢’(a) = 1 and ¢ is in case 2 of [8, page 80], for example
Q(2) = (_Z{—.IB

1 1/32z
It seems likely, in this case, that the constant functions are the only eigenfunctions.

If ¢ is a finite Blaschke product, |[a| = 1 and ¢'(a) < 1, then 4 is not an eigen-
value of C, if [}] < @’(a)/2. Let @ and ¢ be as in (case 3) of Theorem 3.2 of [8,
page 78 and 80]. Theorem 3.7 of [8, page 86] states that ¢ is an inner function, and
Lemma 4.1 of [8, page 88] implies that fo ¢ := Af if and only if Fo @ = LF where
f=:Foo. Since ¢ is a Mobius transformation with @(1) == 1 and @'(1) = ¢’(a),
we have

) , then we have no information about the eigenvalues of C, .

0(Co) == {4: ¢'(al* < |2 < ¢'(a) "),
so A is not an eigenvalue of C,,. But, Theorem 3.2 of [28, page 262] says that, since o

is an inner function, fe€ H? if and only if Fe H? so 4 is not an eigenvalue of C,
either.

6. SOME EXAMPLES

In this section we look at some examples that illustrate the richness of o(C,)
when ¢'(a) = 1. In particular, we will answer Kamowitz’ question “If |a| = I

and ¢'(a) == 1, does a(C,) = D?” by giving an example for which the spectrum is
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the interval [0,1]. All of these examples belong to holomorphic semigroups, and this
fact is the basis for computing the spectrum.
Given 6 with 0 < 8 < =, let G be the domain G = {{ : jarg{! < 0}, and let ¢
be the map o(z) — (l ki
— Z
Let ©(G) - G if 6 < n/2 and 7(G) = {t: Jargt! < = — 6} if 0 > 7/2 so that, in
either case, { 4 1€ G whenever { € G and ¢ € 1(G). Now, for ¢ € 1(G), define ¢, by
¢ (2) = 6-Yo(2) + t) so that ¢, is analytic in D with ¢,(D) < D. The function ¢,
has Denjoy-Wolff point 1 with ¢;(1) = 1. We will write C, for the composition
operator CW. In the case 0 = n/2 (so G is a half plane) ¢ ,(2) = [t=-(2—1)z] X
X[(2 -+ 1) — tz]7* for Ret > 0. In the case § = =/4, we find

20/x
) which is a conformal map of D onto G.

P 2) =2+ 201 — 28 + (2 — )2 + 1) + 2)[1 — 2° — ¢22]t

for |argt| < m/4.
The following result will sometimes allow us to identify the spectrum of C,.
The idea for its proof was suggested to the author by R. P. Kaufman.

THEOREM 6.1. Let 0, G, 1(G), and C, be as above. Then ¢(C,) < {e~8*: jargff; <
< nf2 — 01} u {0} for all t in ©(G).

Proof. The set {C,: t € ©(G)} is a holomorphic semigroup of operators. Indeed,
by Theorem 3.10.1 of [15, page 93], it is sufficient to check that ¢t — <(C,(f), K,»
is holomorphic in 7(G) for each f in H? and each « in [D. But, {C/(f), K,) ==
=-f(6~Y(a(x) + ¢t)) which is holomorphic in't because 6—* and f are holomorphic. In
particular, ¢ — C, is continuous and holomorphic in the norm topology for 7 in
(G).

Let A be the norm closed algebra of operators generated by {I}U
U {C,: te t(G)}. Thus A is a commutative Banach algebra with identity and the
Gelfand theory applies: the spectrum of C, as an element of U, denoted o, (C,),
is the set {A(C,): A is a multiplicative linear functional on U}.

For A a multiplicative linear functional on U, let i(t) = A(C,) for te ©(G).
Since A is norm continuous ([|4}] = 1) and C, is a norm-holomorphic semigroup,
we see that A(?) is a holomorphic function on 7(G) such that

My + 1) = A(Ct1+t2) = A(C,l) A(Crc) = At)A(t).

But this means, either A(z) = 0 or A(¢) = e~#* for some complex number f. In
addition, we see that for every ¢ in 7(G), we have

le=f*| = lim [e~#"|1" = lim |A(CF)[¥" <
R0 n—+20

< lim || Gy = 1)~ = 1.
n—oo
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(We used Theorem 2.1 and the fact ||A|| == 1). The definition of 7(G) and this ine-
quality imply |argf| < [=/2 — 4|.
Putting all our information together, we have
0(Cy) < a(C,) = {A(C)): Ais a multplicative linear functional on Al

< {e~F*: |argB| < |n/2 — 6]} u {0}
as was to be proved.

COROLLARY 6.2. Suppose 0<0 < n/2 and G, 1(G), and C, are as above. Then

o(C) = {e=?: largf] < w2 — 0} U {0}
SJor all t in 1(G).

Proof. When largB| < n/2 — 8, the real part of fo(z) is positive, so f(z) =
= exp(— fo(z)) is in H®. Since f(¢(2)) = exp(—fo(z) — Bt) = e~ f(z), we see
that e~#* is an eigenvalue of C,, s0 6(C,) > {e~#: |arg | < =/2 — §}. Theorem 6.1
and the fact that ¢(C,) is closed yield the conclusion. %

When 6 = n/2, each of these sets is a logarithmic spiral from 1 to 0. In parti-
cular, we find ¢(C,) = [0,1] for ¢(z) = (2 — z)~* (this is the case ¢ = 2).
When 0 = n/4 and ¢ = 1, that is,

P =1 +z+2)1 =A@ —z+2/1—25)4

we find o(C,) is the heart shaped regicn {e¢~#: |arg f| < =/4} u {0}.

When 7/2 < 6 < 7, Theorem 6.1 gives a hint as to what the spectrum might
be, but there are no obvious eigenvalues, so we are unable to go further.

The techniques in this section depend heavily on the special semi-group pro-
perties of the operators. While these are indeed quite rare, the situation might not
be completely hopeless: Section 5 of [8] shows that if ¢ is analyticin D with ¢(D)cD
and ¢’'(a) # 0, then for each z in D, there is a positive number ¢, so that ¢ (z) is
defined for all ¢+ > ¢, and the dependence is holomorphic in z, real analytic in z in
an appropriate open set. It remains to be seen whether these partial semi-groups
can help in finding o(C,).

7. QUESTIONS AND CONJECTURES

The results (and omissions) of this paper suggest several questions for further
study. Among the non-compact composition operators, we have the best understand-
ing of C, when ¢ has Denjoy-Wolff point: ¢ in dD and ¢’(e) < 1. The weighted
shift analogy is strongest in this case: indeed for every o in D, the kernel K, belongs
to an invariant subspace on which C} acts like a weighted shift. Since the K|, are a
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determining set for H?, C¥ is apparently “put together” only from weighted shifts.
Can this analogy be made precise? 1s C; similar to a direct sum (or integral) of
weighted shifts?

Much remains mysterious about C,, when the Denjoy-Wolff point of ¢ is in D,
but the following conjecture seems reasonable.

CONJECTURE L. If @(z) == bz -3+ . .. is analytic in D with (D) ¢ D(and b < 1)
then there is a number B so that C o~ 4 is left invertible for (7} < B and o,(C,)
= {4 1\ < B}, In particular, if {€¥: (e = -1} is a set of fixed points of ¢. then
B sup {@'(e')~V2 : p(el?) - : €],

It might even be the case that C,, is essentially similar to pC, for p 1.

The situation in case the Denjoy-Wolff point @ has ‘@, - | and ¢'(a) 1 is
even more intractable, partly because it disguises two cases. Nevertheless, the fol-
lowing conjectures seem plausible (although evidence for the last is small).

CONIECTURE 2. If ¢ satisfies the hypotheses of Theorem 4.10, then a(C,):

0(C,) - = D and the point spectrum of C,, is an annulus or the unit circle.

(Tn fact. there is some reason to believe that either the point spectrum of C,

1s 0D or it is D\{O} and that the latter case is impossible if ¢ has a B-sequence.)

CONJECTURE 3. If @ is an inner function and is in case 2 of [8, page 80] theu the
only cigenfunctions of C, are the constants.

CONJECTURE 4. If ¢ is analytic in D with (D) < D and is in case 2 of [8, page
801, then for some 0y, 0, with -~ =/2 < 0, < 0, < =f2 we have

o(C,) - {e78:0, < argf < 0.} U {0}.

The most glaring omission in this paper is illustrated by the gap in Theorem 4.7
and Corollary 5.2: the gap between assuming '@(ei®) | < 1 a.e. and assuming
p(e'), - 1 a.e.. Many of our results indicate that the structure of C,, depends prin-
cipally on the boundary behaviour of ¢, but we have not treated the case when both
{e: jp(ei?) < 1} and {e¥ : p(e®)] =< 1} are large.

One would expect that assuming ¢ to be univalent would make all questions
concerning C,, easier to answer. Considering C, for univalent ¢ would be especially
helpful if some non-trivial relations could be found between C, and C,C,, when ¢
is univalent.

As we can see, there is much to be learned about this rich and interesting class
of operators.

Research supported in part by NSF grant MCS-—7902018.
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