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A BEURLING-LAX THEOREM FOR THE LIE GROUP U(m, n)
WHICH CONTAINS MOST CLASSICAL
INTERPOLATION THEORY

JOSEPH A. BALL anc¢. J. WILLIAM HELTON

INTRODUCTION

In this article we generalize the farnous theorem of Beurling, Lax, and Halmos
from the Hilbert space H2Z(C") to a space with a signed Hermitian form. Our proof
is an adaptation of Halmos’ wandering subspace proof of the theorem {14] and of
McEnnis’ analysis of shifts on a space with an indefinite metric [23]. Our Beurling-Lax
theorem for the Lie group U(m, n) (as opposed to the classical one where Un) =
== U(n, 0)) has very strong consequences for Nevanlinna-Pick, Carathéodory-Fejér,
etc. interpolation theory. We obtain directly from our theory a simple linear frac-
tional parameterization of all solutions in ZH*(M,, ,) or BH?(M,, ,) of the most
general interpolation problem for a finite number of points and strong results for
infinitely many points. Moreover we obtain a test to determine if any solution to a
particular interpolation problem exists. Finally in the last section we apply an ex-
tended form of our Beurling-Lax theorem to the setting of the Sz.-Nagy—Foias com-
mutant lifting theorem.

Here #HP(M,,, ) denotes the closed unit ball of m X matrix valued functions
on the unit circle with meromorphic continuations onto the unit disk with at most /
poles there; multiplicity must be counted carefully — see [16]. As usual U(m, n)
denotes the group of (m - n) X (m -+ n) matrices g which leave the form

X ®» X ® Y n,n = {5 XD — 9 V)

(x@yeC"", xeC" yeC", where {-,.) is the usual Euclidean inner
product) invariant.

The linear fractional parameterization and the test for existence was obtained
for I == 0 or for m = n = 1 by Adamjan, Arov and Krein [1], [2]. The test for exis-
tence was obtained in general by Ball [5] and very refined results due to Arsene,
Ceaugescu and Foiag [3] when / = 0 are also available. Also Nudelman has recently
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obtained such results [27], see also [26). Fuither strong results aie also due to
T. S. Ivanchenko [19], [20]. S. V. Kung obtained a set of solutions to the gencral
{,m - n problem in [30]. However the theorem in this paper is appealing not only
because of its generality but also because of the relative simplicity of the proof.
This simplicity permits many easy applications [7] and suggests many extensions
[8], [9]. The subsequent article [7] uses this method to obtain the Wiener-Hopl fac-
torization of a (not positive) self-adjoint matrix function (due to Nikolaicuk and
Spitkovskii), Potopov's symplectic inner-outer factorization, and Darlington’s theo-
rem. While in this article and in [7] we have refrained from the great generality
needed in our treatise [10] on the mathematics of amplifier design, these methods
generalize trivially to that case and the authors think of the U(m, n) Beurling-Lax
theorem as a single result from which most of the tools developed in [10] follow.
In a completely different vein the forthcoming articles [8], [9] deal with the clas-
sical Lie groups (other than U(m, n)). We prove a Beurling-Lax theorem for them
and give applications to mathematics and to theoretical engineering.

The results of this paper were announced in {6]). The authors are grateful to
P. DeWilde for encouragement regarding the engineering value of a compicte
theory of shift invariant subspaces of L2(C™) with signed bilinear form. Such spaces
arose in his studies of Darlington synthesis for multiports.

1. PRELIMINARIES ON INDEFINITE INNER PRODUCT SPACES

We begin with some preliminaries on indefinite inner product spaces. A com-
prehensive reference for indefinite inner product spaces is Bognar’s book [11}, but
we shall depart slightly from his notation and terminology. We shall be working
with complex vector spaces .#° having a Hermitian bilinear form, denoted b [, ]
or [, 1. which induces an inner product on .#~ which is not necessarily positive-defi-
rite. If in addition 4 can be written as a direct sum # :-. %, - . # _ where
(r.,<, )X';_) and (7 _, {, )1,_) are Hilbert spaces, and the inner product on .#°
has the form

[-\-a .}] Pl <X+ B )'+>Ji’? - <x— 5 Y->x_
where x oo xy 3 X_, v =y, Fv_ (X, Ve €H L, x_,y_e A ), then# issaid to

be a Krein space. Given a Krein space & = %, -- % _, it is also a Hilbert space
in the inner product

CHDEERE NS U P i sk C S U )

If P, : x - x_ is the projection of ¢ onto# , along.# _and P_ =: [ P, :x>Xx..
is the projection onto ¢ _ along 4", , then J == P, — P_ is said to be a fundamental
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symmetry for A", and the above Hilbert space inner product can also be written as

Yy =Wxy (=Lx, y),)
with norm

lxll = [Jx, x]

(or simply ||x|[? if the choice of J is understood). While the associated Hilbert space
norm || ||, depends on the choice of fundamental symmetry J, the induced norm
topology is independent of J, and thus intrinsic to (&, [, ]).

Certain general geometrical properties which we now discuss arise in the
context of any Krein space . If (,) is a Hermitian form on %", two vectors x
and y are said to be ( , )-orthogonal if (x, y) = 0. If .4 and 4" are two subspaces of £~
such that # n A = {0}, # + & is closed and [x, y] = O for all x in .# and y in
N, we write 4 [} N for M + A ; if # and A are closed subspaces with {(x, y),;=0
for xe ./ and ye N, we write #4 @, N for 4/ -+ A4 . Any subspace .# has a closed
[, Jorthogonal complement

M= {x:[x, y] =0 for all y in 4};

the {, ),-orthogonal complement of ./# is denoted
ML = {x:{x, y); =0 for all ye 4}

or sometimes simply .4+ if the Jis understood. Note that the [, J-orthogonal comple-
ment ¢ of a Krein space & is {0}; however, a subspace .# and the restriction of
{, ] toitneed not have this property. The subspace ./ is called nondegenerate if no x
in # is [, -orthogonal to .# (i.e., # n .#' = {0}), and regular if there is no sequence
{x,} = .4 such that

timsup 122 A _ g
n—o0 yc M ”xn“ ”y“

Equivalently ./ is nondegenerate if and only if # 4 .#’ is dense in ¢, and is regular
if and only if in addition .4 + .#’ is closed (and thus 4" = .# {2 .4'). It is an easy
corollary of [11], Theorem V.3.5 that .#’ is regular (in our terminology) if and only
if .# is regular. Also .# is regular if and only if the restriction of the Hermitian
form [,] of o to.# makes ./ a Krein space in its own right. If .# is merely nonde-
generate, at best one can only decompose # as A = ./, + 4 _ where the
restriction of [,] to .#, and of —[,] to .#_ respectively make ./#, and .#_
pre-Hilbert spaces.

We say that the subspace .# of a Krein space " is pseudo-regular if 4 + M’
is closed. For an arbitrary subspace .4, it is always the case that .# -+ .#’ is dense in
(A n A" ; thus 4 is pseudo-regular if and only if we have the equality .4 + #' =



110 JOSEPH A. BALL and J. WILLIAM HELTON

= (& n.#"). Clearly .# is pseudo-regular if and only if .4’ is pseudo-regular.
Equivalently .# is pseudo-regular if and only if .# is of the form .# =.#, .7,
where . #, is a regular subspace of # and.#, == .#Z n.4' is a null subspace ([x, 3]: : 0
for all x and yin.#,). Thus in this case the form [, ] on # induces a Krein space
structure on the quotient space .#[(.# n.#").

A subspace .#/ of an indefinite inner product space (', [,]) is said to be posi-
tive provided [x, x] = 0 for each x in .#, strictly positive if in addition [x, x] ==
for some x in .# implies x = 0; by the Cauchy-Schwarz inequality, for positive sub-
spaces this is equivalent to the condition [x, y]==: 0 for all y in .# implies x: : Q.
A positive subspace is said to be maximal positive (with respect to ") or  -maximal
positive if it is not contained in any larger subspace of " which is also positive. The
term 5 -maximal strictly positive is defined similarly. We define the conditions
negative, strictly negative, .#/-maximal negative and #-maximal strictly negative
for a subspace .« analogously. By the negative signature of a subspace % of the
Krein space & we mean the dimension / (0 < / € oo) of any .#-maximal strictly
negative subspace of 7. It turns out that this dimension is independent of which
particular .#/-maximal strictly negative subspace one chooses, and thus negative
signature is well-defined; if .4/ is nondegenerate, this quantity is also the dimension
of any .//-maximal negative subspace. The negative cosignature of the negative sub-
space A is the codimension of 4 as a subspace of some maximal negative subspace
A"y of 57 ; this quantity also is well-defined, that is, is independent of the choice of
maximal negative subspace .4, containing 4.

The following general lemma is basic for our analysis of interpolation pro-
blems to come in § 3.

LemMA 1.1. Suppose 4 is a pseudo-regular subspace of . Then each .//-
-maximal negative subspace of .#/ has negative cosignature 1 equal to the negative
signature of Y.

Proof. The space & = .4/’ has a [, J-orthogonal decomposition
F=F,2Z_-WBZ

into a strictly positive subspace %, , a strictly negative subspace 4 _ and a null
snace Wy (== nZ’), where dim% _ is the negative signature of &. (If & is
pseudo-regular, Z . and & _ are Hilbert spacesinf, ] ahd —[, ] respectively; in gencral
they arc only pre-Hilbert spaces.) Suppose 4 is a .//-maximal negative subspace
(.7 & we claim that & + % _ is J-maximal negative. From this it follows that
any such .4 has codimension equal to dim# _ in 2 J/-maximal negative subspace,
and the lemma follows.

To prove that A 4+ % _ is maximal negative, we first observe that since ./ and
7. are cach negative and are [, J-orthogonal, clearly /" -+ & . is negative. To prove
A7 .. is maximal negative, we need only show that (& 4 &)Y = 4" n &’



A BEURLING-LAX THEOREM FOR U(m, n) 11t

=N"n(H + &) is positive. Since #° = 4, & splits as &' =N'NMH) + X
and thus

N O(M AL = (N ndl)+ %, .

Since A" is ./-maximal negative, 4™ 047 is positive. By orthogonality and the
positivity of &, it next follows that (4" n.%) 4 & . is positive, as claimed.

Finally, in the sequel we shall need the angle operator-graph correspondence
for negative and positive subspaces of a Krein space o', Suppose " = 4", H1 A
is a [, ]J-orthogonal decomposition of the Krein space ¢ into a maximal positive
subspace /., and a maximal negative subspace # _; then any maximal positive
subspace &, is of the form

Fo={xHTx|xex.}

for some operator T.:4 , — A _ which is a contraction when (", ,[,]) and
(7 _, —[,]) are considered as Hilbert spaces. The operator T, is said to be the angle
operator for &, (with respect to the decomposition ¢, FR o _ for &) and & .,
is said to be the graph of T, . Similarly, a maximal negative subspace & _ is of the
form

S ={T_-yBylyex_}

for a contraction operator T_:X4"_ — A ,.

2. REPRESENTATIONS OF SHIFT INVARIANT SUBSPACES

The most concrete instances of Krein spaces arise as follows. The vector
space C¥ naturally decomposes as

cChxCrpCt
where N = m + n; define the Hermitian form [, ], » on it by
[u, U]cm, n= <um ’ Um>cm - <un > vn>cn

if u=u,, ® u,and v = v,, @ v, where u,,, v,, € C*, u,, v,€ C*. Here {, ), denotes
the usual Euclidean inner product on C". The set of ([, Jom,, > [ > Jom,»)-iSOmetric
mappings will be denoted U(m,, n,; n1, n). Note U(m,, n,; m, n) is empty unless
m < m and », < n. In all this discussion, we may take any of the integers m, n,
my , n; to be +o00; one then interprets € as the Hilbert space ¢£2 in the obvious way.
With this concrete class of Krein spaces we associate a class of functional Krein
spaces as follows. Let L2(CV) be the Hilbert space of measurable CV-valued func-
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tions on the unit circle {|z| == 1} square-integrable in norm, and let H*(CY) be its
subspace

27
{fe L(CY) :S {(f(e#*), x) ei**dt == 0 for xe CV, k=1,2,... },
0

the usual Hardy space > ® CN. If n + m = N we can define a Hermitian form
on L¥(CN) and H¥CV) by

2n
1 it it
[f, g]Lﬁ(cm,n) = '2—71_ S [f(e )2 g(e )]cm,ndt
0
in addition to the usuval form

275
1 . .
Fem = 5 S ), 8E))end
V]
Frequently we suppress the subscripts L*(C™ ") and L*(C¥) on[,] and {, ). The
operator S: L¥(CN) — L*(CV) defined by

[Sf1(e") = & f(e")

is called the forward shift operator, or sometimes multiplication by e* (M,). Its

restriction to H*(CY) is also denoted by S. In any case it is an isometry in both the
indefinite L?*(C™")-inner product and the Hilbert space L*(CM) inner product.

We next describe the general notion of “phase function’ and “inner function”
appropriate for our Beurling-Lax theorem. First we call a measurable function &
on {|z|=1} with values in U(m,, ny; m, n),a( my, 5,; m, n) phase function; if in addi-
tion Z(¢**) is the boundary value a.e. of a function Z(z) analytic on the disk
{izi < 1}, we say that Z is an analytic (m,, ny; m, n)-phase. A full range subspace
of H*(CN) is one with the property that at some z, in the disk {|z] < 1}, we have
{f(zy) : fe .#}=CN. It is easy to check that if this happens at one z, then it happens
at all but an isolated set of z, (see [15]). We shall only be concerned with phase func-
tions Z such that Z(e¥)x is in L3 CM) for any x in CM:;thus any such = has

S!iE(e")H@(Cm’CN)dt < oo. Finally a closed subspace .# of L(CM)is said to be

simply invariant if it is invariant under S and kr'] S*4/ = {0}. For example every
>0

closed shift-invariant subspace .# of H2(CV) is simply invariant since (M}S* .# <

k>0
<= (M) SKH*(CN) = {0}. Our main theorem is:
L>0
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THEOREM 2.1. If # is a regular simply invariant subspace of L}(C™"), then
there are nonnegative integers m, < m and n; < n and an (my, n,; m, n)-phase func-

—

tion E such that

M = [E H®(C"r"™)]".
Moreover,
(1) E is analytic <« .4 < H¥C™")
(2) Suppose 4 < H*C™"). Then .4 is a full range invariant subspace <
< m =mard n, =n.

(3) Suppose # <= H*(C™*) and is full range. Then Z is a rational function <
< H¥C™"Yn A’ is finite dimensional.

Proof. The idea of the proof is to adapt Halmos’ wandering subspace argu-
ment for the proof of the Beurling-Lax theorem for the definite case [14], an idea
already used by McEnnis [23] for studying shifts in an indefinite metric. Set ¥=.4n
n (M ;A Since .# is regular, so is .%; furthermore, the spaces S¥.% =M i &
are mutually [, J-orthogonal, and by regularity, the [, ]-orthogonal decomposition

M= LHISLH .. .STP M S+ Yy

holds for all ¢ = 0,1, ... . Thus any vector [,]-orthogonal to all the spaces
SkLk=0,1,2,...)isin M S*.# = {0}; hence
k>0

M= \NLH SLH; ... (1157}
q»

is dense in /.

Now the [, J-inner product restricted to % makes & a Krein space (since &
is regular), and so .# has a fundamental decomposition

L=, ML

where %, is a positive subspace and .%°_ is negative. If m; = dim%, and n, =
= dim&_, we can use this decomposition to construct a ([, Jom, s [ » J)-unitary

—

operator £: C"™"™ — %. We then can extend Zin a unique fashion to the po-

My, thy,

Iynomials in H*(C™ ™) with range equal to .#, by demanding

] o= =
EM,, = SE.

By orthogonality, this extended operator is ([,]
If we define & (e) a.e. by

E(e!)x = (Ex) (e7), xeC™",

2 my s 1gacm, ny)-isometric.

then we see that Z is the operator M

iy Of multiplication by the matrix function Z(e¥).

8§ — 2484 9
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Since T is a ([, ]H“(C"'l’ my [, ]H”(c"" ,,))-xsometry, it follows in a standard way [25]

that the boundary values S(e*) are ([, ]C,,,P ny? [ 5 Jom, n)-isOmetric a.e., thatis Eis a

(my, ny; m, n)-phase. This then forces m, < m and n, < n. Since Z maps C"r ™ onto
£ < H¥C™"), it follows that the matrix entries of Z are square integrable, and
thus Z extends by continuity to H®(C™"). Since ZH(C™r ") contains .#,, we see
that [EH®(C™r "1)]” == 4.

Clearly £ is analytic if and only if .# < H*(C™"). Suppose .# < H¥(C™")
and is full range; that is {f(z,)|fe #} = C™" for some zy€ {|z; < 1}. Thus
Ran Z(z,) =: C"™" which forces m, 4+ n, > m +- n. Since it was previously shown
that m, <m and n, < n, we see that my=m and n,=n. Conversely if m,-~m and
#, = n, then there is a zy€ {{z| < 1} for which RanZ(z,) == C™" and thus .# is
full range. If .# < H*C™") is full range, then E is rational if and only if
Pﬂﬁ(cm.n) LETHYC™™") is finite-dimensional; it is not difficult to see that this is
equivalent to H*(C™")n .4/’ being finite dimensional.

Our next task is to obtain a useful representation for simply invariant sub-
spaces .4 of L3(C™") which are pseudo-regular. By an (my, ny, p;; m, n)-phase
Junction we shall mean a square-integrable M, , my+n 4, matrix-valued func-
tion Z(ei*) which is injective for a.e. f and such that

12E") (4 © v @ W), E(E) (4 © © ® Wgm,» = (U U _m, — (0, 0),  for ac. t
where

u @ v @ we le @ Cn1 @ Cp‘ Ele+nl-i-l71 .

(Necessarily my; + py < m and n, + p, < n.)
To set up notation we define a degenerate inner product [,]c,,,l',,l_,,1 on
.%. + 3
Chv""" 1 by u@ovdw,u®ov® Wlgmy, ny, 0y = {u, u)C,,,1 — (v, v)c,,l, and use

this to define a degenerate inner product [,] , ~~ on LY C™MTHy by
L3Cr Py

integration.)

THEOREM 2.2. Suppose ./ is a simply invariant pseudo-regular subspace of
LXC™ ™). Set N ==\f S/(M 0 M"). Then there is a (my, ny, py; m, n)-phase function &

j»0
(with my + p, < m, ny + p, < n) such that
MO AN = [EH®(C™ " P1)]™.
Aiso
1) E is analytic <> A < H}(C™"),
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il) if M4 < H¥C™") and HXC™")\n.4' is finite-dimensional, then E is uni-

formly bounded and # = EHX(C™r ™ P),

. Proof. Since .# is pseudo-regular and S is a bounded isometry, S.# is also
pseudo-regular, and thus S + (S4) = (S n (S4)Y = (S(# n.4")). Thus,
if we set & — .4 n (SA4)', then from this it follows that

2.1 L+ SM = M0 (S nA)).
In general we wish to establish the identity:
L+ SF+ ...+ 8L+ S =

(2.2), =40 [ \,/ Sk .///’)]l.

k=0

To prove (2.2);, we note

[ V S0 Jzz')]'= [ V' Sha 0 (skaty ]'=
k=0 k=0

= () [(Sk2) + (S5a0)]
k=0

(where we have used in the last step that S*.# is pseudo-regular for k =0,1, ..., ¢).
Thus (2.2), follows if we show

' g--1 7
2.3), V SK& + S = (Y {[A4 n (ShA)] + Sk

k=0 k=0
We know by (2.1) that (2.3), holds. Assume 1nduct1vely that (2.3), holds and we
wish to establish

q-1
V SKZ + S1P 4 S Y =
k=0

(2:3)g+1
(ﬂ {4 n (Sku)) + Sk} ) n {[# n (ST+34)] + ST+3}.

k=0
Using (2.3),, we see that this is the same as

~1
V SEL + SOF 4 S =

k=0

- ("\’/1 SkP + sw) n ([ N (STH1HY] + ST ).

k=20
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This in turn holds if
2.4)41 S = S [ n (SO+LY)).

Using the definition of & (==.# n (S.#)’) and that Sis a [, J-isometry, one can
casily check directly that (2.4),,, is true. This establishes (2.2)g+1, and hence (2.2),
for all . Letting ¢ tend to oo in (2.2),, one gets

(2.5) N A{L+SL+ ...+ 8L+ SU} =M 0N

q»0

In order to establish

(26) V Slcg — J/Zﬂ./VI,

k»0

it suffices to establish

(2.7 V2 = \{€L+8SL+ ...+ 8124 Sk

L»0 k>0

First note that the containment  in (2.7) is obvious. For the reverse containment,

we note that & is pseudo-regular and thus has a decomposition & =: &, 7%,

where Z, is a regular subspace and &, is & n.%’. Thus \ S¥.& is spanned by
k>0

Sk and \y S*Z,.Ifa vector x in.# n.A"" were simultaneously [ , }-orthogonal
E>0 k>0

to i+ $5, and , )-orthogonal to \/ S¥%,, then the decomposition (2.5) would
k>0 L»0
imply x € (M S*.# - - {0} (since .# is simply invariant). This implies (2.7) and hence
£>0
also (2.6).
We now use the representation (2.6) for .# n A" to construct the desired

—~

{my,ny,p,; m,n)-phase function E. We construct an (mi,, n;)-phase function Z;
such that

*”"{/1 = V Skgr — [51 -Hw(C"'l’ "1)]'

k>0

just as in the proof of Theorem 2.1. Also one can show A == \/ S%&,, and from the
k>0

decomposition (2.6), .#; + A is dense in .# n A”. Since A" ?s a closed simply inva-

riant subspace, by the usual Beurling-Lax theorem there is a phase function

YeH®(M,, ., pl) (isometric in the usual Euclidean metrics) such that 4"« - WH3(C"™).

To see that = := [=,¥] is the desired (m;, m, py; m, n)-phase function, it remains

only to show that Z is one-to-one. To see this, note that since Z(e*") is an isometry

from C™™'%1 jnto C™" in their respective indefinite metrics, the columns
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NG =1,....,m + n + p) of E(e¥) satisfy

1, 1<j=k

VAN

my
[gj(ei')7 (jk(e“)] m,n = _"1: ml < j = k < ml + n]_
C

0, otherwise.
S.uppose 5(e") f(e’) =0 a.e. for some f in H®(C ¥ *'"). Then
0= [§(e"), ZE) /)] 0 =
= &), &) 0,0 fiE™

where we have written Zf = Y, f,&,. Therefore f(e*)=0 a.e. for 1<j <my + n,,
>

so f hasthe form 0 @ 0 @ ffor an fir.. H°°(Cp1) and Zf = Y’f Now, since ¥
was the traditional Beurling-Lax representor for A4~ (and hence in particular is one-
-to-one), it follows that f , and thus also f; is 0.

Clearly, & is analytic if and only if .Z n A" < H¥C™") or 4 < H¥C™").
If 4 = H¥(C™") and H*C™")n ' is finite dimensional, then & = H2(C™") n
N .#', being finite-dimensional invariant subspace for the backward shift operator,
consists of uniformly bounded functions. Then since ¥ < & - SZ, so also does Z.
From this one can deduce that = is uniformly bounded in norm.

Some final remarks might help with the computation of Z. First we thank
Bruce Francis for pointing out that

ENL =M+ SN M.

Thus.A" =\ S.# n.’). This allows us to take any ¥ which maps H%(C"
k>0

onto .4 n #' (not just the Beurling-Lax ¥). Here p, = dim .# n .#’. While generi-
cally det ¥(z) %0 it may happen that det¥(z) = 0 for all z. In this case one modi-

fies ¥(z) to ¥y(z) by throwing out just enough columns of ¥ to make the remain-
ing ones linearly independent.

3. APPLICATIONS TO INTERPOLATION

In this section we describe the connection of Lemma 1.1 and Theorem 2.1

to generalized matrix interpolation problems. We first describe a specific class of
interpolation problems.
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a. THE GENERAL CONSTRUCTION

Let z == {z;}]L, U {z/}}; be points in the unit disk and p = {p;} V., U {pj}}¥,
and q = {q;}}", U {gj}}, be vectors in C™ and C" respectively. The problem of
interest is to describe the set

N-P(z,p,q) = {Fe BH>(M,,,,)| F(z)*p; =¢;, j=1, ..., N and
F(z)pj==qj, j=1,...,N'}.

Here ZH®(M ,, ,) is the set of all (m X n)-matrix valued functions with analytic con-
tinuation to the unit disk {|z| < 1} with ||Fjl,<1. Similarly #L®(M,, ) will denote
the set of (rn X #)-matrix valued L*-functions F with [{Fl, < 1. We include the pos-
sibility of m or n = oo; then C™ stands for a separable Hilbert space of dimension
m, M, , stands for the set of bounded linear operators from C" into C™. The classical
solution to the problem of determining if N-P(z, p, q) is non-empty for the case
N’ =0 is: There exists a function F in N-P(z, p, q) if and only if the matrix

(p;, Py — {4;» qk>_]

1 - ZjZk

A, p, qt = [

is positive-definite.

More generally, consider the class ZH{°(M,, ,) of functions F which have a
representation of the form F = GO-! where Ge ZH®(M,, ,) and 0 is a matrix
Blaschke product of degree at most /. Consider the problem of describing the larger
set

N-P(z,p,q) ={Fe #H*(M,,,,)| F(z)*p;=gq;, j=1,...,N and

Fz))pj =¢j, j=1,...,N'}.

(If F happens to have a pole at z;, interpret the condition F(z;)*p; = g; as G(z;)*p; ==
= 0(z;)%q where F == G- is the representation for F mentioned above. Similarly
one handles the condition F(zj)p; = g if F has a pole at z}.) The solution of the
existence problem (for the case N’=0), given by Ball {5] in this generality, is
N-P(z, p, q) is nonempty if and only if the associated Pick matrix A, p, q has at
most [ negative eigenvalues.

To begin our analysis, we write the set N-P,(z, p, q) in a different form, which
in turn will suggest a more general problem (that of ‘“generalized interpolation’
in the scnse of Sarason). For the sake of simplicity in the present discussion, we
assume that no point z; is the same as some point zj in the disk. Let H*(M,, ,) be
the class of (mXn)-matrix functions K analytic on the disk with boundary value
function K(e*) square-integrable in matrix operator norm; H}(M,, ,) then consists
of matrix functions K such that K¥ e H¥(M,, ,) for some inner ¥ in ZH*(M,, ,) of
degree at most /. Note that {f€ H{C™)|{p;, f(z})) =0 for j=1,...,N} isan
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invariant subspace for the shift operator S on H*(C™), and hence by the classical
Beurling-Lax theorem is of the form @H?(C™) for some matrix inner function
0e FH*®(M,). Similarly there is a ma'rix inner function ¢ € #H*(M,) such that

QHA(C") = {f e HNC") | {pj. f(z)) =0 for j=1,...,N'},
where @(e) = @(e~*)*. Then it is not difficult to see that
N'Pl(z’ P: q) = (FO + 6H12(Mm,n)¢) N '%Lw(Mm,n)

where F, is any function in H%*(M,, ,) which satisfies the interpolation conditions
Fy(z))*p;=g;forj=1, ..., N and F(zj)pj = gj for j= 1, ..., N'. The inner func-
tions 0 and ¢ arising from a set N-P,(z, p, q) in this way are very special; they are
rational and have only simple zeros. Allowing F, , 0 and ¢ to be L2-functions gives
a more general problem without an interpretation as an interpolation problem as
above. We say a function Q in BL2(M,, ,) is a phase function if its values Q(e'!)
are isometries a.e. . The general problem to be analyzed in this section is the following,

GENERALIZED INTERPOLATION PROBLEM. Describe the set
Cx,0.0(1) = (K + 0Hf(M,,,) ¢) n BL® (M, ,)

for any given Ke L*M,, ,) and phase functions § and zo in ZL*(M,, ;) and
BL*(M,) respectively.

Our approach is to make use of the angle operator-graph correspondence
between contraction operators and maximal negative subspaces of a Krein space
described in § 1 to obtain an equivalent more geometric version of the problem
Thus we consider the space L2(C™) @ @*d?(C*’) with the Krein space inner product
inherited from L?(C™"). Form the span.# of all subspaces which are graphs of mul-
tiplication operators with multiplier in X -+ 0H (M, )o:

K PR 0
M = My, 5= the closure of {[ I]qo*H (C¥)+ [0 ]Hz(c'«) }
Since the angle operators defining the spaces are multiplication operators, it is clear
that ./ is invariant under the shift operator S. The following is basic to our analysis.

LemMa 3.1. Let K be an element of L}(M, ), let 0 € BLY(M,, ) and
@ EBL®(M,) be phase functions, and se1 .4/ equal to Mg 4 , as above. The angle
operator-graph correspondence induces a one-to-one correspondence between Cg o (1)
and shift-invariant negative suspaces of 4 which have codimension of at most 1 as
a subspace of some L*(C™) @ ¢* HYC")-maximal negative subspace. In particular,
when ' = [LA(C™) @ o*(H*(C™")] 3.4 has negative signature I, these are the shift
invariant J4/-maximal negative subspaces of .

ks /
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Proof. Suppose F is in Cy g, ,(I). Then F has a representation
F=: K+ 0G¥1¢

where Ge H¥M,,,) and ¥ € #H®(M,) is a matrix Blaschke product of degree at
most I. Since G maps H*(C") into H%(C*) and ¢@¢* = I, this representation implies

[ f ](p*Y’H“(C") ..
By continuity,

Y = [f] ¢*VYHYNC") < .

Since || F|l,<1, the subspace ¥ is a negative subspace of L*C™) @ @*H*(C").
Since ¥ is a matrix Blaschke product of degree at most /, o *WH?(C") has codimen-
sion at most / as a subspace of ¢*H?(C"). Therefore ¥ has codimension at most /
ia some LYC™) @ o*H*(C")-maximal negative subspace. Clearly also % is shift
invariant.

Conversely, suppose ¥ is a shift invariant negative subspace of .# of codimen-
sion /in a L¥C") @ ¢*H?*(C")-maximal negative subspace. That ¢ is invariant and
‘has codimension / in a maximal negative subspace means

G = [ 1; ]q»wm(c")

where Fis in ZL*(M,, ,) and ¥ € H®(M,) is a matrix Blaschke product of degree /.
Since also ¥ < .#, we have for any he H®(C")

F . K7 . 0
“Wh = lim SHE [ ]h(‘l)
[ I ] ¢ q_m{[ I :afp 1 0 3

for some A® € H®(C") and 4@ e H2(C¥). From this we get ¢*%h =- lim0A{? and

q—00

then (F — K)@*Wh = lim 04{?. Thus (F — K)@*¥ = 0G where Ge H (M, ,), so
g—00

Fe K+ 0H*(M,,,,)¥ . Since ¥ has degree /, we conclude Fe K + 0H}(M, ,)¢.
Since from the above we also have j| Fl{,, < 1, we conclude that F is in Cg ;, ()
as desired. The uniqueness in the correspondence can be arranged by demanding
that G and ¥ are right coprime in the representation F = K +4- 0G¥ ~1¢.

Note that for any L*-function K and phases § and ¢, the associated invariant
subspace 4y 4 , is simply invariant. When .#/¢ 4 , is regular, Theorem 2.1 and
Lemma 3.1 can be combined directly to get information concerning the set
Ck,0,0(1). When .#% 4 , is only pseudo-regular, we first require the following.
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LemMMA 3.2. Suppose 4 is a pseudo-regular invariant subspace of L*(C™").
Set & equal to \| {S¥(M n My |k =0,1,...}. Then a subspace G of M is inva-
riant and A{-maximal negative if and only if ¥ < A NN and € is invariant and
(A 0 N')-maximal negative.

Proof. Suppose ¢ is invariant and .#/-maximal negative. Any ./#-maximal nega-
tive subspace must contain.# n.#'; since ¥ is also invariant, it follows that 4" < 4.
Since ¥ is a negative space and 4/ is a null space ([x, x] = 0 for xe"), this in
turn forces ¥ < A'; hence ¥ < 4 n A". Since ¥ is .//-maximal negative, a for-
tiori ¥ is (# n A")-maximal negative.

The converse direction does not require that ¢ be invariant. Thus, suppose
only that ¢ is (.# n A"')-maximal negative. Since (HZ N A )N (M N N') =N,
then ¥ o . Therefore if %, is a negative subspace of .# containing ¢ then 4, > A";
as in the first part of the proof, this forces ¢4, = .# n A", and thus %, = ¥ by
the maximality of ¢ in .# nA". Therefore ¢ is .#-maximal negative.

We are now ready to use our symplectic Beurling-Lax theorem to parameterize
the set of invariant ./Z-maximal negative subspaces for an invariant pseudo-regular
subspace .4 of H3*(C™").

" LEMMA 3.3. Suppose .4 is a simply invariant pseudo-regular subspace of

LXC™ ™). Then there is an (my, ny, p,; m, n)-phase function &= [oc B Ip] such
®x Yy O

that the invariant J4/-maximal negative subspaces ¥ of .# are precisely those of the

form

F 0!
a B ¥ 'y Py
4 = the closure of [ ] I O} (H®(CH@H™(CY)
Xy W
0 I

Jor some Fe .@H‘”(Mml’,,l). (Here my +py<m,ny +pr<n, my +ny+ pysm+n).
More generally, the invariant negative subspaces 4 of ./ with ./-negative cosig-
nature < I are exactly those of the form

F 0 -
G = [“ 2 ‘/’] I ol n(HXC™ @ H®C™)
X 7 @
0 I

where A" is an invariant subspace of Hz(C"‘)@HZ(Cp‘) of codimension at most I,

and F: PH,( o0

F is in %H;’:(Mml,,,l).

m.
A - H(C'Y) is a contractive multiplication operator. Thus
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Proof. We do only the case /;, = 0; the general case easily reduces to this. By

Theorem 2.2, there is an (my, 1, p,; m, n)-phase function £ = [a B 'ﬁ] such
X 7 o

that .7 n N = - {E.H®(C "™}~ where # =\ S n 4'). Suppose for the
k>0

moment that Z is bounded, so #ZnA" = E-H““’(Cm" £ p‘). Then multiplication
by Zis a metric-preserving isomorphism from H e #1y, with {, ) o 0 m

1 ch
to 4 nA"; 50 a (A n A')-maximal negative subspace ¢ has the form Z.7, where

J is amaximal negative subspace of H2(Cm1' ""'p’). Also since £ is a multiplication
operator, invariant subspaces of .# n A" correspond with invariant subspaces of

HY(C™ & p‘) in this way. Thus ¢ is invariant and (.4 n./”)-maximal negative
if and only if ¥ = Z2 for some invariant Hz(Cm" " p‘)-maximal negative sub-

space 5. But one easily checks that the invariant maximal negative subspaces of
F 0

H3(C" ™"ty are those of the form |7 0| (HXC™) @ HX(C™)) for some F in

VI §

:?)H°°(Cm" "‘). By Lemma 3.2, invariant .#-maximal negative subspaces are
{-# n A")-maximal negative. This proves the Lemma for the case where E is
bounded.

The proof for the general case involves the same ideas, but must be done with
more care. Given any invariant subspaces ¥ contained in .#=[Z. H°°(c"'1' "y P H1-,
one can argue that 4, = ¥n E.H‘”(le' ,,1.,,1) is dense in ¥. Then X, =E"1%,
is a negative submanifold of H 2(Cm1' "1y denote its closure in H 2(le'nl’pl) by

. We claim that & is an invariant maximal negative subspace of I-P(le "’ p‘).
Indeed, if & is not maximal negative, then there is a strictly larger negative
subspace & which is also invariant. By the classical Beurling-Lax theorem, we can
produce a bounded F whichis in # but notin . Then the closure of

{E-(2n H°°(Cm" ""p‘))} in H3(C™") is a negative subspace of H*(C™") which is
strictly larger than ¢, a contradiction. By a similar argument, one can show
conversely that a subspace ¢ of the form

@ = closure of {Z-(o n H®(C * "™ "))},

where J# is invariant and maximal negative in Hz(le'""pl), is invariant and
(- n A"')-maximal negative. Finally it is not difficult to see that a linear manifold
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Z is of the form & n H®(C * ") for some invariant maximal negative sub-
space A of H 2(Cm" "l'p‘) if and only if

F 0
Z=\1 ol (HxCH®H>C™)
0 I

for some F in Q?H“(M,,,v,,l). This completes the proof of the lemma.

To parameterize a set Cg g4, ,(I), by Lemma 3.1 it remains only to obtain a
parameterization of the angle operators corresponding to negative subspaces of
My 9, having a prescribed g, ,-negative cosignature. To do this we need to in-
troduce a certain linear fractional transformation associated with a (my , n; , py; m, n)-

« By

-phase function & = [
Xy @

]. Assume n, + p;, = n and let

it H¥(C") - HY(C™) @ {0} « H¥C ™)@ H¥C™) = HC")
and

J: H¥(C™)~ {0} @ HA(C™) < HA(C™) @ HY(C™) = HY(CY)

be the natural inclusion maps. Define a mapping ¥z from .@L“’(Mml',,l) into
BL(M,, ,) by

Go(F) = (aFi* + pi* + j*) (2 Fi* + yi* + oj*)~ ™

(We shall see below that (xFi* - yi* -+ ay*)~! always exists if H € ZL™(M, 1-"1)

and £ = [“ B 'Il] is a (my, ny, py; m, n)-phase function.) The maps % can
X 7 O

be used to parameterize the sets Cg 4 (/) as we now see.

THEOREM 3.4. Suppose K is in BH®(M, , and Oc BH®(M, k) and
@ e BH*(M,) are phase functions. In addition suppose the associated invariant sub-
space My o o is pseudo-regular, and let | be the regative signature of (Mg, g, ,). Then

o
there is an analytic (my,n,, p,; m, n)-phase function E = [ B d’] with ny =
®X 7 O

= p, = n, such that

CK.O‘ (p(l + 11) = egE(ﬂHlO:(Mm ))~

1My

Furthermore, if I' < I, then Cyg 4, ,(I') is empty. Moreover one can take E to be the
phase function associated with the invariant subspace Mg, o, , as in Theorem 2.2.
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Proof. By Lemma 3.1 we know that the angle operator-graph correspondence
sets up a one-to-one pairing between elements of Cy 4, ,(I’) and shift-invariant nega-
tive subspaces of .#y 4, , of codimension of most I’ in a maximal negative subspace
of L{C™" @@~ H*(C"). By Lemma 1.1, such subspaces of .#, 4, ,cannot existif
I"< 1, and for I’ >/ coincide with invariant negative subspaces of .#g , , of
#y, e, ,-ncgative cosignature at most /; = /' — /. By Lemma 3.3, such subspaces

L. . o o .
of My 4, exist in abundance for I’ >/; indeed if & = [ B ‘/’] is the
X 7 O
(my, ny, p;; m, n)-phase function associated with the invariant pseudo-regular
subspace .# 4., as in Theorem 2.2, then such subspaces are those of the form

F 0 -
] n
@ . [“ B V] I 0 n (H=C™ @ BoC ™)) ,
X Y O
o I

. . . g 14 . .
where J is an invariant subspace of H*(C*) @ H*(C?) of codimension at most

I;; since P}i“(c")o(o;'y[ therefore has codimension at most /; in H*C") & (0],

we must have that Fis in :»Z??HI";’(M,,,P,,I). Using the inclusion maps i and j defined

. . e Y .
above and identifying % as a subspace of H*(C* "*), we can rewrite the form
for % above as

wFi% 4+ 9i* + wj*

g - {[aw - Bit 4 l//j*]( 70 Hm(cnrwl)) }-'

For this negative subspace to have finite codimension in a maximal negative subspace
of H%(C™"), we necessarily have n, + py;=n and (xFi* + yi* 4+ wj*) (e¥) invertible
for a.e. ¢. The angle operator associated with this subspace clearly is

H = (aFi::: _i' ﬂi::: _%_ wjf)(uFl-Bt + .yi::: i‘ coj:tz)—l — gE(F)’

and is in #L®(M,, ,) since ¥ is a negative subspace. Putting all the pieces together,
we conclude that Cy o (I + ;) is the set @’E(QH;”(M,,,P ,,1)) as claimed.
1

For this result to be useful it is crucial to be able to compute the negative co-
signature of a space (., 4, ,)" directlyin terms of the given K€ H*(M,, ,) and phascs
9, 0. To do this let # be the subspace L3(C™) ©OH(C Y); if K is bounded we
simply define I'y ,(K)*: # — H*C") by I'y (K)*: f— P(p‘HB(C") K If K is
merely in L*M,, ,), use the same formula but insist as well that K%fe L} C").
Note that I'y(K) may be defined on all of ## (and thus be bounded by the closed
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graph theorem) even if K is unbounded. Then one easily checks that

4 == I g
(A, 0,0) = [Fe,q,(K*)]ﬂ

From this the next lemma follows almost immediately.

LemMa 3.5. The negative signature 1 of a subspace (Mg, o, ,) is the dimension
of the negative eigenspace of the vself-adjoint operator I — I'y (K)[, ,(K)*

on # = L¥C") © 0H 2(Cm‘). Moreover, My, ¢ , Is regular if and only if
I—"L g, oK)y o(K)*is invertible ; and pseudo-regular if and only if I—T'y, (K)T 4, ,(K)*
Jas closed range.

Thus Theorem 3.4 combined with Lemma 3.5 not only proves that Cy ,, (/')
is nonempty if I — Iy (K)Iy, ,(K)* has closed range and negative eigenspace of
dimension at most /', but also effectively parameterizes the set Cy 4(I’), once

« By

x Y w]'
Later we shall illustrate how one can compute Z for a simple example. First
we obtain the result on existence for the general case where %y , , may not be
pseudo-regular.

we have a procedure for computing the associated phase function & = [

THEOREM 3.6. Suppose K is in H¥(M,, ,) and 0 € L(M,, ;) and ¢ € L*(M,. )
are phase functions. Then Cy 4 (1) is nonempty if and only if the negative eigenspace
of 1 — Ty (K y (K)* has dimension at most I.

Proof. Lemmas 1.1 and 3.1 give necessity of the dimension / condition imme-
diately. If I — T, (K)Ty ,(K)* is invertible (or even if only it has closed range),
sufficiency follows from Theorem 3.4 and Lemma 3.5. To remove the invertibility
assumption, we use an approximation argument of the type used by Adamjan,
Arov and Krein [l], [2]. Suppose I — I'y ,(K); ,(K)* has negative eigenspace of
dimensjon at most / and is not invertible. Replace the L% C™.") inner product by

LXC™™), where for f @ g e LA(C™) @ L¥C") = L¥(C™"),

f@sfesl ., =0
)

(o)

LAC™) - <(1 + 8)g7 g>L2(C")-

I

With this new inner product, for ¢ > 0 sufficiently small, [ ﬂ:] M is regular

/]
-orthogonal complement %% ,

p I, N,
ey

with negative signature [, and its [,]
L

contains a negative invariant subspace ¢, of codimension /in a (L*(C™) @ ¢*H3*(C™)-

-maximal negative subspace. If we let ¥ bz any accumulation point of %, as £\,0,

then the angle operator of ¥ gives a functionin Cg 4 ,(I).
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In applications it is sometimes useful to know that there is an element F in
Cy 0,,(I) with boundary values F(e'’) which are isometries. The following is a fairly
general sufficient condition.

CoROLLARY 3.7. Suppose K is in H(M,, ), 0 € L*(M,, ) and ¢ € L*(M,)are
phases, and that I — Iy (K)T'y, (K)* has closed range. Set | equal to the dimension
of the negative eigenspace of I — Iy (K)T g, ,(K)* and assume 1 < co. Then if m, >n,,
Cx, o, (1) contains an element with isometric boundary values.

Proof. By Lemma 3.1, elements of Cy g (/) correspond to invariant .#g g .-
-rnaximal negative subspaces of .#, 4 ,; in this correspondence, isometric subspaces
of Cg, g, o(l) correspond to invariant (g, ¢ , N A")-maximal negative subspaces

(N =\ S¥(Mxk,o,,NMk, o, ,) Which are null spaces. Lemma 3.3 establishes a
k>0
correspondence between invariant (.#x, 4, , N//")-maximal negative subspaces and

o . . . 3 2R D . .
invariant maximal negative subspaces of H3(C * *!). Moreover, there exist in-

variant maximal negative subspaces of HY(C™ nl'p’) which ‘are null spaces if

and only if m, > n,. This establishes the corollary.

As an instructive special case, consider the scalar case (m == n = 1), and sup-
pose k = 1. Then if Cr 4 ,(I) is nonempty, we must have either m, =:ny = 1, p, - - 0,
or my = ny :=0, py = 1. In either case, if I — I'y ((K)I'y (K)* has closed range,
then Cy 4 1(I) contains a function of modulus 1 on the boundary if it contains any
Junction at all. Without the special topological assumption on the operator
£— Ty (K)p,1(K)*", it is known that this is no longer the case (see eg. [13]).

b. CONCRETE EXAMPLES

As an iHustrative example of the above theory, consider the interpolation pro-
blem N-P/(z,p, q) mentioned at the beginning of this section for the case N’ 0.
Set Cg g, 4(]) equalto Cy 1) if @ == I, and similarly for .#y , and I'y(X). While
N-P((z,p, q) corresponds to Cy 4(!) for a certain choice of K and 6 we need not
actually compute them to see that .#y , is the space .# defined by

J

Vi :_-{fe H'&(cm.")f[[pf], f(zj)J —0forj=12,..., N}.
[ Ccm,n

Since the function (1 — zw)~* is a reproducing kernel for H?2, we have

[hel.Afa-=rG]o],.,

which is O forj == 1, ..., N if and only if f isin.#. Thus the space .’ is spanned
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by the functions

) {(1 — zz)-1 [”f], j=1, N}
9

A typical element k(z) of 4" is

N rp

k(2) = Y, (1 — zz)-* )

Jj=1 | 9; ]

from which we compute

N N '
_ -—~_1[2i] [P
[k, k]Hz(C""")=I§ ,-Zl () — z;z)) 1[ ql- ,[ l]] mn
punr Iy L %7 c™

-33

1=l j=1

{(pj apl>cm - <qja ql>cn}z.c
*j

L~ zZyz
= c*d,p ¢

when ¢ =[¢, ...,cy]". In other words, the Pick matrix is the Grammian of the
basis () for .#. Thus the negative signature of the space .#’ is precisely the number
of negative eigenvalues of the Hermitian matrix A, p, 4. Therefore the matrix test
for when N-P,(z, p, q) is nonempty mentioned at the beginning of this section is an
immediate consequence of Theorem 3.6 and Lemma 3.5. Alternatively, one can
check that the space # = H? © OH? is the span of

(**) {(1 - zEj)_l.pj IJ: ..., N}

and I'(K)*: (1 — zz;))7*p; = (1 — zz;)"%4;. Thus Ay, o can also be viewed as
the matrix representation for I — I'((K)Io(K)* with respect to the basis (*x)
for 2.

While the very geometric approach we take appears abstract, actually it
serves very well to organize and simplify concrete computations. We now analyze
the scalar case (n = m = k = 1) of N-P(z, p, q) thoroughly. In this case the space
4 has the form

M= {[f]e HY(CLY) | w; g(z) = f(z;) for j=1, ...,N}
g

for N-tuples z=(z,, ..., zy) and w=(w,, . .., w,) of complex numbers. Note that
' is finite dimensional, so .# is pseudo-regular. We shall show how to compute the
phase = associated with .# as in Theorems 2.1 and 2.2 explicitly. We first consider
the regular case (/# n.#’' = {0}). The [first step is to compute ¥ = .4 3 SAH =
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. #n(S4)'. One easily checks
(SA) = (SHA(CLHY) + S’

and thus (S.#) consists of the functions

Faete)=[ 5]+ et ey [ 5 ]

i=1

for all a, b, «; in C. The functions in & satisfy in addition

1 1
-[f'ab,__l' [‘v ]] -
1—e v Hg(cl,l)

N 1 —ww
=a— wbh + Y ajzv-(—#
j=1 1 — zz,

for all v--1, ..., N. So the prescription for arriving at a basis for £ is to solve

zt wyzi!
: N
Adl = : Py Aa = : )
zyt wyzrt

where A is the Pick matrix 4 = [(1— w;w,)/(1 —Z;z,)] (invertible, since .#
is regular). Define o by

o5(ei) = ga, e [.’] (s =1, 2).

_ Z e" ‘v}
‘Then the functions
ey =[] oren and s =[ V] o

arc a basis for 2.
The only remaining step is to [ , ] Gramm-Schmidt the vectors f], f; to obtain

[, J-orthonormal positive and negative vectors /* and [~ on %. Express these as

1% = [I§, IF]T. Define
I 13 )

It satisfies EH%(CL.1) = .# and so by Theorem 3.4
={{fG-+1)FG+ 1), Ge4hH™

gives all solutions to (N-P), where / is the number of negative eigenvalues of A.
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The case not covered is when .# n.#' {0}, or A is not invertible. To settle
N
it, note that .# n .#' consists of all vectors g,(e") = ¥ a;(1 —e¥z))~* [le ]
i

j=1

1 1
0=1]ga = ] =
(1 — ¢ Zv) w, HYCVD

va,

such that

N
§1 1— z, Z

that is o« is in the kernel of the Pick matrix A. For this special case (m =n = 1),
pp=1=m=mn =0 and thus # n.V' =4 where

N = V{ef'g, | aekerd},
j»0

and the solution F of (N-P), (where [ is the number of (strictly) negative eigenvalues
of A) is unique, We obtain this unique inner function F as the quotient ¥, ¥;?

¥ ]H %(CY). For example, take

of the components of a representation A" == [
2

N . N . -1
F= [ Y (1 — e"zj)-l] { Y, (1 — €'z~ v_vj]

j=1 Jj=1

where a = [&,,. . ., ay]¥ is any vector in the kernel of A. Thus computing the unique
solution of (N-P), is reduced to an eigenvalue problem, much in the spirit of
Hintzman’s work [18] on Hankel matrices. Higher order interpolation problems
can be handled in much the same way by using the Pick matrix as in [28] or [5].

c. L® APPROXIMATION FROM H®

A second special case of interest is when both phase functions 8 and ¢ are
the identity. This corresponds to supremum norm approximation of a given func-
tion by H™ functions. We are given an L*(M,, ,) function Kand wishto know when
there exists a function F in the set

Ax(l) = {K+ H{(M,, )} n BL™(M,,,) (= Cg,1,,(])

and if possible, to parameterize Ai(/) when it is nonempty. The set Ax(l) can be
regarded as the set of all error functions of L® norm less than one obtainable by
approximating K with the error functions in H}(M,, ,). In this case the appro-
priate operator I'y , , is the Hankel operator

Ty q.p =g H(C" - H}(C™M*
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defined by

Hgik - L (FK)

PHQ(C'")
for ke H*(C"). The following is simply a restatement of Theorems 3.4 and 3.6 for
the special case 0= ¢ = L

THEOREM 3.8. Suppose K is in L2(M,, ). Then the set Ag(l) is non-empty if and
only if the self-adjoint operator I — HyH#% has negative eigenspace of dimension
i most 1. Moreover, if I — 3. % has closed range and | is the dimension of its nega-

L : o [x
tive eigenspace, then there is an (my, ny, py; i, n)-phase function = : -{A J
AT

with ny -+ py = : nsuch that

Ax(l +h) = gs(-@H;’:(Mm.nl))-

d. BOUNDARY INTERPOLATION

Another application of invariant subspace techniques here are to boundary
interpolation. This concerns the extension of a function fin LY (where 4 is a subset
of the unit circle of positive Lebesgue measure) to one in ZH®. Our treatment isin
the spirit of a proof given by Rosenblum and Rovnyak [28] adapted to our setting.
We actually give a result considerably more general than the classical one or the one
in {28]. Suppose p and g are matrix-valued functions on A, namely, p e LJ(M, )
and g€ LF(M,, ).

THEOREM 3.9. There is a function F in BH(M,, ,) in the set
Kp, q, 4) = {Fe L}(M,,,) : F(e")"p(e"*)= q(e") for almost all e* in A}
if and only if the dimension 1 of the negative spectral space of the self-adjoint operator

= & — #
Ap, a, A quA PHQ(CH)MP):A quA PH“’(C"') Mlle
acting on L¥(C¥) is at most I'. If p(e") is rank 1 on a set of positive measure, then
the solution F with I' =1 is unique (whenever it exists) by analytic continuation.
Here y, is the characteristic function of the set A and My is the operator of
multiplication by the function F.

Proof. Set

M = {f € H(C™") [f(e“), [p] (e“)x] =0 for all x in C* and a.e. e¥ inA} ;
q cmh
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Then .7 is an invariant subspace of H*(C™") and if Fe #H*(M,, ,) satisfies
F(e')* p(e’) - q(e") a.e. on A, then [};]HZ(C") isaninvariant H3(C™ ")-maximal

negative subspace of .#. Conversely,if 4" is an invariant H2(C™ ")-maximal negative
subspace of .#, then its angle operator gives rise to an Fe ZH*(M,, ,) satisfying
F(e")* p(e) - q (e') a.e. on A. Analogous statements apply for solutions F in
#BHP(M,, ) and invariant negative subspaces of ./ having codimension at most /’
in a HC™")- negative subspace. By Lemma 1.1, the existence of a solution F of
I(p, q, A) in ZHP(M,, ) then implies that the negative signature/ of ./’ is at most
I'. Conversely, if l1 =1'"— 1> 0, then, again by Lemma 1.1, invariant negative
subspaces of .# with .#-negative cosignature /, are exactly the invariant negative
subspaces with negative cosignature /’ wkich are contained in .#. If ./ is pseudo-re-
gular, such subspaces exist in abundance by Lemma 3.3; otherwise, we can perturb
the metric and use an approximation argument as in the proof of Theorem 3.6 to
still get the existence assertion. Thus Theorem 3.8 follows once we establish that the
negative signature of the space .4’ is equal to the dimension of the negative eigen-
space of A, , 4.
To see this, observe that an equivalent way to define . is

M= { fe HYC™™)

. p
i S =0 for all ¢ LA(C¥}.
[f HC™ )[ q]xm]Hz(cm,n) or all ¢ & L )}

From this representation, it is clear that

gy p
M == {PHZ(C"" n)[ g ]XA(P

Thus we see that .#’ is parameterized by 12(C¥) and the self-adjoint operator 4, , ,
induces the inner product on L%(C¥) equivalent to the H2(C™ ")-inner product res-
tricted to .#’. Therefore the negative signature of .#' is the dimension of the negative
eigenspace of 4, , 4 as desired.

If p is full rank on aset of positive measure, then PHQ(Cm){px 49 | ¢ € LA(C*)}

is dense in H”(C'"). This implies that if f; and f, are two elements of .#Z with
nf1 == (0}®H2(C,,) f2, then in fact f, == f,. This implies that ./# is a

graph space (./1 = [I;] Dom(H) where H: Dom(H) <« H¥*C") —» H¥C™) is a

Q€ LZ(C")} .

(0;@H”(c

closed multiplication operator) and the .#/-maximal negative subspace ¥ for .4

is unique (g [Ij]@o where 9, = {x € Dom(H) | |{Hx||<”x||}) This proves

the uniqueness assertion in Theorem 3.8 as well.
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We conclude this section with a converse to Theorem 3.4. Theorem 3.4 cha-
racterized a generalized interpolation set Cy o ,(/ -i-1;) (for the pscudo-regular
case) as the image under a certain linear fractional map %: of a function disk
é’?)ﬂ?(Mml, ,,l). The phase function = and the index / in principle can be computed

directly from K, 0 and ¢. Conversely, in the next theorem we start with the phase
function = and indicate how one can compute K, #, ¢ and [ directly from =. This
result thus computes the image of ABHP (M, ,,1) under a linear fractional map %;
and also gives a cleaner less computational proof of a result of Helton [17].

« By

THEOREM 3.10. Let & -
%V

]be a (my, ny, py; m, n)-phase function with
n, b-py - n. Suppose also that

i) the closure of xH°°(Cm1) - yH°°(C”‘) + wH°°(Cp1) is a full range simply
invariant subspace of L*(C"),

ii) the closure of yH °°(C"1) + wH°°(Cp‘) has finite codimension in the closure
of xH®(C'Y) + yH=(C™) + wH*(C™), and

m_4-n_4p. . . . o in

iii) A == [E-H®(C* * "M is a simply invariant subspace of L¥C ).

Then
Q’E(@H“’(Mml, "1)) = CK, G,o(l)

where
a) ¢ € BL®(M,) is a phase function such that

[P

erich 41 = e"HYC");

b) e BL*(M,, ;) is a phase function such that
A 0 [H(C™) & {0}] = 0H*C*) @ {0} ;
c) K is any L*(M,, .)-function such that
[’I{ ] PUHS(C") < M
and
d) ! is the codimension of {yH°°(C"‘) -+ wH“(Cp‘)}_ as a subspace of
{(xH=(C"™) + yH=(C™) + 0H=(C™)}".

Proof. By the classical Beurling-Lax theorem there exist phase functions 6
and ¢ as prescribed in a) and b). Thus

OH*(C* @ {0)) = 4 = LXC™) @ ¢*HY(C").
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Consider the space . = LA(C™) @ ¢*H*C") as a Krein space with inner product
inherited from L2(C™"). By Lemma 3.3, invariant maximal negative subspaces of

H 2(Cm" "y p‘) match up with .#Z-maximel negative subspaces in 2 via multiplication
by E. A particular maximal negative sutspace of

H(C ™ ™Yy 2 By ™ @ HrC™) @ HY(C™)
is
Ny = {0} @EXC™) @ HAC™).

The ./-maximal negative subspace in K corresponding to 4", as above is the subspace

{vH°°(C"‘) 4 wH°°(Cp1)}_. By d) and the definjtion of # and ¢, the codimension
of this space in a 2#'-maximal negative subspace is /, which is finite by condition ii)-
By Lemma 1.1 any .#-maximal negative subspace has negative cosignature / with
respect to ', or equivalently, /4’ = 4 =1.# has negative signature equal to /.

We are now ready to show that a function K as prescribed in c¢) exists. Let
H equal to L*C™) @ 6H*CK) and et ¥ < H2(C") be the linear manifold
9 = P{O}eﬂe(cm) 4. Thus @ is dense in ¢*H?#C") by definition. Then for each f°
in 9 there is unique Xfin 2 such that Xy @ fis in.#. This defines a closed operator
X: 9 — # such that

A = [’; ] 2 + [0H(CY) @ {0}].

From this representation it is easy to check that

A = ! ]op
.X':::

where & is the domain of X* and is dense :n 5. We saw above that.#' has negative
signature / < oo; it follows that the self-adjoint operator 7 — XX* has a negative
eigenspace of dimension at most /, and hence must be bounded. Therefore X is
bounded and the linear manifold 2 is in fact all of ¢*HZ(C").

Let X, be the restriction X | ¢*C" of the operator X to the subspace ¢*C"
of ¢*H?*(C"), and define an M, ,-valued function K by

i . it it
K(e )x = Xo(0*-p(e ) xo) (e )
for x in C". Then K is an L?(M,, ,)-valued function which also satisfies

K(E@(e)*x = Xop™) (")
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. K .
for x in C”, and thus [ ! ] @*C" < .#. By the invariance of the space .4,

[11( ] PH®(C) < .

This establishes the existence of a function K as in c).
Now suppose K is any function as in ¢). Then if F is any function in H3(M, ,)

such that [f](p*H”(C") < ., then

[ i '; K ] @*H®(C") < [f ](p*H°°(C") 4 [II( ] @*H>(C") < .4,

and therefore F-— Ke 0H* M, ). One can further check that .# is spanned by
such subspaces and therefore ./ = .#¢ 4 ,. That @E(QH“(M,,,I, ”1» 2 Cg, g, 0lD)

now follows exactly as in the proof of Theorem 3.4.

4, THE COMMUTANT LIFTING THEOREM

In this section we indicate how the work of Arsene, Ceaugescu and Foiag
[4] on parametrizing the set of all contractive intertwining dilations of a given con-
traction intertwining two contractions can be put in the framework of this paper.
Furthermore we provide a more general lifting theorem which is the abstract ana-
logue of Hi-interpolation. The fact that commutant lifting is intimately connected
to interpolation is due to Sarason [29]}. Thus the reader who is already familiar with
this connection probably already seen how our development will unfold. For this
reason we shall be brief.

Following the notation of [4], let 5# and 5 be Hilbert spaces,and &(#, 3@)
be the set of all (bounded linear) operators from # to3#; when 3 == #, we abbre-
viate L(H, H) to L(H#). We fix two contractions T e L(5) and Te (), and

let Ue £(A") and Ue ,S,P(J? ) be their minimal isometric dilations. (See [25] for the
geometric structure of isometric dilations.) It is known that

H =H @M+($)

where % == [(U— T)#)” and M (%)== @ U"®, and similarly, (¥ : - # &

0

@ M,(¥)). Consider a fixed operator Ae ST, T) (ie. Ae L(#, #) and
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TA = AT; we say that 4 intertwines T"and 7). An intertwining dilation of A4 is an
operator A, € L (X, J:V) such that A, € .f(ﬁ, U) and PAy=AP, where P: A —H

and P: " — o are the orthogonal projections. When ||4|| < 1, it is the content of
the commutant lifting theorem that there is a contractive intertwining dilation A

of A (i.e. [|[Awfl <1, UAw = Aw U and Py, = AP). The goal of the work of Arsene,
Ceausescu and Foiag is to describe via an explicit parameterization the set CID(A)
of all contractive intertwining dilations of A.

Such a parameterization can be obtained via a slightly more abstract version

of Theorems 2.1 and 2.2 as follows. Let # = A" 114 be the Krein space with
inner product

kFik k@K, = [k k). — [k K],

and define a subspace.# (=~ (T, T; U, U; A)) by

M= [A ]Jf{l] [-M+(°57’)]
1 M(2)] .

If we let U be the operator (()j [(])] on 9?‘, then U is isometric in the [, ]}-inner
L

product, and since

RIS H i AR

=[A] T4 r(ﬁ—f)A]’

we sce that .# is invariant for U. Furthermore, A, € Z(K, If) intertwines U and

~ . A .. . A
U(UAyp = AxU) < its graph [ I“],%” is invariant under U, PA, = AP« the

A . . .
graph [ I°°] A is contained in ./, and [[As | < 1 <> the graph [ A;"] A is anegative

A
subspace of K. As we have seen in the previous sections, a A -maximal negative
subspace is always the graph of a contraction operator. We have obtained

THEOREM 4.1. The angle operator-graph correspondence establishes a one-to-
-one correspondence between the contractive intertwining dilations A of A (i.e. the
A A ~ -~
set CID(A)) and U-invariant, % -maximal negative subspaces of 4 = .#(T,T; U, U; A)
as defined above.
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We next obtain the abstract analogue of H;°-interpolation. We say Ay €
& CID(4) if there is some U-invariant subspace y.# of codimension at most / as a
subspace of %" such that Ae: Y# — # satisfies dol] € 1, AU Y X) - UAeo
and 1~’A°° - AP YA . (Thus };Aw 7 agrees with A on a T-invariant subspace of
codimension at most /) Using the same analysis as above, we obtain the following
refinement of Theorem 4.1.

THEOREM 4.1a. The angle operator-graph correspondence establishes a one-fo-
-one correspondence between the set CIDJ(A) and U-invariant negative subspaces of
A ST, T U, l}; A) of codimension at most | ina A -maximal negative subspuce
of A

Thus by LLemma 1.1, a necessary condition that the set CID,(4) be nonempty
is that the negative signature of .#’ be at most /, and conversely, once we establish

that there exist ./#-maximal negative subspaces of .# which are also U-invariant,
we shall see that this condition is sufficient as well. Now it is easily checked that

- [ ! ]/P
A:.:

and thus the negative signature of .#" is the dimension of the negative spectral sub-

space for the self-adjoint operator / — AA* on # . Thus, modulo the gap mentioned
above, we obtain the following generalization of the existence part of the Sz.-Nagy - -
---Foias lifting theorem (which corresponds to the I = 0 case of the following).

THeOREM 4.2, The set CID[(A) is nonempty if and only if the negative spectral
subspace of the self-adjoint operator I — AA* on 3 has dimension of at most 1.

In contradistinction to the previous sections of this paper, it may happen
here that U .# is not simply invariant (i.e. it may happen that () U# > {0}).

k20 hd
For example, one may simply take A = 0 and let T be any completely nonunitary
contraction which is not C, (see [25]). For such an isometry we must gencralize
Theorems 1.1 and 1.2 and develop a Wold decomposition for the [, ].-geometry.
ke
Let K be a Krein space and suppose that Uis an isometry onKin the [, ]R-inner
product. We shall say that Uis Sfundamentally reducible if there is a fundamental sym-
metry J on K which commutes with U (see [11]): equivalently Uis fundamentally
reducible if there is a decomposition K- RéfiKof K as the [, ]ﬁ~orthogonzil

direct sum of a regular positive subspace K and a regular negative subspace K such

that with respect to this decomposition U == [éj 3] is diagonal. Thus such a U
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is an isometry in both the Krein space [, Jx and the Hilbert space { -,- ), inner pro-
ducts. The next result is an extension of our Beurling-Lax theorem which handles
isometries which are not necessarily shifts.

THEOREM 4.3. Suppose U =[éj 1(])] is a fundamentally reducible isometry

on the Krein space K=K ' K and M is a pseudo-regular O-invariant subspace of
K. SetN == \V l?j(M N M"). Then there are a densely defined ([ , ]f( ke [, ]ﬁ)-isomerry
1t 1.

iz0
() (Cf(lﬂ‘,f(o) - ﬁ, and a fundamentally reducible [ , ]k oR -isometry
1 ¢

U]

[Ul 0] on IA(1® f(o such tha:

s([Ul A0]| 9(5)) ~ Uz
Al

0 U,
and
MON = (5 .- 9E)) .

A ) A . .
Here K, is a Kreinspace, K, is a Hilbert space and

[k, ® ko, k@ k“‘lf(lFcho =: [ky, kl]ﬁl '
and
[ky @ ko» k1 @ ko}f(@f(o = [k, kl]ﬁl + (ky, ko)f(‘;

Proof. As in the proof of Theorem 2.2, we get a generalized Wold decompo-
sition for M n N':

MaN = {\y 0"L -+ M UM}~

nz0 n>0

where L ~ Mn ((AJM)’. (Note that \/ {/"L and M U"™M are [, J-orthogonal, but

nz0 nz=0
may have nontrivial intersection.) Since M is pseudo-regular, L is also, and hence L
as a [, J-orthogonal direct sum decompesition L =- L, [ L, where L; is regular
and L, is a null space. The space M n N’ aas the space N as its isotropic subspace;

N in turn has a Hilbert space Wold decomposition N = [@® l?"‘(N e 0"N)] ®

nx0
®N "N = N, @ N, . Note N, is contained in (M) U"™M and is reducing for Uand
np0 nz>0
thus M, =: | JU"MON, is also reducing for U. It is not difficult now to see that
n»0

an equivalent form for the representation of M n N’ above is

4.1 MnN = {(\goﬁ"m + (N, i1 N, [T M)}~
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A
where each summand is invariant for U. The theorem follows once we show that
each summand has a representation {&-2(&)}~ for some phase function E. The

summand V ’(\J”Ll is handled as in Theorem 2.1; N, and N, are handled easily in a
n>0

manner similar to that in the proof of Theorem 2.2, since they are null spaces. It
remains only to consider M.

The basic structural property of M, is that it is a reducing (in the Hilbert space
sense) subspace for the Hilbert space unitary operator U which is also nondegene-

rate in the indefinite metric. By the spectral theorem we can represent U as the mul-
25

tiplication operator M ;, on a direct integral Hilbert space " = S @ A (t)ydm(D),
]
where m is a scalar spectral measure for U and dimy¥’ (¢) 1s a multiplicity function
for U (see [12]). By assumption there is a signature operator J which commutes
with U and induces the Krein space inner product on #". Sucha J must be represented
as multiplication by a measureable field {J(r)}, <t<n, Of signature operators, where
each J(1) is a signature operator on J(¢), which thus makes each fiber space .#'(¢)
also a Krein space. Now since the subspace M, is reducing for U , it must be decom-
2z
posable, that is, M, has the form M, = S @ #(t)dm(t) where each .#(r) is some
0
subspace of .#'(¢). Since M, is nondegenerate as a subspace of ., a.e. .#(t) must be
nondegenerate as a subspace of the Krein space .#'(¢). We can thus produce a densely
defined Krein space isometry ¥(¢): X(t) — % (¢t) with range dense in .£(¢). If we
do this in a measurable way, then the operator ¥ of multiplication by ¥(¢) gives a
2m
densely defined isometry from the Krein space S @ X(1)dm(t) onto a dense subset
]
2=
of S @ . #()dm(t) - = M, which intertwines M ;,. The assertion of the theorcm

4]
follows.

As an aside, it is interesting to note that the Wold decomposition in the proof
of Theorem 4.3 can be refined if the invariant subspace M is regular. Indeed we get
the following:

U o
0
isometry on the Krein space K=K E1K and M is a regular U-invariant subspace

ProPOSITION 4.4. Suppose U= [ ] is a fundamentally decomposable
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of K. Define subspaces L, M (L) and M_, by L = M7 UM, M.(L) -V U4,
k>0

M, := MO*M. Then M +(L) and M, are regular U-invariant subspaces of K,
k»0

U | M (L) is a shift, U | M, is unitary and the invariant subspace M has the Wold
decomposition M = M (L) B M, .

Proof. Since M is regular, the restriction of [, ]?( to M makes M a Krein space.
Since U | M is also an isometry in the compatible Hilbert space topology on M,

the norms I|((’)' | M)*|| (k>0) are uniformly bounded. The Wold decomposition of
the proposition now follows immediately from a general result of McEnnis [24].

The next Theorem extends Theorem 3.8 to a more general setting, which for
1 : = 0 should be compared to the results of [4]. To state it, we note that & is as in

A
Theorem 4.4, and we decompose K into the maximal positive and negative subspaces

K = K[ K which diagonalize U/ ( U= {é’ 3] ) and similarly, write K,=K,TK,
7

0 U
tor matrix representation

with l/}l [ ], then these decompositions of K and ﬁlEB ﬁo induce an opera-

5]
x v o

for Z. In principle, all the objects in the following theorem are computable via our
techniques. The proof is completely analogous to that of Theorem 3.4 and will be
omitted.

THEOREM 4.5. Suppose T, 7’, U, (7, on K, J?, A, A, A in LA, J?’) and

A = HM(T, T, U, U ; A) are as in Theorem 4.3, and suppose that 4/ is pseudo-

~regular. Then there is a Krein space #* 1 == A LTV Ay and a Hilbert space Ay, a
U, 0 0

Sundamentally decomposable isometry| ¢ U, 0 |on A 1 DA = A I AP A,

0o 0 U,

a densely defined ([, ]5\( > [ ]%)-isometry E= [oc B d/]: D(E) » ,%7, such
1 Y @

x 7

H*e
that Z(U, @ U, @ Uy) | 2(2)) = (U @ U)E and

CID(A)-={(aHi* -+ Bi* -+ yyj*) e Hi* +yi* +-0*) Y| H: A y— A 1 HI < 1, HUy=U, H}

where
i:f1_’=%/1®{c'}‘:=%/‘1@fo
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and
X0y, ® A
are the natural injections.

The same conventions for [, ]a and [, ]a hold as in Theorem <4.4.
Hy LF, EE

In the case where the invariant subspace .4 = ./Z/(T, T; U, 17; A) is regular,
the degenerate subspace #7, can be dispensed with, and Theorem 4.3 guarantees the
cxistence of many elements in CI1D,(A4), where [ is the negative signature of .#". If
«Z is not regular (or even pseudo-regular) but .#/' has finite negative signature, .4
becomes regular after a slight perturbation in A4; one can then use Theorem 4.1
and a continuity argument to complete the proof of Theorem 4.2.

Finally we consider the question of uniqueness. The first part of the following
corollary refines a result of [3].

COROLLARY 4.6. Suppose A: J — # intertwines contractions Te€ L(#) and
Te ,‘/’(Zf ) as above and that I — AA* = 0.

() If ker Y (Y4~ (I — AA%)VY) is cyclie for the minimal isometric dilation
U of T, then there is a unique A, in CYD(A) and furthermore this unique A is an
isometry.

(ii) Assume 0 is an isolated point of the spectrum of @ 4. Then there is a unique
A in CID(A) if and only if the subspace & - .# o, is either a positive or a negative
subspace of A Here & . /A U. 7, #Hy - 00"’, where fi - . #(T, T; U, C: A)

k>0
as above.
This unigque Ay, in C1D(A) is isometric if and only if & - # , is positive.

Proof. (i) Let A be any element of CID(A). Since i’Aw - APand 4, €1,
Ay has to be isometric on kerZ ,; from the intertwining condition it follows that
A, is uniquely determined as an isometry on |_JU"ker & ,; the U cyclicity of ker ¢/ 4

nz0
implies that 4, then is unique. We thank the referee for pointing out that this result
is elementary and does not depend on the machinery of our Beurling-Lax thcorem.
(i) If 0 is an isolated point of the spectrum of J—A4A%, then the space .7 is

a regular subspace of ,7?, and a Wold decomposition as in Proposition 4.4 holds
for . #. By Theorem 4.1, we know that operators in CID(A4) are in one-to-one cor-

respondence with U-invariant .¢-maximal negative subspaces of . 7. Since z /AN
I ~ . .\ ~ . .
3 :[A"' ] J is a positive subspace, by Lemma 1.1 .#-maximal negative subspaces of

4 are exactly the. 7Z-maximal negative subspaces of .#Z. Asin Lemma 3.2, invariant. /-
-maximal negative subspaces must be subspacesof .# n 4 where #": = V (I:I"(u// N,
k=0
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By the decomposition (4.1) for # n.¥' we see that if .4 nA" has a unique

maximal negative subspace, it is automavically U-invariant. Now it is easy to see that
this uniqueness occurs if and only if either .# n 4" is positive or .# n A" is nega-
tive. If .4 n A7 is positive, the unique maximal negative subspace of .# n A" is
the isotropic subspace of .# N4 and the corresponding element 4, of CID(4)
is isometric. If .4 n A" is negative, tien the maximal negative subspace for
A NN is the whole space .# nA#”’. By the decomposition (4.1) for 4 nA",
we see that .# n.4" is positive (negative) if and only if & + .#, is positive (nega-
tive) and the desired conclusion follows.

The main result of 3] is that CID(4) has a unique element if and only if at

least one of the factorizations 74 = 4-T is a regular factorization. It would
be interesting to have a direct proof for the equivalence of this condition and that
of Corollary 4.6 (ii) for the case where /—AA* has closed range.

Both authors are partially supported bv National Science Foundation grants.
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