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(BCP)-OPERATORS AND ENRICHMENT
OF INVARIANT SUBSPACE LATTICES

C. FOIAS and C. M. PEARCY

This paper is dedicated, with warm affection, to Professor Béla Sz.-Nagy, on the occasion of his.
seventieth birthday.

1. INTRODUCTION

Let 5 be a separable, infinite dirnensional, complex Hilbert space, and let
Z(s#) denote the algebra of all bounded linear operators on 4. If A€ Z(#), we
denote by ¢(A) the spectrum of 4, by ¢.(4) the essential (i.e., Calkin) spectrum of’
A, and by 0,,(4) and o, (4) the left and right essential spectra of A4, respectively.
Moreover, we write r(4) for the spectral radius of 4 and w(4) for the numerical
radius of 4. Recall that an operator 4 in Z(s) is a completely nonunitary contrac-
tion if [|4]l < 1 and there exists no nonzero reducing subspace .# for A such that
Al# is a unitary operator.

In this paper the Banach algebra H* = H*(D) of bounded holomorphic func-
tions 4 on the open unit disc D = {1e C : |} < 1}, with supremum norm |||, =
=Zsulx)>|h(}.)|, will be useful. In particular, there is an H*-functional calculus for any

(=3

completely nonunitary contraction A, so that the operator 4(A) is defined for every /2
in H* and has various properties reflecting those of 4 and 4 (cf. [20], Theorem IT1.2.1).
Recall that a subset S of D is said to be dominating for the unit circle C = 3D if

supli(D)] = lkllw, h~e H,
AeS

and that these subsets of D can be characterized by the property that almost every
point of C'is a nontangential limit point of S; cf. [5]. In analogy with this characteri-
zation, we say that a subset S of D is dominating for a subset s of C if almost every
point of s is a nontangential limit point of S.

Let (BCP) denote the class of all completely nonunitary contractions 4 in
& (o) for which ¢,(A4) n D is dominating for C. We permit ourselves the indulgence
of referring to such operators 4 as (BCP)-operators.
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The class (BCP) was first studied in [6], where the existence of nontrivial inva-
riant subspaces for (BCP)-operators was proved, and this study continued in [2],
{31, [13, [16]} and [18]. (In particular, we owe to Robel [18] the clarification of the
definition of the class (BCP).) Thus we now have considerable knowledge about
the structure of (BCP)-operators, including the fact that they are reflexive operators
[1]. One point of this paper, which is a continuation of [10], is to show that the (posi-
tive) solution of the invariant subspace problem for either the class of square roots
or the class of inverses of the invertible (BCP)-operators has as a consequence the
solution of the invariant subspace problem for a class of operators that contains
all operators A satisfying r(4) = {|4].

But another, perhaps equally important, consequence of the constructions we
employ to prove these results is as follows.

Let us write, as usual, Lat(4) for the lattice of linvariant subspaces of a given
operator 4 in Z(3¢). Then, it turns out (Corollaries 2.5 and 5.3) that there are two
functions A, and /&, in H* such that if Ais any completely nonunitary contraction
with connected spectrum containing the point 1, then /,(4) and /5;(A4) are both
invertible operators having the same properties as 4 just described, and having
the additional properties that

a) Lat(h(A)®>)\Lat(4) and Lat(hy(4)~?)\Lat(4) each contains a lattice iso-
niorphic to the lattice of all subspaces of 5, while

b) Lat(#,(4)%) n Lat(h,(A)) = Lat(4) = Lat(h(4)~*) n Lat (h,(A)).

Thus, beginning with any operator 4 with the aforementioned properties, one can
construct two sequences of operators

A, A =h(A)? A'=mn4d)>...

and

"N

A, A=h(A)", Ad=h(D), ...
such that the corresponding lattices

Lat(4), Lat(4), Lat(4"), ...

and

Lat(4), Lat(4), Lat(A),...

become progressively richer and richer. This seems to be a phenomenon worth
further study.

Finally, in Section 6 we give a specific example that illustrates some of the
difficulties one encounters in trying to resolve either the square root or the inverse
problem for (BCP)-operators and shows also that there exist reflexive invertible
operators 4 in £(3¢) such that 4~ is not reflexive.
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To begin our program, let (#) denote the set of all operators 4 in £(#) for
which some two of the three numbers

1(4) < w(4) < 4]

coincide, and let (#) denote the set of all completely nonunitary contractions A
in Z(s#) such that 1€ o(4) and (A) is connected. The following elementary pro-
position shows that the invariant subspace problem for the class (%) reduces to
that for the subclass (2).

PROPOSITION 1.1. If every operator in (?) has a nontrivial invariant subspace,
then so does every operator in (F).

Proof. Let B be any nonzero operator in (). We wish to show, operating
under the hypothesis, that B has a nontrivial invariant subspace. If r(B) = (|B||,
then there exists a complex number y with |yl == 1 such that 1 € o(yB/||B|)). More-
over B and B’ — yB/||B|| satisfy Lat(B)=-Lat(B’), and if B’ either has disconnected
spectrum or is not completely nonunitary, then B’ (and thus B) has a nontrivial
hyperinvariant subspace for elementary reasons. Thus we may suppose that B’ € (%),
and that Lat(B) # {(0),5} then follows from the hypothesis.

If w(B) = ||B||, it follows from {I4, Problem 173] that r(B) = || B|| also, so the

_result follows from the case already treated. Finally, if r(B) = w(B), then, upon
setting B’ = B/t(B), we have r(B’) = w(B’) == 1. But, according to [20, Corollary
I1.8.2], any such operator B’ is similar to an operator B’ satisfying r(B"")={|B"||=1,
and the result follows as before.

2. SQUARE ROOTS

We have just seen that to show that every operator in (%) has a nontrivial
invariant subspace, it suffices to deal with the operators in the set (#) < (#). The
main idea of this section is that every operator A in () can be ‘“‘traded off” (ina
sense made precise in Theorem 2.1) for a second, invertible operator 4’ in (2)
whose left essential spectrum has been “blown up’’ to be large enough that (4')2e
€ (BCP). This implies (Corollary 2.3) that to solve the invariant subspace problem
for the class (%), it suffices to solve the “square root’’ problem for invertible (BCP)-
-operators.

We will need one more piece of notation. For any A in .Z(s#), we denote by
£ (A) the smallest algebra that contains 4 and 1, and is closed in the weak operator
topology, and we remark that if 4, and A4, satisfy &/(4,) = 2/(4,), then obviously
Lat(A)) =: Lat(4,). The following theorem, whose proof is given in Section 4,
is similar in many respects to the Theorem of [10].
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THEOREM 2.1. For every proper subarc E of C having 1 as its midpoint, there
exists a function g : - gg in H® which maps D conformally into itself and is such that
Jor h:-gog and every A in (2):

(1) g(A) and h(A) belong to (P), 0 ¢ a(h(A)),

(2) folgANNC - E,

(3) ¢o (M(A)) N D is dominating for the arc E, and

(4) Z(A) A (g(A) - L (h(A)).

REMARK. The arc £ in Theorem 2.1 can clearly be characterized by an
angle ¢:

E E {e“:(-gmn)Sts(n-—-;)}, where 0 < ¢ < 2n.

Sec Figure 1.

Fig. 1

COROLLARY 2.2. There exists a nonconsiant function k in H® such that for
every A in (P), k(A) is reflexive.

Proof. Letting /i be the function in Theorem 2.1 corresponding to the arc £,
we observe from conclusion (3) that 6. (h(4)) n D is dominating for the arc £,
and since for any operator B,

(’;O'e(B) < a}e(B) n Ure(B)’
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we have that a,.(h(4)) n D is dominating for E,. If we set k = h®, then, since
6, ([R(A)P) : : [0,.(A(A)P, it follows that o, (k(4)) N D is dominating for EZ =:C.
Thus k(A) € (BCP) and is reflexive frem [1).

The following corollary is the promised reduction of the invariant subspace
problem for the class (&) to the *‘square root” problem for invertible (BCP)-ope-
rators.

COROLLARY 2.3. If every invertible operator A in (&) such that A*e€ (BCP) has
a nontrivial invariant subspace, then every operator in (F) has a nontrivial invariant
subspace.

Proof. We must show that, under the hypothesis, every operator in (&) has
a nontrivial invariant subspace. But, according to Proposition 1.1, it suffices to show
that every operator B in (£) has a nontrivial invariant subspace. Let / be the function
in H* corresponding to the arc E, in Theorem 2.1. Then, just as was shown in Corol-
lary 2.2, h(B)?*€ (BCP), and from conclusion (1) of Theorem 2.1 we see that h(B)
is an invertible operator in (#). Thus, from the hypothesis, it follows that A(B) has
a nontrivial invariant subspace, and sir.ce from conclusion (3) of Theorem 2.1 we
know that «/(B) - (h(B)), it follows that Lat(B) == Lat(h(B)) # {(0), #}, proving
the corollary.

The following corollary, whose proof is almost the same as that of [10, Corol-
lary 4] and is thus omitted, shows that if one considers hyperinvariant subspaces in-
stead of invariant oncs, then the role of the class (BCP) in Corollary 2.3 can be
played by a much smaller class of operators.

COROLLARY 2.4. If every completely nonuritary contraction in F(H#) whose
left essential spectrum is the closed unit disc has a nontrivial hyperinvariant subspace,
then every nonscalar operator i (F) has a nontrivial hyperinvariant subspace.

The following corollary of Theorem 2.1 shows that associated with every

operator A in (2) there are operators whose lattice has been ““fattened up’ con-
siderably.

COROLLARY 2.5. There exists a function h in H® such that for every operator
A in (%),

(1) 1(A) is an invertible operator in (P),

(2) Lat(h(A)*) n Lat(h(A)) = Lat(4), and

(3) Lat(/i(A)*) contains a lattice L that is disjoint from Lat(A) and is isomorphic
to the lattice of all subspaces of #.

Proof. Let g =g. and  be as in Theorem 2.1. 1t then follows from that

theorem that /2(4) is an invertible operator in (#) and that Lat(h(4)) == Lat(4).
Furthermore, since obviously Lat(4) < Lat(h(A4)?), (2) is established. To prove (3),
note that 1(A4)% € (BCP). It thus results :rom [3] that Lat(/(A4)?) contains a subspace
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<& such that dim(.# & h(A4)*.#) = N,. Thus we may consider the lattice L given by
L = (WA AL DN . N a subspace of & © h(4)>4}.

It is obvious that L is isomorphic to the lattice of all subspaces of #, and to show
that no element of L belongs to Lat(h(4)) = Lat(4) we note simply that since
o(A(A)) is contained in the set G, defined in §3, and since the function (1/£)
can be approximated uniformly by polynomials p() on G, , it follows that every sub-
space ¢ in Lat(i(A)) also belongs to Lat(h(4)~1), and hence is mapped onto itself
by /i(4A)®. Thus the proof is complete.

3. SOME CONFORMAL MAPS

The proof of Theorem 2.1 is similar to the proof of the Theorem of [10},
but there are certain differences, and therefore we choose to give the proof in
full detail. The construction needed to prove Theorem 2.1 involves ‘certain conformal
maps of D, and we turn now to some definitions and notation in that area that we
shall need. (We reproduce the following discussion from [10] for the reader’s con-
venience.) A bounded, simply connected domain G in C is called a Carathéodory
domain if the Carathéodory hull of G (cf. [19]) is identical with G. This is equiva-
lent to saying that the boundary éG of G coincides with the outer boundary of G
{where, by definition, the outer boundary of G is the boundary of the unbounded
component of C\G~). One knows from [19] that the Carathéodory domains are
exactly those bounded, simply connected domains G in C with the property that
every Riemann mapping function g of D onto Glis a sequential weak™ generator for
H=_ie., hasthe property that every function /1 in H*® is a weak* limit of a sequence
{p.cg} of polynomials in g. It follows easily from this and the known facts about
the H*-functional calculus (cf. [20, Theorem 1I1.2.17) that if G is a Carathéodory
tflomain contained in D, ¢ is a Ricmann map of D onto G, and A is any completely
nonunitary contraction, then A is the limit in the weak operator topology of a
sequence of polynorials {p,(g(4))}. Since g(4) is also the weak limit of a sequence
of polynomials {g,(4)}, it follows that «/(A) == <#(g(4)). Thus, in order to prove
(4) of Theorem 2.1, it suffices to choose g = g,. to be a conformal mapping of D
onto some Carathéodory domain G, contained in D and set /== gog. (For,
ore knows from [20, Theorem II1.2.1] that in this case g(4) is a completely non-
unitary contraction with the property that (g o g) (4) = g(g(4)). Moreover, from
the above discussion one has that «7/(4) = /(g(4)), and, applying this fact with
2(4) replacing 4, one concludes that Z(g(4)) = #(1(4)).)

We next fix a subarc £= E, of C,0 < ¢ < 2r, centered on the point 1. We
associate with E, the domain G, defined by

GC=D\[K£U (Gz,,,)]
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where

K‘; ::~:!rei':0Sl‘$ l, n — }U{re“:lr’< 1/10},
L

. 2 :
I, = re":2”+1 <r<__n+.2;,
2n+ 5 n-4+5 n+2

—_— ) < (=< n}.

For a sketch of G, see Figure 1.

Clearly G, is simply connected, and its boundary G, is formed by the union
of the subarc E, of € and a simple path J,, contained in D (that is, J, is an open Jordan
arc). Furthermore, it is clear frem the geometry that G, is a Carathéodory domain.

Let g == g, be a conformal mapping of D onto G, and let g be its Carathéo-

e

dory extension to a homeomorphism o7 D~ onto the prime end compactification
of G, . (See, for example, [7], [13, p. 44], and [8).) We may, without loss of genera-
lity, assume that g is normalized in such a way that the point 1 of D™ corresponds
under ¢ to that prime end }2‘3 of G, whose “impression” (see, for example, [8]) is
the set £, that is, the prime end determined by the sequence of crosscuts consisting

2n 2n+1
2n+4 2m+5
other prime ends of G, have one point impressions lying on the path J,, and
every point of J, is the impression of just one prime end. Stating things slightly
differently, we have

a) g is a homeomorphism of D™ \{1} onto G, U J,,

b) the set of cluster points of all sequences {g(4,)}, where 4, € D and 4, — 1,
is exactly the set E,, and

c) if a sequence {4,} of points of G, U J, converges to a point of E,, then the
sequence {g§-1(4,)} converges to 1.

In order to deduce one more fact, let us consider a point e belonging to the
interior of E, (i.e., e€ E, and is not an endpoint), and write (¢/10, e) for the line
segment in C joining those two points. Let /, = (,, 8,),n = 1,2, ..., be the sequence
of line segments constituting the set (¢/10, €) n G, (where |&,| < |B,!; see Figure 1).
Observe from a), b), and c) above and the geometry of the domain G, that for »

sufficiently large, the points «, and B, are situated on the path J, in the following
order:

of the intervals of the real line[ ] , n==1,2,... . All of the

(I) cres Fpt2s “n+1’ ﬂn’ an—l? ceny O, !’31’ e .Bn—l’ Oy s ﬁn+19 Cyrgs -ee

The corresponding points a, = §~%(a,) and b, = g~%($,) on the open arc C\{1}
must then be situated in the same order, and by virtue of property ¢) they must
converge in both directions to 1, that is,

] « -'~:bn+2: Qyr1s bn’ Qy-15 - '-:alabl, S bn—l’ Qs bn-&-l: L 1

132484
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as 1 — oo. The segments /, themselves are mapped by g~! onto disjoint open
Jordan arcs j, == g=1(],) lying in D and kaving their endpoints a,, b, on (. Fach of
the closed arcs j; disconnects D™ and, again by property c), the convergence /; —¢

b,

n-1%

Fig. 2

implies the convergence j; — 1 (in the sense that every open disc centered at 1 con-
tains j, for n sufficiently large). See Figure 2.

4. PROOF OF THEOREM 2

Let £ E;,0 < ¢ «2r, be a fixed subarc of €' with 1 as its midpoint, as des-
eribed in the Remark after Theorem 2.1, and let G, and g =- g 3 be, respectively,
the Carathéodory domain contained in D and the Riemann mappmg functionof D
onto G, described in Section 3. Let also 4 be any given operator in (%).

We note first that since G, < D, it follows immediately from what was said
in Section 3 thuat g(A4) and /s{A4) are completely nonunitary contractions and that
Ay (gl A)) = A AY). This proves (4).

We will show below, using only the fact that ¢(A) is connected and contains
the point i, that
(in E, = ade(4)),

end this will certzinly imnly thet 1 e o(g(.1)). Furthermore, once we have shown that
alg' A4y 1s conrected nrd hence that 9(4) € (99), then a repetition of the argument
{wih rvm) in ploes of 2 shove that At .4) € (9). Thus we now show, using (77), thet
; "?'wmy t the contrery, that a(g4)) : = FL U F,. whers [

reoet sete, roaed fet § be the speetral idemsotent
ot this Jocomrosition, so orranged thet the

N I A YT RN T AN y
= imﬂg AT A.’{],\, S& ]]‘\,’ffc \tcjv/‘\.:v:j;'ﬁ
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and o(g(A) | &) = F,. Since H(A4) == «Z(g(A)), we know that " and £ are also
invariant subspaces for A4, and we write 4, = 4|4, A, = AI%. Since A" and Z
are complements of one another, it follows easily that o(4) = a(4,) Uo(4y),
and since o(A4) is connected we must have o{4,) n a(A;) # ©. Furthermore it is
clear that 4, and 4, are completely nonunitary, since A is, and that

gy =gl A, g4, =g(A)|AR.

If there were a point 1, in D belonging to o(4,) n o(A4,), then by [9, Corollary 3.1},
g(4,) would belong to F, n F,, contrary to hypothesis. Furthermore, if there were
a point {; in (C\{1})no(4,)na(A4;), then by virtue of property a) of g and
Proposition (FM) of [10] (proved but not expilicitly stated in [9]), once again we
would have F, n F, # 9.

Thus, the only remaining possitility to be dealt with is the case ¢(4,) n
n o(4,) := {1}. In this situation it is obvious that the connectedness of a(A4) im-
plies that of 6(A4,) and o(A4,). But then 4, and A4, belong to (£), and hence by (II).
E, c o(g4) na(g(4,)) = Fyn F;. Since this also contradicts the hypothesis
that F, 0 F, = @, we have proved that o(g(4)) is connected, and consequently
that g(A4) and /(A4) belong to ().

We show next, assuming only thet A4 belongs to (%), that o (g(A)n C —= E,.
The first step is to show that E, c o,.g(4)).

Suppose, to the contrary, that there is a point e in E, which is not in 6 (g(4)).
Then we must also have e ¢ a(g(A4)). (For, if e € a(g(A4))\o.(g(4)), then since e lies
on the unit circle and g(A4) is a contraction, it follows easily that e is an eigenvalue
of g(A) and that the corresponding eigenspace is reducing for g(4), contrary to the
fact that g(4) is completely nonunitary.) The remaider of the proof is very similar
to the proof of the Theorem in [10], but for clarity certain changes have been made,
and we give the remainder of the prcof in full detail.

Since o(g(4)) is compact, there is a ncighborhood N of e such that o(g(4)) n
NN = @, and we may move e slightly on E,, if necessary, so that it remains in N
and is different from the endpoints of £,. It follows from what was said in Section 3
that for n sufficiently large, say n > n,, the endpoints a, and f, of I, appear in the
order indicated in (I). Furthermore, since I, — e, we may suppose that n, has been
chosen large enough that /, « N for n 2 ny, and hence that o(g(4) nl; =@ for
such n.

By virtue of [9, Corollary 3.1], we have u(o(4) n D) c o(u(A4)) for every u
in H*, so we infer that

gla(MHnNnDYnl, =G, »n>=n,,
and consequently, because g’j,) =1/,, it follows that
olANj, =(AND)Nj, =8, nzn.

9
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Moreover, since a,, b, € C\{1} for all n, it follows from property a) of g above that
£ is continuous at a, and b,, and since g(a,) = =,, g(b,) = B,, we know from [10,
Proposition (FM)] and the fact that «,, 8, € N for n > n, that neither a, nor b, can
belong to o(A) for such n. Thus

o(Anj; =0, n=n,.
Since o(A4) is connected, j; — 1, and each j; 'disconnects D", we conclude that ¢(A)
must consist of the singleton {1}.

But this implies, by [20, Chapter VI], that the characteristic function 4 ,(4)
of A is a contractive, operator valued, analytic function on D™ \{1} that is unitary
valued on C\ {1}. Moreover, 0,(1)~* exists for every A€ D™\ {l} and this
function is an analytic function on D that is continuous on D™\ {1}. From these
facts it follows that !0,(%)~’!! is subharmonic on D and equal to one on C\{1}
Hence, if for n >n, we denote byD,, the connected subset of D™ whose boundary

o - P N . 3 3
is the union of j; and the arc a,b, on C which does not contain the point 1, we have

() D, c Dyac... and | Dy =D \ ({1}

n==n
9

UJsing the fact that 6,(4) is a contraction for 4 in D (so that [i#,(4)~%j = 1 on D)
and the maximum principle for subharmonic functions, we deduce that for each
i1 = n, there exists at least one point 2, of j, at which the maximum of 10 ,(4)~2l
on D, is attained.

Suppose now that the (obviously increasing) sequence {[{6 ,(4,)~11} is bounded.
Then, by virtue of (I1I), it follows that |{# ,(1)~1|] is bounded on the open unit disc D,
and that implies, in turn, by [20, Theorem 1X.1.2], that 4 is similar to some unitary
operator U. Thus ¢(U) = o(4) = {1}, so U must be the identity operator, which
implies the same for 4. But this contradicts the fact that A is completely nonuni-
tary, so we conclude that

(1v) lim{}6,(%,) =" = + oo.

Since A, € j,, we have g(4,)€l,, and hence g(4,)— e as n— oco. Furthermore, by
virtue of (IV) and the inequality

(I =104 = D7 < [0, <1+ 200 — 12D (4 — A~

valid for every A in D (cf. [20, Proposition VI. 4.2]), there exists a sequence {#,}
of positive numbers converging to zero such that

4 4 — 2)" 4= < 9,1 — |41, n=n,
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Since the left hand member of (V) is just the lower bound of the operator 4 — 4,,
it follows that there exists a sequence {x,} of unit vectors in # such that

(VD A4 — A)xll < (1 —140), n=n,.

Moreover, we may write g(d) — g(4,) == (A — 4,)k,(4) for each such integer 1> ny,.
and it is clear that k,e H* and satisfies ||k,/le < 2/(1 — |4,]). Thus, employing
(VI), we have
lg(4) — e)x.ll < Hg(A4) — gl x,ll + 1g(4,) — el <
< kDI HIA — L)xll + 1g(4,) — el <
< {2/(1 — 14D (1 — 14,)) -+ lg(A) — el <
< 2’711 + IJ,’(A,.) - e[ - 0:

from which it follows that ee€ o(g(4)), a manifest contradiction.

We conclude that E, = o(g(A4)), and, moreover, by what was shown earlier,
E, = 0,(g(4)). Since E, = C and g(4) is a contraction, we must have E, < do(g(4)).
Furthermore, if € C\\ E,, then the furcction (g(1) —a)~? clearly belongs to H* and
is the inverse there of g(1) — a. Hence, since the functional calculus is a homo-
morphism, g(4) — a is invertible, and consequently « ¢ 6(g(4)). Thus do (g,(4)) n
nC-==E,, and (2) is proved.

To complete the proof of Theorem 2.1, it remains only to prove (3) and
0 ¢ a(h(A)). To this end, let ¢, and e, denote the endpoints on C of the arc E, . Then,
using property a) of g, we know that there exist unique points 7, and A, belonging
to the path J, such that g(e;) = 4;, i = 1,2. If P, denotes the open subpath of J,
that joins 4, to A, and is bounded away from C, then it follows from properties a)
and c) of g that & maps the set E£,;\{1} onto J,\P,, which is itself a union of two
subpaths of J,, and, more importantly, a dominating set for the arc E,. (In fact,
every point e' of E,\{e;,e,} is thelimit of a sequence of points of J,\ P, that lie on
the radius {re": 0 < r < 1}.) Furthermore, we can apply [10, Proposition (FM)]
(with T = g(4), u =g, and {, any roint on E,\{1}) to conclude that J,\P,c
< o(h(A4)). Finally, an argument like one given above shows that no point of
DN\(G,UJ,) can belong to o(h(4)), so, in particular, 0 ¢ 5(/(4)) and J,\P,
< da(h(A)). Since every point of J,\/?, is an accumulation point of J,\P,, it fol-
lows (cf. [16, Corollary 1.26]) that J'\P, = do,(h(A)), and the proof of Theorem
2.1 is complete.

5. INVERSES OF (BCP)-OPERATORS

In this section we first make good our promise to 'show that the invariant
subspace problem for the class (%) can be solved by solving the “inverse’’ problem
for invertible (BCP) operators. The main tool is the following theorem.
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THEOREM 5.1. There exists a function k in H® that maps D conformally onto
a Carathéodory domain K < C\D~ and is such that if g -~ 8, 0<e<2mis
&

any of the family of conformal mappings from Theorem 2.1, and A is any operator
in (%), then

(1) (ko g)(A) is invertible and [(k o g) (A)]-* = (1/k) (g(A)) is a completely
Ronunitary contraction,

(2) do ([(k - 8)(A)]"YnD is dominatirg for C, and

(3) A(A) = L(g(A4)) = ((k o g) (A)).

The desired corollary follows easily from this result.

COROLLARY 5.2. If the inverse of every invertible operator in (BCP) has a non-
trivial invariant subspace, then every operator in (F) has a nontrivial invariant sub-
space.

Proof. To prove the corollary, according to Proposition 1.1 it suffices to
show that an arbitrary operator A in () has a nontrivial invariant subspace. Let
&+=8; »0 < & <2m, be any one of the family of conformal mappings from Theo-
rem 2.1 and let & be the conformal mapping from Theorem 5.1. Then, according
to (1) and (2) of the latter theorem, B :=[(k o g) (4)]~? is an invertible (BCP)-ope-
rator. It then follows from the hypothesis of the corollary that Lat(B~%)# {(0), #},
and since Lat(B-?) - : Lat(g(A4)) : - Lat(4) from conclusion (3) of the theorem, the
result follows.

Proof of Theorem 5.1. Let K be the snakelike domain, spiraling down on
the unit circle, determined by the line segment L =: [11/6,2] and the curves

C, = {(-j-j—i) e 0t < 4 oo}
-+t

C, - 1_1/5_:_1’)6“ 0 t<+ ool
6/5 -+t

(See Figure 3 for a sketch of K.)
Fig. 3 It is easy to see that K is simply connected, that ¢K
is the union of the open Jordan arc J--C, U LU s and
the unit circle C, and that all of X is outer boundary. Thus X is a Carathéodory

. . . . 4% .
domain. It is also clear that K possesses exactly one prime end £ whose im-
pression [ contains more than one point, and that E-- C. Moreover, no two

and

distnet prime ends of K have overlapping impressions. Thus if & is a conformal

e of B onto K, so normalized that the point 1 of D™ corresponds to the
] Fd

prime end £, then by the theorem of Carathéodory, & can be extended to a
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homeomorphism k of D™ onto the quotient space obtained from K~ by identifying
all the points of C (with a single point). In particular, & maps D7\ {1} onto
K™ \C.

Suppose now that A4 is any operator in (#) and that g =g, , 0 < ¢ < 2m,
is any (fixed) member of the family of conformal maps constructed in Theorem 2.1.
Then, according to that theorem, we know that g(4) € (£) and thus, in particular,
by [20, Theorem IIL.2.1], we have that (k o g) (4) = k(g(4)). Moreover, since k
is obviously invertible in H* and [{1/kll == 1, it follows easily from [20, Theorem
[11.2.1] that

vID) [k(g(A)]-* = (%) (&(A4))

and that this operator is a completely ronunitary contraction. Thus (1) is proved.

To prove (3), we simply observe that /(A4) := «/(g(A4)) from Theorem 2.1,
and since K is Carathéodory, that &/(g(4)) = /(k(g(4))) follows as in Section 3.

To establish (2), we note first tha since a(k(g(4))) = K™, it suffices to show
that there exists a 3 > 0 such that all points on C; U C, whose distance from C is
less than 6 belong to a(k(g(A))). (For, such points will then be accumulation points
of do(k(g(A4))), and thus by [17, Corollary 1.26] will belong to do (k(g(A4))). Further-
more, by the spectral mapping theorem, do ([k(g(4)]-1) = [0o (k(g(4))]-1.)
To see that such a J exists, we observe taat it follows from conclusion (2) of Theorem
2.1 that the arc E, of C corresponding to the function g -= g, is contained in a(g(A4)).

Hence, since £ is continuous on C\{1} and maps this set onto J = C, ULy C,,
we know from [10, Proposition (FM)] that o(k(g(4))) contains the image /~c(Ee\{1}).
Since k(C\\E,) must be a subarc of J that is bounded away from C, it follows that

there exists a 8 > 0 such that k(E,\{1") contains all points { on C, U C, such that
dist({, C) < J, and the argument is ccmplete.

Theorem 5.1 also enables us to prove the following rather interesting analog
of Corollary 2.5 that was mentioned in the introduction.

COROLLARY 5.3. There exists a function h in H® such that for every operator
A in (P),

(1) h(A4) is an invertible operator in (BCP),

(2) Lat(h(4)) n Lat(i(A)~?) = Lat(4), and

(3) Latii(A)) contains a lattice L that is disjoint from Lat(4) and is isomorphic
to the lattice of all subspaces of H#.

Proof. Let /i be the composition /1 = (1 /) o g, where k and g are as in Theorem

5.1. Then we know from Theorem 5.1 and (VII) thet 474) is on invertible operator
in (B2) and that Lat(h{4)-1) == Lat{4). Sincc obviously ".at's(A)) o Lat(4),
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(2) follows. To prove (3), we recall from [3] that since #(A) € (BCP), there is a sub-
space .7 € Lat(h(A4)) such that.#” © h(A).# has dimension N,. Thus the required
lattice L in (3) can be taken to be

L= {hA)A# & N : N is a subspace of 4 © h(A).4),

since none of the subspaces in L is invariant under /i(4)-1.

6. AN EXAMPLE

Despite the fact, mentioned earlier, that we now have considerable information
about the structure of (BCP)-operators, we still do not know whether the inverse
of every invertible (BCP)-operator has a nontrivial invariant subspace, nor wheth-
er every square root in (#) of an invertible (BCP) operator has a nontrivial inva-
riant subspace. (We do know, however, from [3], that if 4 is any invertible (BCP)-
-operator, then there exist nontrivial invariant subspaces .# and .4 for A such that
A N) = n A, so that either 4~ has a nontrivial invariant subspace or
aN == (0).)

In this section we give a specific example that illustrates some of the difficuities
inherent in trying to solve the ‘“‘square root” and “inverse” problems for {BCP)
operators.

ExaMpPLE 6.1. Let H? be, as usual, the Hilbert space consisting of all funciions
#(€), holomorphic on D, such that the norm

1 27 . 12
s = sup (_S ey de )
o<r<1 \ 271
1)

is finite, and let U, denote the (unilateral shift) operator M, of multiplication by

the position function on H® Furthermore, let m({) be the singular inner function
(g2

m({) == "' in H*. One knows that mH? is an invariant subspace of U, , so that

H'(m) == H* © mH* is an invariant subspace for U¥. Let A% = U¥|#(m), so that

A is the operator in £ (5 (m)) defined by

(VIIT) Av(l) = Pemlv), o) e #(m).

It is well known (cf. [20, p. 124]) that 4 is a completely nonunitary contraction of
class C, (in the terminology of [20]) whose minimal function is m. Furthermore one
knows, because of the connection between the spectrum and the minimal function
29, Theorem IIL.5.1], that 6(4) = {1}, so 4 is an invertible operator in (%). Fi nally.
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because of the relation between the divisors of m and the invariant subspaces of A
[20, pp. 129—139], one knows that the invariant subspaces of A are exactlyc +tine

t{>—
spaces {H? © m,H?}o<t<1, where m, is the singular inner function m({) = e G s
0 < 1< 1. Thus Lat(4) is isomoiphic to the closed interval [0,1], and all of the inva-
riant subspaces of A are hyperinvariant for 4 [20, Proposition I11.7.6].

With A as in (VIII), let g = g and / be the conformal maps of Theorem 2.1

corresponding to any (fixed) one of the arcs E., n < ¢ < 2n. Then, according to
Theorem 2.1 and Corollary 2.5, one has that Lat(h(A)) is isomorphic to [0,1], while
h({A)* € (BCP) and its invariant subspace lattice Lat(h(4)?) is so large that it contains
a lattice L disjoint from Lat(/(4)) that is isomorphic to the lattice of all subspaces
of #. Thus, if one is to solve the square root problem for (BCP)-operators, [one
must somehow “find > an element of Lat(/(A4)) among the much larger set Lat(/1(4)?).
Note also that since Lat(h(A)) is linearly ordered, i(A4) is not a reflexive operator,
but [#(A)]? is reflexive since it is a (BCP)-operator [1].

A similar situation occurs if we take A to be as in (VIII) and / to be the func-
tion of Corollary 5.3. In this case, one has that #(A4) € (BCP) and has a huge lattice
containing Lat(A4), while Lat(h(4)-?) = Lat(A) ~ [0,1]. So to solve the inverse
problem for (BCP)-operators, one must somehow locate one of the elements of
this tiny lattice Lat(4) among the huge lattice Lat(h(4)). Note also that in this
case h(A) is reflexive, while #(A4)-* is not reflexive. To our knowledge, this is the
first |example exhibited of a reflexive invertible operator on a Hilbert space
whose inverse is not jreflexive. (This phenomenon cannot occur on a finite di-
mensional space.)

REMARKS. 1) Enhancement of the technique used to prove Theorem 2.1 actually

yields (cf. {11]) this theorem: If h e H®, SSIh’I<+oo, and h has a continuous

-extension to almost every point of C, then for every A in (%), the nontagen-
tial cluster set of h at 1 belong to 5(h(A)).

2) An example of a completely nonunitary contraction 4 and an H*-function
4 such that ¢(A4) = {1} but a((4)) is not a singleton was given in [12]. (The first
such example had been given earlier ty C. Foias.) The specific operator 4 with
this property exhibited in [12] was the operator in (VIII) above, and the domain cor-
responding to the conformal mapping 4 was similar to that in Figure 1. The au-
thors of [12] say that their idea was partly due to R. G. Douglas.
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