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INFINITE TRACES OF AF-ALGEBRAS AND CHARACTERS
OF U(e)

ROBERT P. BOYER

INTRODUCTION

The representation theory of approximately finite-dimensional (AF) C*-alge-
bras was vigorously developed by Stratilda and Voiculescu. Their main objective
was a study of the unitary representations of the unitary group U(oo), the direct
limit of the classical unitary groups U(n); such a study had been previously sug-
gested by Kirillov [7]. Having introduced an AF-algebra W = A(U(c0)) such that
the factor representations of U(oo) naturally correspond to those of 2, Stritild and
Voiculescu proceeded to investigate various families of factor representations of
U(co). In particular, they discovered certain traceable factor (= normal) repre-
sentations [11, V.2}; and, subsequently, Voiculescu [13] found a list of finite factor
representations of U(oo), which he conjectured to be complete.

The purpose of our work was to determine all the normal representations of
U(o0) and to examine to what extent the canoical bijection established by Pukanszky
and Green (see [9], [6]) between the primitive ideal space and the quasi-equivalence
classes of normal representations of (the C*-zlgebra of) a connected locally compact
group holds for U(co). In order to achieve this goal, we had to extend the ,,dyna-
mical system’ characterization of finite traces of AF-algebras of Stritili and
Voiculescu to infinite traces: roughly speaking, we show that any infinite trace is
fully determined by its values on the Bratteli diagram [2] of the AF-algebra. This
is carried out in Section 1. In Section 2, afier giving an explicit description of the
Bratteli diagram of 2 and its primitive ideals and quotients, we show how the solu-
tion of a problem posed by I. J. Schoenberg [10] in 1948 and solved by A. Edrei
[5] in 1953, may be used to demonstrate the completeness of Voiculescu’s list of
finite characters (i.e., finite factor traces). We then show in Section 3, by a detailed
analysis, that a primitive ideal of U arises as the kernel of a normal representation
if and only if the corresponding quotient contains an ideal B stably isomorphic
to an ideal of a finite primitive quotient of U. (The ideal B may be characterized
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as the one generated by ‘‘trace-class’ elements.) The faithful characters of the finite
quotient correspond exactly to the faithful characters of the ideal, and hence the
primitive quotient under consideration. After this work was completed, A. J. Was-
sermann proved that the finite primitive quotients of I admit no faithful infinite
characters (this is included in an Appendix). Thus we obtain a complete list of the
characters of U(oo). The Pukanszky-Green correspondence is very poor for U(oo);
in particular, we exhibit primitive quotients of ¥ with no faithful characters. We
close by giving realizations of the normal representations as subrepresentations
of a tensor product of a finite factor representation with a traceable irreducible
representation.

We would like to thank Niels Vigand Pedersen for useful conversations at
the start of this work and Antony Wasscrmann for many helpful discussions at its
close. We also thank Professor S. Stratila for reading a preliminary form of Section 1.

1. INFINITE TRACES ON AF-ALGEBRAS

The purpose of this section is to extend to infinite traces the Voiculescu-Stritild
characterization of finite traces on AF-algebras in terms of dynamical systems.
We must first briefly review the Voiculescu-Stratila approach to AF-algebras. By
an AF-algebra, we mean a unital C#*-algebra A which is the inductive limit of
a (directed) sequence (A4,, @), m < a, of finite-dimensional C*-algebras such that
Ay = C-I and o,,,: A,, = A,, m < n, forms a consistent family of unital imbed-
dings. We often identify A4,, with its image under ¢, in 4, and its image in the

© Z
limit algebra 4, so we may write A = (U A,,) .
n:=0

We define C, = 4, n 2 1, to be the maximal abelian subalgebra generated by
C,_, and E,, where E, is any maximal abelian subalgebra in (4,) n 4,., and
Cp:=C. Let D, :- ,f,,, with corresponding minimal central projections ¢"Y(m),
e D,, in A,. We also let {g"”(w); we Q,} be a maximal orthogonal family of
minimal projections in C,, so that C, = #(Q,).

We set %, to be the subgroup of the full unitary group U(4,) of 4, given by:

ue %, ift Ad()C, = C,.

If N~ {ue,; Adw)|C, =1d}, then N =:%,nC, and %, is the semidircct
product of U, and N, where U, is a finite subgroup of U(4,) [11, 1.1.9). The group
U, induces an isomorphic group of homeomorphisms I', on Q,. Finally, we define
4 faithful %, -invariant conditional expectation P,: 4, — C, by:

Py(x) == Y, {g"(0)x¢™(w) ; we Q,}, {I1,L.1.2].
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Voiculescu and Stratild [11, 1.1.10] now associate to the AF-algebra 4 a dynamical
system (Q, I') such that A is isomorphic to a concrete representation of the cros-
sed-product of I' with ¥(£2), where

Q ==lim Q, is a compact HausdorfT space;
-

o
I =TI, is a countable discrete group of homeomorphisms of Q. Note

n-:1
that a point w of Q is given by a sequence (®,), w,€ Q,, such that ¢ (w,,,) <
< ¢"Yw,), [11, LL1I].

We also associate to A the diagonalization (C, P), where

<o
C = maximal abelian *-subalgebra of 4 generated by | J C,;
n=1
P = %-invariant conditional expectation of 4 onto C induced by the consis-
tent family of conditional expectations (P,);
2]
U= \JU,;
ne1

Note that C =~ €(Q).

REMARK. The Bratteli diagram [2] of the AF-algebra A4 is determined by the
finite sets D, and the multiplicity [n;='] of the imbeddings of ¢™(n)A4, into
g"'"(n')Ay,, under @, ., where neD,, n’€D,,,. Note that [rn;n]=
== Tr(g"" "(n")g"(w)), where ¢"(n)g"(w) # 0, we Q,. Note that the Bratteli
diagram is an jsomorphism invariant only then the imbeddings ®y_n+1 are all unital,

1.1. Suppose ¢ is a trace on the subalgebra D A,of A. If t,=1]A,, then

n=0
we have:

(1.1 1, = Y, {@"(xm, )Tr)(n) ; ne D,},

where Tr'”(z) denotes the unnormalized trace on the matrix algebra ¢“)(n) 4,
and 0 < a(n, ) < 00; moreover,

(1.1.2) a™(n, 1) = Y {{n, n'1a™ (', 1) ; '€ D, ).

1.2. DEFINITION. A system {a"X(n) ; € D,, n>0, 0<a™(n) < oo} is called

[
a trace coefficient system for \) A, if it satisfies (1.1.2).
n:=0

[+]
Given a trace coefficient system, there is an associated trace ¢ on | A

n=0
and a finitely additive I-invariant measure 1 on (@2, #). Here & is the ring of sets
on Q generated by p;'(B,), where p,: @ — Q, is the canonical map of the pro-

n
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Jective limit and B, is the ring of Borel sets of Q.. y = lim p,, where p, is the mea-
<
sure on £, given by:
@) == a"(n), where we Q,, ne D,, ¢ (w)g"(n) # 0.

For a thorough discussion of projective limit measures, see Yamasaki [15). If ¢ is a
trace on y A4, with trace coefficient system {a”(m, 1)}, then u,(w)=-a"(x, ¢),
we Q,.

If ¢ is a finite trace, then ¢ is uniquely determined by {a"(x, #)}. The main
theme of this section is to develop a criterion when this is true for infinite traces.
The main difficulty will be deciding when the measurc u on Q is countably additive.

1.3. WNotatioN. Let + be a trace on a C*-algebra A. Denote by n, -
c={x e Ad; H(x*x) < + oo}, the ideal of Hilbert-Schmidt elements (with respect
to t) in A and m, = (n,)*n,, the ideal of definition of ¢ [4, Chapter 6]. If s is a
bitrace on A, let n, denote its ideal of definition.

The obvious interpretations of these notions will apply when the trace is
only defined on a dense #-subalgebra of 4, for example on a gencrating nest of
an AF-algebra.

For the remainder of this section, 4 will always denote an AF-algebra with
generating nest C) A,. dynamical system (@, ), and diagonalization (C, P).

n .0

1.4. THEOREM. Let t be a (faithful) semifinite lower-semicontinuous trace on

A. Then t.C is a (faithful) %-invariant lower-semicontinuous trace on C.

Proof. Tt is clear that #/C is %-invariant and faithful when ¢ is. For tech-
nical convenience, we shall work with bitraces. Let s be the maximal bitrace asso-
ciated to ¢ with ideal of definition n. Let #' - :n n C and §' == s'w’ X', 1t suifices
to show that 5" is a maximal bitrace with associated trace ¢’ =: ¢t.C, by [4, 6.4.5). To
establish this, it is enough to show that s’ is a bitracz whose associated trace ¢’
satisfies n, =: »’, by [4, 6.4.3). We proceed in steps.

(2) P(n) = »'. Fix xe 4. Then

HP(x)) = t({}] 4" {w)xq () ; we Q}) = 1(x).

By lower-semicontinuity,

t(P(x)) == t(lim P,(x)) < t(x).
If ye n, then we have:

HP(P(yY™) < t(P(yy™)) = s(y, ),
so, ye »’, and

() S'(P(y), P(») < s(3, ).
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(b) Fix an approximate identity (u,) for n. If (v,) = (P(y,)), then (v,) is an
approximate unit both in norm and the s-inner product.
The assertion is a consequence of (u,) being an approximate identity and the
inequalities:
| Pu)x — x|| = | P(ux — x)|| < [xuy — x|, xen,
and

S (VX — X, v,x — x) =s(u,x — x, u,x — x) €

< 2[t(x*x) — t(x*u,x)], x€n,
by (*) and [4, 6.4.1].

(c) §' is a bitrace. By [4, 6.2.1], it is enough to show that (n')® is dense in »n’
with respect to the s-inner product. This follows immediately from (b).

(d) The norm closures of #’ and n”’ coincide, where n'’ = n,.. Clearly, n’ < n".
Since ¢’ is lower-semicontinuous, '|M, M = (n,)~, is given uniquely by integration
against a Radon measure on the spectrum of M [8,5.6.7]. If (d) were false, there
is an x€ M* whose support is disjoint from the spectrum of (n’)~. In particular, x
would be orthogonal to #»’ with respect to the inner product given by the maximal
bitrace (s')” which extends s'. By [4; 6.4.3, 5.3.1], '’ += n(sy~ and n’ is dense in n”’
in the inner product norm. Contradiction.

(e) ¢ and ¢’ coincide on [(n')~}". Let x€ [(n)~]". Then x may be written as
¥, ye (n)~. Note that (v2) is still an approximate unit for (n')~. Then y, 1 xx*,
in norm, and yY2y,e n’, where y, = (32%v,) *(y*?v,). Thus,

t'(x) = t'(yy*) = lim'(y,) =
= lim sy 20, yP2u,) = lim () == 1(x).
Now (d) and (e) together imply that »’ = n’’, which completes the proof.

REMARK. Theorem 1.4 is analogous to [11, 1.3.11] except that we are working
on the C*-algebra level.

1.5. LEMMA.. Let t be a U-invariant semifinite lower-semicontinuous trace on
C. Then

(1.5.1) t(x) ==Sx(w)du(a)), xe Ct,

2
where p is a o-finite -invariant Borel measure on € such that (i) /£, is Radon,
and (i) u(Q — Q,) = 0, where Q, = Q is the spectrum of (m,)~.

Proof. Let J :-: (m,)~. By [8,5.6.7],¢|J is given by integration against a Radon
measure v. Trivally extend v to Q by (ii) tc form u. Then (1.5.1) holds immediately
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-~

if xe J". To complete the proof, we need to show thath dye - - -+ co, whenever

xe Cr--J% Consider the basis of open sets {E™(w) ;n =0, we Q,} for Q,
where E"(@)  : supp(¢"()). Here ¢'(w) is viewed as a function on Q. If x(w,) # 0,

w, € Q,, choose an open set £ such that x(w) > :lz x(wy) #0, forall we E. Let EY((H)

. ~ 1 ~
be a basis open set such that o, E"(w) < E. Then x(w) = vz-q‘"’(w) (), we Q;

moreover, {(¢"X(@)) = -+ oo, since ¢"N(@) ¢ J. If e, is the unit in m, 1 C,,, then
e,g""(w)is a projection in m, and the sequence {e,g"(®)}¥ , converges pointwise

almost everywhere to ¢'"™(®). Hence, S eq"@)dy — Sq‘”’((f))du. But S g (@)dp:
2 H(e,,q" N @)) = t(g"™(@)). The proof is now complete.

RimArk. If a measure y satisfies (i) and (ii) of 1.5, then the integral formula
(1.5.1) defines a semifinite lower-semicontinuous trace on C.

1.6. PROPOSITION. Let t' be a U-invariant (faithful) semifinite lower-senii-
continvous trace on C. Then t == ¢t'< P is a (faithful) semifinite lower-semicontinuous
trace on A.

Proof. By Lemma 1.5, ¢’ is given by a I'-invariant Borel measure p® such
that p* @, is Radon and p*(Q — Q) =: 0. If u is a I'-quasi-invariant probability
measure equivalent to p%, then the representation 7, of A, given by the Kreiger
construction [11; 1.3, esp. 1.3.11], is semifinite and faithful (if ¢’ is) with normal
trace ¢“ given on (m,(A)")" by:

13(x) = S PH(x)(w) dp(w), x e ({m,(A)}")*,
2
where P# is the conditional expectation given in {11, p. 40] such that P#x) -
= (P(X)), x e A. If t == 1" o P on A7, then #(x) == t*(m,(x)), x€ A". By [4.6.1.5],
to establish the proposition it suffices to construct a sequence e, in m, such that
{n.(e,)} is a strong approximate unit for {n,(A4)}"'. We define ¢, to be the unit in
my N C,. Then e, converges monotonically to the characteristic function of Q.
Since p#(Q - Q) == 0, m,(e,) must converge strongly to the identity.

REMARK. It is possible to show that ¢, is an approximate identity for {(m,)~.

1.7. COROLLARY. Let t be a semifinite lower-semicontinuous frace on ¢ unital
AF-algebra A, with diagonalization (C, P). Then: t = (t'C) o P.

Proof. We first set ¢’ =: (1{C) o P, which is semifinite and lower-semiconti-
nuous by 1.6. By definition, ¢’ .= ¢ on y(C, n m,) and so also on U (4, 0 in).
Hence, ¢’ : ¢t on J:= (m,)~ by {4, 6.3.5]. It now follows that ¢ -t on A since
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t admits a unique semifinite lower-semicontinuous extension from its ideal of defini-
tion to A. To see this, let (f,) be any increasing approximate identity for J, and let
t, be any such extension. If x € A*—J, then x-/%f x'?(< x) is an increasing sequence
in J*. Thus, #,(x) = lm#,(xY2f,xV2) == lim ¢ (33, x1?) == 1(x), so m, == m, and

t, == t everywhere.

The following definition singles out the property for a trace defined on a
generating nest to possess a semifinite lower-semicontinuous extension to the full
AF-algebra. The technical problem is that of guaranteeing that an associated pro-
jective limit measure is o-additive.

1.8. DerFINITION. Let ¢ be a trace on the dense subalgebra y A, of 4. We say
that ¢ satisfies the trace extendibility condition if for any projection e in U A,,,

t(e) == sup{t(f) ; f< e, t(f) < oc, f == projection in U A4,}.

REMARKS. (i) The proofof Lemma 1.5 shows that any semifinite lower-
semicontinuous trace on A satisfies the trace extendibility condition.

(ii) The trace extendibility condition is an almost word-by-word transla-
tion of condition (FC) of Yamasaki concerning projective limit measures to the
context of AF-algebras.

1.9. THEOREM. Let t be an infinite trace on | A, satisfying the trace extendi-
bility condition. Then t admits a unique semifinite lower-semicontinuous extension
to A.

Proof. Consider the finitely additive I-invariant measure u =:lim g, which
«

is associated to ¢. Since the trace extendibility condition insures that the scquence
(u,) of measures on &, satisfies condition (FC) of Yamasaki, the family (u,) admits

a unique minimal projective limit measure p. If ¢’ == S xdu, x e C*, we will show

that ¢* = ¢’ o P is the desired extension. By Proposition 1.6, it suffices to show that
t' is scmifinitc and lower-semicontinuous. ln fact, it is enough to check that u[Q,
is Radon and u(Q — Q) = 0, where Q is the spectrum of (C 0 m,)~. Let e,, denote
the unit in s, 0 C,, and set E,, = supp(e,,). Then E, are open subsets of @, with

m

finite u-measure and y E,, = Q,. Note that u(Q — Q) == 0, by the definition of
i, [15, p. 401, 6.4]. 11|Q, is Radon since if K < @, is compact, then K c | £,,

m- 1
so there is an index i such that K < E;. Hence, u{(K) < -+ co. Uniqueness of the
extension follows since any semifinite extension determines the same projective
limit measure on @ which, by 1.7, uniquely specifies the trace.
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NOTATION. Let e and f be two projections in a unital C#-algebra. If e is uni-
tarily equivalent to f, i.e., there is a unitary u such that u¥ey - f, we write: ¢ ~, f.

1.10. THEOREM. Let A =lim(4,, ¢,,) be an AF-algebra with diagonaliza-
tion (C, P), and let B be a closed ideal A such that:

(1) given any projection e € Cy~- B, there is an increasing sequence (J;) of posi-
tive integers such that f(i,j)e B, 1 < j £ J;, are projections such that the following
conditions hold :

(1.10.1) Ox x:i€) 2 fU ) A o LT,

Then if t is any faithful semifinite lower-semicontinuous trace on A, we have
(m)- < B.

Proof. We first show that U (4, n m,) is norm-dense in m,. By [L1, 1.2], it
suffices to show that their respective norm-closures intersected with C coincide.
Because the closures of the trace-class and Hilbert-Schmidt elements with respect
to a given trace agree, (m,)~ n C==(m,n C)~, by 1.4(d). Finally, by an elementary
topological argument (similar to 1.5), {u(m, n C)}- =: (m,n C)~. Hence,
U@m,n Cy) - u(mn A,)n C has identical closure to (m,)~ n C.

The above paragraph reduces the proof to checking that ©(m,n 4,)~ < B.
To verify this inclusion, it suffices to work with projections. Let ec Cy B be a
projection. Then we have:

/i
t(e) = t((pu_Nél(e))Z UG, )=

J.
= 3% H0n, v (FLD)) - = T t(f(1L1).

Hence, t(¢) <~ + 00 and CyNm, < B, n > 0. Since any projection in Ay is uni-
tarily equivalent to one in C,, we see that Ay 0 m, < B. Therefore, (m,)~ < B.

ExampLi. Let A : =24 +4- C-I, where X is the algebra of compact operators
on a separable Hilbert space. By [2, 1.9], 4 == (U 4,)~, where 4, : : M (C) ® C,
and has Bratteli diagram:
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The ideal B of the theorem is given by (U M,(C))~. Note: M,(C) = M, (C). If ¢
is a faithful semifinite lower-semicontinuous trace on A, we sketch why #(e) =
= -}- 00, where e is the central projection of A not in B. Let ¢, ,: 4,, = A4, indicate
the imbedding of 4,, into A,. Then ¢y y..(e) = e, + f;, where e, is a minimal pro-
jection in B and f; is the central projection of .4y, not in B; in other words, e splits
apart into two pieces in Ay, : one piece lying in Band the other not. Now ¢y y,.(€e)=
=2 Oy, weal€ 3- ) = e+ ea + fo, where @ y.o(f1) = €s + f3. Iterating this
process, we have that @y y.(€) =e + e;+ ... +-e; + f;, where e, ..., ¢ are
orthogonal minimal projections in By, ;. Hence, #(¢) = 4+ co.

2. THE C*-ALGEBRA OF U (o0) - ITS PRIMITIVE IDEALS
AND FINITE CHARACTERS

In this section we first briefly review and amplify the results of Stritila and
Voiculescu [I1, Chapters 1, III] so that the theorems of Section 1 may smoothly
be applied to U(co). In particular, we explicitly give the Bratteli diagrams of the
C*-algebra of U(oo) and its primitive quotients. In the last half of this section, we
indicate how classification problem of the finite characters of U(co) is equivalent
to the known classification of the totally gpositive sequences. As a consequence,
Voiculescu’s list [13, Proposition 2] of finite factor traces is complete.

2.1. If U(n) denotes the group of all unitary operators on C", we let U(co)
be the direct limit group of the unitary groups U(0) = U(1) = U(2) = ..., endowed
with the direct limit topology. (Here, U(0) == {e}.)

In [11, II.1], a C*-algebra A = A(U(c0)) is associated to the group U(co).
Let M(U(o0)) be the direct limit of the Banach s-algebras M(U(n)), which is the
measure algebra of U(n). Since L(U()) = M(U(n)) <« M(U(c0)), 0<j<n,

Ly =Y, L(U(k)) forms a closed s-subalgebra of M(U(c0)). It follows that
k0

- -
L(U(0)) = (UL(,,)) < M(U(co)) forms a Banach x-subalgebra whose C*-com-
n:-.0

pletion is defined to be A(U(co)). In[11,11.1.5}, it is shown that there is a canonical
bijection between the factor representations of U(n),0 < n < oo, and those of
AN - - A(U(c0)). As a consequence, we may identify a (factor) representation of

U(oo) with the corresponding one of .

2.2. A can be explicitly described as an AF-algebra. We give a somewhat
more explicit description than [11, I1.2].
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Fix an increasing, resp. decreasing, sequence K;', resp. K,, of integers. Con-
sider the sequence (4,)%, (=: (4, ; K, K,)T o) of finite sets such that:

2.2.1) 4y < L UG
k0

where
(2.2.2) ned,nUK) =4, it K, <mn) <K}, 1<igk

(cf. [11, p. 64]).
Let P(m), = e U(j)", denote the central projection corresponding to = in
MU(j)), and let

B(n) := P(m)L,(U(})) =- P(R)L(ﬂ'

Define X, to be the algebra generated by B(n), n € 4,,, and let A, be its C¥-comple-
tion. X, admits the central decomposition (11, [11.2.3]):

X, = @ (") B(x) ;n < 4.},

where

(2.2.3) PPV {P(m) ; ned, ),
(2.2.4) Q"N(n) = P(n) (1 — P{?y), med,;;
and so,

%, = @ (Md(n): ned,

where d(n) : = rank of =, and M(d) =: matrix algebra of rank d.
Let ¢')(n), resp. p, p(n), denote the image of Q*(n), resp. P, P(x), in N,,.
Note that, for m e 4, ;,

p(m) = g"N(m) + ¢(m) Y, {p(n) s m € B, ;1)
in particular, when j = n,
p(m) == ¢ Nm).

Thus, the central projections of [, are expressible in terms of the p(z)’s. In 2.9,
we will see that this implies that a finite trace on 2 is uniquely determined by its
values on the projections p(n), ne 4,, n = 0.

2.3. The following lemma determines the Bratteli diagram of . Although
the result is implicit in [I1, Chapter LI, esp. 11.2.8], it never appears in a form sui-
table to apply the results of Section 1.
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LeMMA. (a) Let me 4, ;,0 < j < n. Then:

q(")(ﬂ') = q(n»&-l),(n) +4-

+ g (@) Y g R) ;T € dua, i — dn, s T< T, jH1 < i< nt1};

(b) For ne A, ;, & €4y s> let [1; &4 = the partial multiplicity of ¢ (n)¥,
in g (7Y N, . Then:

[ )y = #{(Rjoas oo s M) 5 M€ Apun, i — An ir T < <

Proof. (a) Since 1 =Y {¢"*"V(7); & € 4,.,}, it suffices to check when
q(m)g "+ V(7)) # 0. Assume 7 € 4,,, ; We consider three cases.

If i <j, then: ¢™(n)q""*V(7) = 0, since

=L My < T

< p(n)(l p'(f‘”il p(ﬂ)(l - p(jn+l)) == Q.
If {~=j, then

q(")(n)q‘”“)(fr) —

- (1)), if 7 = 7;
= p(mp(R) (1 — plrgy = [ 7@, i m =7
0, if m # =m.

If i > j, we will show that:

n<7 and 7 ¢A4,; iff ¢"(m)g"tI(R) 5 0.

Assume that g (n)gt"+V(%t) # 0. Clearly, = -< T since p(n)p(%) # 0. To see that

7t ¢ 4,,, we argue by contradiction. If % € 4,, then p(7) (1 — p{™) = 0, so that
gM(mg"+V(7) < p(mp(R)(1 — pit)(1 — pEY) <
<pmpE)(1 — P — pii) =

To establish the converse will involve the special construction of (4,)%.,.

Since
n <%, there is a chain n=n} <7}, <

. <L my=xa, with =nre Uk)".
By the construction of (4,), each = lies in 4,,, .. Since 7 ¢ 4, ;, either there is

an index g such that my(n) > K, or my(7) < K,. If my®) > K}, so is my(n).
Define a new chain n,€ 4,41 4 — 4, &, j--1 < k < i, such that

my(me) = my(Tm), my(m,) = mp(nlll)’ 2<p<k
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Then n<m;;y < ... <7 ==7. Choose # <z"eU(i+1)" but z'¢ 4,1 ;s1-
Then we have :

g (m)g"+V(w) =: p(m)p(z) (1 — (A — piiiV) >
> p(Mp(Rjsy) - - p(e )1 - P >
> p(m)p(n;4) - .. p(r)p(n’) # 0,

since p(n') < (1 — piiiY) and p(m;41) < (1 -- p%),), by construction. In the situa~
tion where my(n) < K, define =, by: my(m) == m(n), p # k, mym) - m(x).
Then argue as before.

(b) We see that [n; n], = Tr(g™q""+(z)), where ¢ is a minimal projection
in ¢™C,. By [l1, p. 65], ¢"*V (%)C,;, admits a family of orthogonal minimal
projections of the form p(w)qg"+V(x), where

p(@) = prdp(ny) .. p(my), @:im <my<...<m, meU@”".
Now Tr(gg"+1(n)) == number of non-zero products g”p(w)q"*+(7). It follows
that

iff n =, m;¢d,, JRH1<igKk,

U<y <Tjyp < o <My <A, W€dn4a, i du i

2.4. DEFINITION. Prim(U(co)) is the set of all J € Prim(A) such that J is
the kernel of some irreducible representation of U(oo).

By [11, III.1.5], J € Prim (U(oo)) is parametrized by a doubly-indexed sig-
nature (U;; L;);°,, where (Uj), resp. (L;), is called the upper, resp. lower, signature.
The entries of the signature must satisfy:

UeZn{t+ oo}, LjcZU{— oo},
U2 Uy 2 Lj+1 =z L;.
It is convenient to have more notation to describe J. We let:
r,(== r) = number of infinite entries in the upper signature;
8;(== 5) == number of infinite entries in the lower signature;
Ugp = l_im Uj, Lyp= l_im L.
Joo0 had-d

Note that 0 € r;, 5, < 00, and —o00 € Ly < Uy, < 00,
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2.5. DEerINITION. IfJ € Prim(U(oo)), we define the index of J to be the 4-tuple
(ry, Us; 555 Loo)-

2.6. We now describe J € Prim(U(co)) in terms of the central projections
q'"(n), me 4,, which it contains. By [2, 3.2], this will uniquely characterize J;
moreover, it will also give the Bratteli diagram of the quotient U/J.

Case 1. U, — L, < o0 (or ry=s5,=0).
Choose K, > max(n, \Uy|, |L,|). Form (4,; K}, K,) where K} = K, and
K,=—K,. If ned,, we have ¢"(n) ¢J iff

ned

’I.’l;
Uizmm) > L, l<i<n

Casg 2. 0 < ry -5,
Choose K} 2n, if ry==+co, otherwise, K} > max(n,U,,,); and K, < —n,
if s,==0c0, otherwise, K, < min(—n, L,,). For ne 4, ;,, we have g"(n) ¢ J iff

U, > m(n), r+1 <i<j, holds when r, < + co,
and

my_i(m < L, s+ 1 <i<j, holds when 5, < co.
Note that r, = s, == co implies J = (0).

2.7. Fix J e Prim(U(o0)) and consider A==/J. If there is no danger of
confusion, we denote the image of ¢™(rn), = ¢ 4,, in 4 by she same symbol, other-
wisc, we write ¢™(rn,J). Then 4 = limA, where A4, = U, /JnA,. By 2.6, we

—

explicitly know the central decomposition of 4,; i.c.,
A, = @ {g" (MW, /] n lI,; ned,(A)},
4,(A) = {med,; ¢"(m) ¢J} (== 4u()), als0).

W ¢ note that when U, — L, < 4 oo, then the partial multiplities of the imbeding
of A, into A, are always cither 0 or 1. We also observe that if J,, J, € Prim(U(o0))
have signatures whose entries all differ by a fixed finite constant, then
W/J, 2 A[J,. (This represents an algebraic analogue of multiplying a character of
U(n) by a power of the determinant.)

The remainder of the section is devoted to discussing the finite factor traces
of A(U(o0)) and the corresponding finite characters of U(oo), that is, the extremal
normalized pozitive-definite class functions on U(oo).
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2.8. Voiculescu [13] showed that the problem of determining all finite charac-
ters of G on U(oo) is equivalent to characterizing all two-sided sequences {¢,} 2. .o
such that:

. + o0
(2.8.1) det{cm‘.vl-(i—i)}i’:j-] 20, mzmz...z2m,; Z e, 1,

Ao — 00

where ¢, are the Fourier coefficients of ®;U(1) == f; moreover, G(V) =: det{f(V)),
V € U(co).

Let ® be any finite character. Consider G, == G, -®, where &,(V) = det(fy}(¥)),
fi(2) —exp(e(z — 1) + &(z"1 — 1)), ¢ > 0. By [13, p. 8 and Proposition 2}, (&, is
a finite character; moreover, &, is faithful by (11, IIL.1.5], [LI, p. I18]. Let ¢, be
the Fourier expansion of G, U(1). We will show that ¢, is a totally positive sequence
[10], [5], whose generating function is precisely given by [13, Proposition 2]. By
(5, p. 367], it suffices to show that A% >0, formeZ,n > 0, where AL -det{c,,,i-pIfile-
Since ®, is faithful and A® is just the transpose of (2.8.1) where m, ... .—m, ;- m,
A® > 0. Because of the product structure of f, = ®,/U(1), G:U(1) must have the
form of [13, Proposition 2]. Hence, we have the following:

THEOREM. (Edrei-Voiculescu). Any finite character ® of U(co) has the form:

6(V) = det(p(V));

where
p(z) = 2™-expli(z — 1) + p(z"1 — D]

le(al 92) II 17|(b s £ -

‘M0 Puler s 2 [1Pu(dr 5 =70,
1 1

where pi(a ; z) = (1 + az){(1 + a) and pyc; 2)=(1—c)}f(1—cz), 0 < 4, u, a;,H;<o0,
0<¢,d <1, meZ, and, (a; -+ b; + ¢, + dy) < co.

RemArks. The above representation of p(z) is not unique; e.g., z='p/(a; z) =
== p(a=!; z). Also, note that {p"}?. ., p > 0, is a totally positive sequence, but

Y. p" = + co.

2.9. PRoOPOSITION. There is a bijective correspondence between the finite factor
traces of W : = A(U(00)), not supported on a single U(n), and the finite characters
of U(0).

Proof. If ® is a finite positive-definite function on U(oco), then G U(n) - -
=+ ¥,C.-4z» Where y. is the character of n ¢ U(n)". There is a unique trace f, on
M(U(n)) such that t,(P(n)):= c,-rank(n). If ¢, 1, Ly, then the family (1)
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induces a unique trace ¢ on . Conversely, let ¢ be a finite trace on ¥, not supported
on a single U(n). Then ¢ induces a consistent family of finite positive-definite func-
tions &, on U(n), where &, =Y c,-x,, where ¢, = t(P(n))/rank(n), m e U(n)".
Because the above two correspondences are inverses of one another, we have a
bijection between the traces of U and central positive-definite functions; moreover,
this map preserves convex combinations. Hence, factor traces correspond to the
finite characters.

By considering tensor products of the (corrected versions of the) concrete models
of the finite traces given by {13, pp. 16—19], we can compute the primitive ideal
which is the kernel of the finite representation corresponding to a given factor
by trace [l1, III.1.5].

2.10. THEOREM. Let J € Prim(U(00)). Then N/J admits a faithful finite factor
trace iff U,.q = Uy, and Ly, = Ly, In other words, W/J is a finite C*-algebra in
the sense of Cuntz-Pedersen [3] iff all finite entries in the upper, resp. lower, signature
of J are equal. If U, = L, then J is a maximal ideal and N|J = C; otherwise, W|J
is antiliminal.

Again, by consideration of the (corrected versions of the) concrete models
of [13], we obtain the following:

2.11. PROPOSITION. Let t be a finite factor trace of N with generating function p,
given by Theorem 2.8. Then if © is the finite representation of W which corresponds
to t, the signature (U; ; L;) of J = ker(n) is dztermined as follows:

(D) if 2#0, resp. p+#0, let U= -+00, resp. L’ = — 00, 1 <j < o0
and 0 otherwise ;

(ii) if r = ¥ non-zero c’s, resp. s = ¥ non-zero d’s, let U,(Z’ =4o0,l £j<r,
resp. LP = — o0, 1 <j< s, and O otherwise;

(i) let U® = % non-zero a’s and LY = 4 non-zero b's; then U; =
= U+ UP U +m and Ly =LPO + LY + LY + m.

REeEMARK. Conversely, to write down the generating functions for the traces
of with given kernel J is elementary; however expression is somewhat awkward,
so it is omitted.

3. INFINITE CHARACTERS OF U(o0)

The main purpose of this section is to develop the character theory of the
primitive quotients A = A/, J e Prim(U(c0)), which do not admit faithful finite
characters. Surprisingly, the classification of the faithful characters of such quo-
tients can be effectively reduced to the study of the finite characters given in Sec-
tion 2. The main tool in this reduction is the existence of an ideal B of 4 which is

2 .. 2660



220 ROBERT P. BOYFR

stably isomorphic to an ideal of a finite primitive quotient A,. This allows a bridge
to be built between the faithful character theory of A and A,. This ideal B also pos-
sesses another special property: it is the norm-closure of the ideal of ‘‘trace-class™
elements for any faithful trace of 4. When the primitive quotient A is type I, the
situation is even simpler since B is isomorphic ¢, the algebra of compact operators.
We close this section by showing that any normal representation = is a subrepresen-
tation of a tensor product of a traceable irreducible representation with a finite
factor representation. By making use of the explicit construction for the traceable
irreducible representations given by Kirillov [7] and the (corrected versions of the)
construction for the finite normal representations given by Voiculescu [13], we
obtain a concrete construction for any normal representation.

Recall [1, 4.2] that we called J € Prim(U(o0)) elementary if its signature con-
tains only finitely many non-zero entries none of which is infinite; moreover, we
showed that /J is type I. In fact, more is true.

3.3. THEOREM. Let Je Prim(U(co)) be elementary. Then A =:W[J is a
C*-algebra with finite dual ; in particular, A is type 1.

Proof. According to 2.7, A :=1lim A4, , where
——

A, == @ {M(7") ;e U™, U; = my(n) 2 Ln—i+1}

where (U;; L)) is the signature of J. We set a,, respectively, b;, to be the first index
such that Ug,+15 €SP Ly 4y, == 0. Define B, : = M(n,), n > a; -i- b,, where

(1) myn,) = U;, 1 <i<a (omitted if a, =:0);
(1)  m,_iedm) == L;, 1 <i< b, (omitted if b, = 0);
(iti) mym,): =0, otherwise.

Now ¢"(r, )¢+ (n') # 0 iff &' = m,4,, 7" € 4,41(4), by the branching rules. By
[2,3.3], B: - (U B,)" is a closed ideal of 4 such that B = ., the algebra of compact
operators on a separable infinite-dimensional Hilbert space.

We can directly verify that if a,=1,b;, —Qora; == 0,b; =: 1, then 4: -4 -+C-L
We shall prove the theorem by induction on the sum Y, (U; — L;) =+ k, called
the height of J. Without loss of generality, we shall assume that a; > 0. If
k== 1,then 4 certainly has finite dual. Assume this is true for all 4 such that
Z(Uj -~ L;) v = k. Now consider J with height & 4 1. We will examine 4/B:: D,
where D — (y D,)- and

Dn s ®{M(n)= RE U(”)A’ Ul' = nli(n) > Ln—i+ls n# TY,,}‘ P

= @{M(n); neUm)", Ul > min) 2 L,_;y,} = ®@M(z]) ® M=),
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where

U/ =U;, i+#a, U;J:U,,J—-l;
Li=0L;, i#b, L,’,_’::Lb1+l;
mx) = mn), i#a, mr)=Ul,;
My () = m,_ 41 (m,), @%by, mn—b_,+1(n”) = Ll'z,-

If by = 0, then D = A/J’, where J’ € Prim(L'(c0)) has signature (U;; 0). If b, > 0,.
then we shall show that there is an ideal £ of D such that E >~ % and D/E = U/J",
where J € Prim(U(co)) has height < k + 1. Let E, == M(xn,), then arguing just
as for B, E= (U E)~ 2 . Then D/E = W/J", where J” has signature (U;; L;).
Hence A has finite dual since (4/B)/E has finite dual and B = ¢ and £ = A4

3.2. THEOREM. Let J € Prim(U(o0)) be, elementary. Then A = A[J contains
an ideal B =~ A", which satisfies condition 1.19(T). Hence, if t is any faithful trace on
A, (m)~ = B.

Proof. We]retain the notation of the proof of 3.1, exceptfor =, n, . Let

{a1,...,a,} be the set of jump indices for the upper signature;ie., Uy = ...'= U, ,
Upjr # Ual, U,,1+1 =...=0,, U,,2 # U, 41, etc. Similarly, define jump indices

for the lower signature. We now exhibit a collection of projections in A that satisfies
condition 1.10(f). Fix a jump index a in {ay, ...,a;}. Define n, e 4,(4), by
myn,) = my(n,), i # a, m,(n,) = U, — 1. By the branching rules, for =€ 4,,,(A),

q‘")(n,’,)q("“)(n) #0 iff 7=, or 7Tr’x+1'

Fix a minimal projection ¢ in ¢(x;)C,. We let ¢, ,., denote the imbedding
of A, into A,,,. Then we have:

‘Pn,n+1(q(")) = q("+1)(7tn+1)q(") + ¢+ (x;, ) ¢ = q(;rl) + gy,
where ¢+") and ¢"*? are minimal projections in g+ V(1. )C, 41, 4"V 1 )Cs1n
resp., since the imbedding of A4, into A, , has partial multiplicity at most one. Next
we calculate @, ,,5(¢4'™), so

P, n+20d™) = Puir, i @0 + Grir ralg" D).

Now @41 w42(@%+") = ¢2*? is just a minimal projection in B,,, N C,.., while
P+, n+2(g"""") decomposes, similarly to P, n2(g"), as ¢ (m, ) gt - glnt ),
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which are minimal projsctions in B,,, N C,,, and ¢ (n},,) C, .2, tesp. [terat-
ing this process, we obtain:

k

O ner(q™) == Y, QU - g, g D - gt

i=1

where g+ -Deglti-D(n’ . NC,. i1, q"F €qtO(n,,)C,,., are minimal
projections. Moreover, the terms in the above sum form an orthogonal family of
minimal projections in B,,,. Hence, any minimal projection ¢ € ¢"\(n,)C, satis-
fies 1.10(T). We may argue similarly for a minimal projection associated to the
representation n,’ where m,_; (%)) =: m,.;.1(m,), i # b, where b is some fixed
Jjump index for the lower signature. Let A, denote the set of all = € 4, obtained from
n, by altering a jump index as above.

To establish 1.10(7) for any minimal projection ge C,, g ¢ B. g€ ¢*N=)C,,
it suffices to show that there is an index &k and mweA,., such that @,,..(q)-
-q{"*® () # 0. For the sake of simplicity, we suppose there is a jump index a for
the upper signature such that m,(7) < U,. Then take for n:

B m(m)y=U;, 1<i<a,i#a;
(i) my(m) = U, —1;

(iin) 'n‘.!n+a‘,3b_l—i(n) ==L;, 1<€i<g$,
(iv) all other entries arc zero.

By the generalized branching law, & < =

We next investigate Je Prim(U(o0)) such that U,,, # U, or L, # Ly
and —U,, L, # oo. Remarkably, there is a close analogue of Theorem 3.2 where
the ideal B is stably isomorphic to an ideal of a finite primitive quotient of . We
were led to this theorem by a careful study of [11, V.2}.

We need to introduce some notation. Let Je Prim({U(o0)) have signature as
above. Then we associate to J an ideal J; e Prim(U(o0)) such that A/J, admits a
faithtul finite factor trace. It suffices to specify J, by its index (2.5, 2.10). J; is cha-
racterized by having the same index as J itself.

3.3. THEOREM. Let Je Prim(U(oc0)) such that either U, ., # Uy, or Loy # Ly
aitd — Uy, Ly, # 00. Then A == /S contains an ideal B such that

(1) B is stably isomorphic to an ideal B, of A, = W/J;;
(2) if ¢t is a faithful semifinite lower-semicontinuous trace on A, then (m)~ < B.

Proof. In the argument, two cases will be distinguished, viz., U, — L, < 4 oo
and U, — L, == - co. We define g,, resp. b,, to be:

inf{j; Uy == Uy}, tesp. inf{j; L; , = Ly}



INFINITE TRACES OF AF-ALGEBRAS 223

We make the convention that if , = a,, resp. s; = b;, then any constraints on the
upper, resp. lower, signature given below should be omitted. Similarly, if r,, resp. s,
is infinite, any constraint on the upper, resp. lower, signature is assumed to be
omitted.

(a) Construction of B when U; — L, < + oo.

Ifn2a-+b =clet

An('B) = {TCG U(n)A ;’ni(n) = Uia 1 i a;, mn—i+1(n) = Li’ 1 €i< b.l}>

and let B, = @ {M(n) ; ne 4,(B)}. Define B = (U B,,)_. To show that B is
an ideal, it suffices to check, for ne 4,(B), & € 4,4,(4),
(Mg N(w) # 0 iff e d, . (B).

Since [r; n]4< 1, it is enough to show that # < & iff 7 € 4,,(B). This is seen by
the branching law, since

U, zmy@) 2 m(n), 1<i

N
=

Ly S my_j4o(®) S My (M), 1 <i<n

(b) Construction of B, when U, — L, < + oo.
Define 4,(B;) <4,(A;), n > a -+ b, by:

ned(B) Mt m((n)=U,,,, | Si<aand my_; (1) =Ly, 1 <igh

Then B; = (U {M(n);n € 4,(B,)})~ forms an ideal of 4,. We now give a map
7 > n; from 4,(B) onto 4,(B,), where n, is determined by:

Ua+1’ ] Sl'Sa,

min)=(m(n), a+1<i<n—b,

Ly,y, n—b+1<ign

By an easy application of the branching law, n < 7 iff n; < i, where ne 4,(B)),
7 € 4,,,(B;). Because the imbeddings in the generating nests for both B and B,
have partial multiplicity at most one, the Bratteli diagrams agree. Hence, B is stably
isomorphic to B,.

(c) Construction of B when U, — L, = + oo.
We define 4, (B)= 4, (A),c <j<snbyned, (B)if m(n)==U;,r+1<
<ig<ay,and m_; (W) =L;,s+1<i< by.Set 4(B)y=v {4, (B);c <j<n}

Define B, = @{M(n); ne 4,(B)}, B= (UB,,)_. B is an ideal if given 7 € 4, ;(B),
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7 € dyiy 1(A) With g (m)gt*~ V(i) # 0, then 7 € dy414(B). By Lemma 2.4, 7 < 7,
so we have:
Uy 2 mym) 2 m(n) = U;, r+1<i<a;
Ly < m_ ((R) S My ()= - Ly, s+ 1 <i< by

Hence, © ¢ 4,,..(B).

(d) Construction of B; when U; — L, = - -i- 00.

We define n e 4, ;(By) < 4, j(4f), ¢ <j < n, when:

() m(n) 2 Uppq, 1 i<y my_;q(m) < Lgyy, 1 IS5y

(i) myn) -=U,pq, r+1<igaq m',-_i.:,l(n) i Ly, sH1<ig b;

(iif) e A,,_,-(Af).
It is straightforward to verify that B, == (U {M(n);n € 4, j(B)})~ forms an ideal
of A4;.

We now establish the stable isomorphism of B and B,, It suffices to establish
the equivalence of the Bratteli diagrams of B and B,. Define a map n+— n,, from
4, ;(B) onto 4, i(B,) by:

(V) mmp) =my(m), 1<i<r;a+1<i<j—0b;j—s41<ig];

W mfn)=Uppa, r+l1<isa

(vi)y mmp) s Lyyy, J—b+1<i<j
where /J and /J; are formed with the same generatmg set (4, ; K ) satisfying
2.8. This mapping establishes a bijection. By the extended branchmg law, we have,
for me 4, j(B) and 7 € 4,,, «(B),

(i r <7 iff m <7y

(vii) Ty e d, (A T 7 ed, (B).

"These equivalences establish that the Bratteli diagrams of B and A, agree up to
partial multiplicities. In other words, it remains to show that [n; 7], : : [n;; 7pla
where n € 4, (B), T € 4,1 1(B), ¢ <J < k. By Lemma 2.4 (b), [=; 7], ::: number
of distinct tuples( a1y - gy}, Wheren < Koo < moy < W, €y i
-l j 1 <i<k— 1. [n;; 7 4 is analogously defined. But, by (vii) and (viii),
‘the map 7+ 7, induces a bijection between the two collection of such tuples.

We have now verified part (1) of the theorem. In order to establish part (2),
we shall show that the ideal B satisfies condition () of Theorem 1.10. This will
b: somewhat lengthy. For the remainder of the argument, we shall join the cases
U, — L, < !-o00and U, — L, = -+ co more closely together.

(e) Let {ay, ..., a,;} denote the jump indices for the upper signature where
a, .1 < a; € a;. Here the jump indices are defined as in the proof of Theorem 3.2.
For a fixed jump index a, define A,, < 4,(A4) as follows: e 4, if

() ned, (A, c<j<r

(i) m(r)=U;, r+1<i<a, i#a
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(i) my(n) = U, — 1;

(v) mj_j(my~L;, s+1<igb.

Now fix n e A, with ne€ 4, ,(4) and choostc a minimal projection g from
q'""(n)C,. We will establish that g satisfies 1.:10(}). To do this will require prepara-
tory material in (f), (g), (h), and (i).

(f) given T € 4,4 , © < 7, then either & € 4,,,(B) or 4,,,;

(fy) if T € A,,1, then n <7 iff = < it%, where 77 € 4,,,(B) is determined
by: mi(;rT) = myx), i # a, a(nr) = U,;

(£f3) [m; g = [m; %7y L
To see (1), observe that = < % implics m,_,(n) > m(%) = m,(n)> m, (7).
Since m(r) < U;,, m(am)=U, or U, — 1. If r+1<i<ggq, i#a, then

my#) 2 my(n) = U, so my(x) = U;. A similar argument gives m,_; .(7)=L;,
s+1<igb. '

To prove (2), recall that n < 7. iff m(7) = my(n) and m,,_; .1(7) = me_; ((FD),
1 < i € m. By the definition of 77, (2) holds if the inequalities m,_,(7) > m, (%)
and my (") > m (n) are automatic. Since m(n)=U;, r+1<i<a;, i # a,
my(n) = U, — 1, this is indeed the case. :

It remains to show that [n; 7]y = [#; #7],. Now [r; %], = number of tuples
(Tpirs - sT—1) such that < mpy <o < Moy <7, W E€dpyy i — 4y,
m+1<i<k—1. Since ned, and e d,yy, m;ed,,, as well. By (2),
{n; %14 < [m; n7]4. A similar consideration yields [z; #7], < [r; #la

(g) We now wish to formalize (f;) and {f,). We observe that £y induces a
correspondence between projections of the form g"+V(#)ginq"*V(%)C,,,,
n < % €A,y , to the projections g +D(7h)g in g+ V(7)C,,,. If U, — L, < + oo,
note that these projections are minimal. ThlS correspondence in turn, induces a
vector space isomorphism:

Tyir: X~ Yoy,

where X, 4,, resp. Y,.,, is generated by finite linear combinations of ¢*+*V(%)gq,

resp. q*V(a%)q, where 1 < 7 € A,,,. More gﬂnerally, we define an isomorphism

Tn+n l 2 1’

Tn+i: Xn-l-i - Yn+i9

where X, ;, resp. Y,.;, is generated by the products ¢""+"(x)). . .q"*V(7,)q, resp.

g IERNGUY (R ) oL g (R,  where Wied,,;, <7, <... <7
We now study some properties of the map T. )
(h) Let xe X,,;, i = 1, then

(1) e("+i+1) (Pn+¢ n+(+1(x) [ (pn&-l n+|+1(Tn+lY)a
(2) efgtieh. Quiintivr(X) = T (1 — ety -, a+i+1(X))-
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where e == ¥ {¢¥(n") ; n’ € 4,(B)}. 1t suffices to verify (1) and (2) when x has the
form

g gt (F)g, T < Ty ... <F,, 7~?,’ €Apy.
Consider:
et pri nrin(x) =

(*) = e(g-)~5+l) . Z {q(n+i+l)(nl)x; ne An+i+1(A)} —

= Y {g" P @)x 5 ' € dpaia(B)}-
On the other hand, we see

(pn+i,n+i+l(Tn+ix) =
— Z{q"‘*"“’(n')q‘“”(ﬁ.’)q‘"*"‘”(7?;-1) .
cer @U@ G M€ dpsisa(B)).

By (fy), ¢+ +V(n')x # O iff g+ +D)(n")T,, (x) # 0, n’ € 4,,,;,.(B). Since the terms
in the above two sums are mutually orthogonal, it suffices to show that the indivi-
dual terms are equivalent. If U, — L, < + oo, this is immediate since the terms are
minimal projections. More generally, we need to determine:

Tr(q‘"*‘"“’(n’)q("“')(?ri) .. q("”)(i'l)q).
Since ¢ is minimal, the value of this trace is
2 PP CPNREE N I i FH 3
Note that this agrees with
Tr(g* D ()g U@ )"+ =(R;-1) .. g+ (Ty)g) =

=(ny My ... [ii—lé ”ﬂa[”?? )4,

by (fy).
To verify (2), consider

a— ‘-’(sﬁ'i“)) : ‘Pn+i,n+i+1(x) ==
((:k#)
= Sfg N5 € Ay,
By (f,), the terms of (x#) coincide under T, ., with those of ().

(i) We now establish some notation. Fix & € A,,,, with 7 < % and set g@*+1 =
.z g+ (7). We define: f; = gD, e, = T, ,.q"*V,

ﬂ == (1 - e(é’+i))¢n+i—l,n+i(fi—l)a iz 2;

e; = e(t';'+i)(Pn+i—1,n+i(ﬁ—1), iz 2.
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Note that f; € Y, €; € X,;- We now prove the crucial decomposition:

k
(*) (pn+1,n+k(q("+1)): Z q’n+i,n+k(ei) +ﬁn k 2 2,
i=2
where e, ~, e, ~, ... ~, €.
If k =2, (») becomes:
“Pn+1.n+2(q(“ D) =

== 9(5+2)‘Pn+1,n+2(q("+1)) + (1~ egﬁ 2))(pn+l,n+2(q("+1)) =

9(1'9'+2)(Pn+1,n+2(f1) +ad - eg"'hz))‘Pnu_nz(fl) = e, + f.

By (h), 9(3+2)'(Pu+1,:;+z(f1) ~u Pns1,n+2(Th11f1), sO that e, ~, e;. Arguing by induc-
tion, we assume (#) holds for k — 1, k > 3. Consider:

(Pn+1,n+k(q(n+1)) =

k-1
= Qatk—1,n+k ( 2 @n+in+i-1(€) + fk—l) =

i=2

k—1
= Z (pn+i.n+k(ei) + (pn+k—1,n+k(fk~1) =
i=2

P
=Y Onsi,neale) + € + fi-

fes2

We have: T,,;f; =e;, since
Tovifi =T, (1 — eg“’)‘l’nﬁ—l,nﬁ(ﬁ—ﬂ) =

== eg'+i)¢n+i—1,n+i(fi—l) =€,

by (h). On the other hand, we see that:

€ = e(7)+k)(pn+k—l,n+k(fk—l) ~y

~u (Pn+k—1,n+l:(Tn+k—1 Ji-1)=
= Qpik-1,n+k(€-1)-
by (h). Hence, (x) is now proven.

We now summarize what we have shown: n € A, was chosen together with
a minimal projection g from ¢"(rn)A,. Nextwepicked 7 € A,,,, © < 7, and formed
gD = g+ D(R)g. Note: @, ,41(9) = g"+V. By (i), g"+? satisfies condition 1.10 (%),
and, in turn, so will ¢ itself.
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(j) Itis necessary to introduce jump indices {b,, ...,b,} for the lower signature.

4

Then for a fixed lower jump index b, form the set A4;,, where = ¢ A, if

() med,;, c<j<n,

(2) mn)=:U;, 1<i<a,

) mj_paa(m) =2 Ly + 1,

(4) my_(my=L;, s+1<i<b, b#b.
As before, fix n e A, with a minimal projection ¢ from ¢(n)C,, then we can
argue almost identically to the above that ¢ satisfies 1.10 ().

(k) It remains to verify 1.10 (1) for any minimal projection ¢’ from ¢ (=")C, ,
n'¢d, ;(Ad) — 4, (B), c< j < n To do this, it suffices to find an index % and
7'’ € A, or A, such that @, (9)g¥)(n"")#0. As usual, we will only check the upper
signature case; viz, we assume there is a (upper) jump index a such that m(n)< U, ,
r-+ 1< a < a,. We take n’’ to be:

(1) n"eMndisi, k=2j+a - by

(2) my(n"):=min(K;,U), 1<i<a;i+#a;
3) m(n'):=U, —1;

@ m(n") Uy, ay+ 1 €7 < ay~J;
(S) my(n"y: L, @474 1<

(6) my_;py(m’) = max(L;, K), 1 <i<b.

i < ay -+ 2j;

REeMArk. If J is chosen as in Theorem 3.3 and U, — L, < -i- 0o, then the
ideal B of ¥A/J is stably isomorphic to A,.

Proof. By the theorem, B is stably isomorphic to the ideal B, of 4;. We show
that B, is stably isomorphic to A,. Define a bijection 7 +=> n* from 4,(B)), n = ¢,
onto 4,_ (4,), where my(n¥) = m;,,(n), 1 < i < n—c. This map yields an equi-
valence between the Bratteli diagrams of B, and 4;, so that B, and A4, are stably
isomorphic.

3.4. COROLLARY. Let J e Prim(U(co)) satisfy the conditions of Theorem 3.3.
Then there is a bijection between the faithful characters of W|J and the faithful cha-
cacters of WfJ;.

Proof. By [14, Corollary to Theorem 7], there is a bijection between the faithful
characters of a separable primitive C*-algebra and those of any non-zero ideal.
Since there is a bijection between the (faithful) characters of any two stably isomorphic
C*-algebras, the corollary is established.

For the sake of completeness, we shall sketch a proof of the bijective corres-
pondence of characters of stably isomorphic algebras. It is sufficient to work with
a C*-algebra 4 and A ® &
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We first establish that every representation of A ® A on j#, say, has the form
7, ® Ty, where 7, is a representation of 4 and 7, is the identity (irreducible) repre-
sentation of . By the definition of the maximal tensor product, there exist repre-
sentations ¢; of A and g, of X" in 3# such that ¢,(4) commutes with o,(%#") and
n(a®b)==0(a)oxb), ac A, be . By [4, Chapter 4], we know that o, is a direct
sum of copies of the identity representation of " on #,, say, so that #° = ®H,
with 6o()'=C & HB(H,) . Thus 0(4d) coy(H7) =B(H) ®C, 6o5(A)=C R B(H:);
so that, regarding each ¢, as a representation 7, on J#;, we see that n is equivalent
to 7, ® n, as claimed. Hence, we have correspondences: n — w, and =, > 7 ==
== m; ® n, between representations n of A ® # and =n; of 4 which preserve
quasi-equivalence.

Next, we show : 7; is normal ifl = is normal. Assume n; 1s normal with trace T,
Choose a e A+ with 0 < 7(n;(4)) < + oo and pick a minimal projection p from .
Then 1 ® Tr(rny(a) @ ma(p)) = t(my(@)) < +- co. Conversely , assume 7 is normal.
Then there exists a ¢ € (A® #°)* such that 0 < t ® Tr(n(c)) < + oo. It will suffice
to find ¢ of the form a ® b in order to establish that n; is normal. Now there exists
a rank one projection p in A such that n((1 ® p)c) # 0. Then (1 ® p)c(l ® p) may
be written as a ® p, so that 0 < t ® Tr(a ® p) < + co.

ReMARK. The classification problem of the faithful characters of A, as in 3.3,
is reduced by the above corollary to the consideration of the faithful characters
of the finite primitive quotient A,. In an Appendix, A.J. Wassermann shows that
such A4, can never admit infinite faithful characters. Since the faithful finite charac-
ters of A, were classified in Section 2, the character problem for 4 is solved.

3.5. THEOREM. Let J € Prim(U(c0)) be such that Uy, = —oo or L, = + oo,
then A = W/J admits no faithful characters.

Proof. The theorem relies heavily on the proof of Theorem 3.3. By symmetry
considerations, we only treat the case when U,=U,, == + oo and L, = -+ co. Now
A = U/J is also a quotient of the algebras of 3.3. In particular, 4 = (A/J,)/E,,,
where J,, € Prirri(U(oo)) and E,, is an ideal of A/J,,, m > 1. Here J,, has signature
(Uj, L))j2.; such that Uj = Ul =+ o0 and Lj==L;, 1 <j<b,, [} = L, s,
J>by, where {b, by, ...} denote the jump indices for the finite entries of the lower
signature of J. The ideal E, is determined by: for n e 4, ;(J,), ¢"N(n,J,) <€ E,
iff j > b, and m;_;.(n) < L;, b, +1<i<j.

By part (i) of the proof of Theorem 3.3,if & A, ;Ud,jand we A,y UAdp,
such that: ‘

(%) T, 4(g"* AR)q"N(m)) ¢ E,, 5

k
then g™(m) > Y, pi> k > 1, where {p;}¥_, are mutually unitarily equivalent pro-
i=1 '

jections. We introduce the notation that [x] denotes the canonical image in 4 of an
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element x of A/J,,. By the construction of p, (=T,,,(¢""+N(7)g"" (7)), [p] # O ; so
that, by unitary equivalence, [p;]]#0, 1 < i € k. Hence, 1([¢*(n)]) - - -i- oo, for any
faithful character ¢ on A.

To complete the proof, it suffices to show that given any 7’ € 4 ,(J), there is
an index mand n € 4y(J,,), 7 € 4y41(J,,) whichsatisfy (#) and g™z, J) = [¢™V(r, J,)].
Choose m so that b,, > N + k. We determine = and 7 by their signature entries. We
set: my(m) - < K , 1<ISN—b, ; my(7) == Kijpy; my(R) == Kij, 2€i € N-+1-b,,.
The entries my_;,,(7) and my_;, (%) are identical and are given by: Ly, -1,
i=b,;L,s5+1<i<b,—1; Ky, 1<i<s,. (Remember that (4,; K, K,)
determines the diagram of U, 2.2, 2.6.) It is elementary to check that n and x are
the desired representations.

We now summarize our main results.

3.6. THEOREM. Let J € Prim(U(00)), then:

(1) W/ is finite and type 1 iff Uy =: Lo, (< + 00);

(2) U/J is not finite and type 1iff Uy — Ly < + 00, Uor L, #0, and
Uy =~ Lo,

(3) W/J is finite and antiliminary iff U,,, = Ugand Ly,; = Ly, and U, # Ly,

(4) W/J is non-finite, semifinite, and antiliminary iff U,,, # Uy 0r Lgy1%# Leo,
—Uy and Ly, # o0, and when r ==5s =0, Uy, # Ly;

(5) U[J adraits no faithfid characters iff — Uy, or Ly, == -+ o0.

REMARK. According to the terminology of Cuntz and Pedersen (3], the finite
type 11 C*-algebra A = A(U(co0)) admits primitive quotients of types I, I, IIl.
In particular, U has quotients with no faithful semifinite lower-semicontinuous
traces. In a sense, 2 combines examples 4.12 and 4.15 of [3] together.

We next summarize our main results on the representation theory of U(eo).

3.7. TueorReM. (1) Up to unitary equivalence, the finite-dimensional irreducible
representations of U(oco) have the form: [det(V)}", Ve U(oo), me Z;

(2) Up to unitary equivalence, the traceable infinite-dimensional irreducible
representations are precisely the ones given by Kirillov [7] together with their tensor
products with integral powers of the determinant function ;

Assume that (n, t) is a normal representation such that {n(W)}" is type 1I.

(3) Up to quasi-equivalence, the finite normal representations are the (corrected
wversions of ) the ones given by Voiculescu [13];

(4) Suppose {n(M)}"’ is infinite. Then J — ker(n) must have the form of 3.6.4.
The (infinite) characters of U(oo) with kernel J are in natural one-to-one correspon-
dence with the (finite) characters with kernel J;, where the ideals J and J; have the
same index.
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For the convenience of the reader, we isolate the following lemma which is
used in the Appendix.

LEMMA. Let t denote an infinite semifinite lower-semicontinuous trace of U(co).
Then t is uniquely determined by its values t(p(6)), ce Un)", n = 1.

Proof. Let t, and ¢, be two such traces which agree on the projections p(s),
o e U(n)". It follows at once that ¢, = t, on C**(U(n)). Since any trace on C*(U(n))
has a unique extension to M(U(n)), t, and #, must induce the identical trace on
L, = M(U(n)), where L, is given in 2.1. The result now follows from Theorem
1.9 since there are generating nests for 2 that lie in y L.

3.8. THeoReEM. Up to quasi-equivalence, any normal representation may be
realized as a subrepresentation of a tensor product of a traceable irreducible repre-
sentation and a finite factor representation.

Proof. We treat the type Il case first. Let Je Prim(U(oo0)) satisfy 3.6.4.
Set A == A/J and choose B, B, and A4, as in 3.3. If ¢' is a faithful finite character of
B, given by restriction of a faithful finite character of A4,, then there is a unique
faithful character ¢ of A, such that ¢(p(¢))=t'(p(0)), for all 6 € D,(B)=J4,(B)n

m

n U(n)"; moreover, (m,)~ = B. We will stil! denote by ¢ the pull-back of the cha-
racter ¢t to .

We will construct a normal representation n of 2 with ker(n) = J and with
corresponding trace ¢ == ¢. Throughout the argument, we need to distinguish two
situations: U (J) — L(J) < + oo and U,(J) — L,(J) = + oo.

When U; — L;< +- oo, let n* be the traceable irreducible representation with
ker(n*) having signature:

Uy — Uspy, ..., U, — U,y, 0,0, ...),
(Ly — Lyers ooy Ly — Lyyn, 0,0, ..).

Here the indices “‘@”’ and 6" are the same as the ones used in the proof of Theorem
3.3. By [1, Section 4], n* may be realized as a direct limit of irreducible representa-
tions; in particular, we may require that n* act on a Hilbert space H with ortho-
normal basis {e(a)} such that =*|H,e Um)", n > a-+ b, with signature
U Uy, .. Uy —Uspqy oo s Ly— Ly gy ..., Ly — Ly,y). The space H, is
just the linear span of {e(1), ..., e(k,)}.

When U, — L, = + oo, n* is constructed exactly as above except that
ker(n*) has signature:

(Ur+1_—Ua+l""’(/n— a+130’0’---)’

(Ls+1 _'Lb+1’ "'7‘[‘5_ Lb+170’0s '-')'
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Now let n# be a type II, factor representation of 2 with index (r;, U (J): &,
L(J)) acting in standard fashion on a Hilbert space K. Suppose ¢ e K is a unit
trace vector. It follows that {n*(A)@7*(2A)}""is a type 1I-factor acting on HRK
with trace ¢ given by:

¢ = E we(a)@éj ’

where w,,)e: denotes the vector state. We wish to establish the following formula:
() o(n(p(c'))) = ¢,- rank(a’),
where ¢’ € D,(B), 0 : = o7, and ¢, == det(¢, (o) 5 ) (se€ 2.8).

kﬂ
For ¢’ € D(B), o(n(p(c')))== Y W0 AT(p(a'))), just as in {11, pp. 152-~153).
e -1 .

k
n
We shall treat the sum Y ©@ece n{U(n) as a class function on U(n) so that it
e :1

may be expanded in terms of characters of U(i). We have:

kfl
Y, Wemes© LUM) = 2(13) Y, {er(0) 50 € DAY}

e=1

\Vhere 'r,/n o Z(n:) Z {C"X(J) O € Dn(Af) — Dn(Bf)}

CrLAIM. Given ¢’ € D,(B), then ¢' < =¥ @ o, where o€ D,(B)) iff ¢: :a}.
Moreover, when o - - of , ¢’ appears with multiplicity one.

To establish the claim, it is convenient to recast it in terms of weights; viz.,

(x2) let w' be the highest weight for o', then w' is a highest weight of n} ® o,
g€ B, iff ¢-=ap.

=) Any weight of n* ® ¢ has the form f; + f,, where f,, resp. f, is a weight
7y, resp. o. The requirement that ¢ € D,(B,) and ¢’ € D(B) yields: '

f1 - : highest weight for n?,
far (Ussrr s Ugsnnmy ooy Ly ooy Ly,
when U, ~- L, < + oo, otherwise,
S0, Uy ~U, s .U, —U, 3,0, ... 0, Ly—Lyyy, ..., Li— Ly, 0%,
Jori(wm oonw, Uppyy oo Upprsms oo sy Loyyoee s Lgyrs #y 0oy ).

Here a ““s” entry means it is not yet specified. The fact that w' is a highest weight
for n¥ ®o forces f, to be the highest weight for . It now follows that ¢ must equal g;.
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<=) Suppose o = af. If f; and f, are chosen as above, it readily follows that
w' == f; < f; is a highest weight for n* ¢) o.

Hence, claim (xx) is established. To check the statement about the multiplicity
of ¢, it suffices to verify that £, and f; have multiplicity one as weights of = and g,
resp. This is clear for f; and f; (if U; — L, < +o0) since they are highest weights.
When U, — L, == -}- 0o, f; has multiplicity one since it is obtained from the highest
weight of n* by the action of the Weyl group.

It is also elementary to check that g’ is disjoint from n¥ ®¢ if 0 € D,(4,) —
— D,(B;) using reasoning similar to the above paragraphs.

Hence, o', ¢’ € D,(B), is disjoint from every tensor product 7} ®o, o € D,(4,),
except when o == o7, and in this case it appears with multiplicity one. This esta-
blishes formula ().

The remainder of the proof is identical to[11, p. 157). Let P,, = sup{n(p(c’));
¢’ € D,(B)}. Then Py, < P,y and P, (H®K) is invariant under the action of
U(n). Hence, L = (U P,,(H ® K))~ is invariant under U(co) and 7 restricted to L
is the desired representation.

If = is a normal representation of fnite type or type I, then m is a tensor
product of itself with the trivial representation. Since the trivial representation is
simultaneously a traceable irreducible representation and a finite representation, n'
admits the desired form.

REMARK. It would be interesting to compute how arbitrary tensor products of
normal representations of U(co) decompose (cf. [11, V.2.6]).

SUMMARY OF THE REPRESENTATION THEORY OF U(n)

(1) An irreducible representation n of U(n) is determined up to unitarily equi-
valence by its signature (my(n), ..., m,(n)), a non-increasing n-tuple of integers.
We write the character of =, i.e., Trz(g), s y, or y(n).

(2) Let m < n. If me U(m)™ and n’ € U(n)", write = < =’ if n appears as a
subrepresentation of n'|U(m). By [16, p. 188], we have the extended branching law:
< n iff

()

mi(n’) = mi(n) > mi+(n—m) (77.',), I1<ig<m
This is well-known when n = m + 1. It is useful to rewrite (%) as:
m(n") = my(n), m,_; (7)) < m,_; 4 (n), 1<i<m

Another short summary of the representation theory for U(n) may be found
in the appendix of [I1].

This work was partially supported by National Science Foundation Grant MCS 81--04840.
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APPENDIX TO *“CHARACTERS OF U(c0)” by ANTONY WASSERMANN

In this appendix we shall prove that the list of normal representations of
U(co) obtained by Boyer in the preceding article is exhaustive. The argument relies
on an idea used by the present author to prove a similar exhaustion theorem for
normal representations of the infinite symmetric group S(co); namely one may
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exploit the fact that in that case the dimension groups of the finite primitive quo-
tients of C*¥(S(c0)) admit integral domain structures compatible with the order.
In the case of U(co) such a structure exists only on a suitable completion of
Ky(A(U(o0))) which we shall not describe precisely here, although its presence will
be clearly seen in the discussion below. (See [2].)

Let 0 € U(m)" and = e U(n)". As usual we have an inclusion U(m) X U(n) =
< U(m +- n). We may then define the Young product of ¢ and n via

o= indU(m)XU(n)TU(m+n)o- ® T,

where o®n denotes the outer Kronecker product of ¢ and n. We may- expand in
terms of irreducible representations of U(m -+ n),

0T = @rEU(m+n)A<a'n’ T>U(m+n) T

where {6 * 7, T)ymsn 18 the multiplicity of = in ¢- 7. We recall that if z and =’
are representations of a compact group G with normalised Haar measure dg, then
the dimension of the space of intertwining maps between = and =’ is given by the
formula

(m 7'y = STr(n(g» T (8)) d.
Now by Frobenius Reciprocity we have

<U ‘T, T)>U(m+n) = <0’ ® , TIU(m)XU(n) > Ulm)y xUnm)

so that {o-=, 1) is always finite.

Next suppose that ¢ is a trace of U(co). As established by Boyer, ¢ is specified
uniquely by its values on minimal projections of C*(U(n)) for n = 0. Now C*(U(n)) =
= @.eumn End(¥,) and thus we denote by #() the value of # on a minimal projec-
tion in End (¥,), where this value may possibly be infinite. To define a trace, £ must
satisfy the additivity conditions

(= Y )

< €UMN+ 1N

where 7’ > n indicates that w occurs as an irreducible constituent of n'|y,. We
may extend ¢ additively to arbitrary representations of U(n); thus if ¢ is finite, we
find that ¢ is a character if and only if t(¢-n) = #(0) - t(n) for all ¢ and =, pro-
vided of course that ¢ is normalised, which we shall assume of all finite characters.
In fact, this condition is just an integrated version of Proposition 1 of [1].

To establish the exhaustion theorem, it will suffice to show that no infinite
character of U(oo) admits the same (primitive) kernel as a finite character. (We
recall that two traces ¢ and ¢’ have the same kernel if and only if K(¢) = K(t"), where
K@) {mit(x) - 0})

3 ¢ 2660
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Indeed, suppose that K(t) == K(¢') for characters ¢ and ¢’, with 7 finite and ¢’
infinite. Since ¢’ is semifinite, we may select z such that 0 < ¢'(n) < co. We define
a new finite trace t'" on U(co) by t'"(¢) == t'(c - n) = ¥, (o 7, TDt'(r). We claim

T

that ¢ <dim(m)~!- ¢’ and that ¢”" has kernel K(¢), which obviously contradicts the
supposition that ¢’ is an infinite character. There are two steps.
a) t'" < dim(w)~!-1’. We have
t"@)= Y, (o -m1)1'(r)
eU(mn)®
and

t'(g) — Y, (o, Ty t'()
€Um+m ™
where o € U(m)"; so it will be enough to check that (o - n, 1) <dim(n) "6, Tly(m)-
Now
TIU(m)XU(n) = @o',n'"(a’, TI') a’ ® 7[’,
where
n(o’, w') = (6’ @ ', tlumxumy = {6’ 7', T)

so that we have

Tomx (1} = @ o, » dim(z')n(e’, n')o’.
On the other hand, tiy, = ®,#(c" )¢’ where n(c') = (o', Tiy(,y. Comparing
these two expressions, we obtain

<03 TlU(m)) == Z'_ dim(n')<0' ' 7'[’, T>-

Thus {6, tlyem) = dim(n){e -, T) as required.
b) K(¢"') == K(t'). From a) we see that K(¢'') 2 K(t'). Now suppose that
o ¢ K(t") = K(t); then we have (¢ n) = t(0) - t(n) == ¥, {6+ =, T)1(7) # 0. Thus

we may find t ¢ K(¢) for which {c-n,t) # 0. Hence
t"(@) =Y, (o7, Y (t) = (o7, T)t'(1) > 0,

so that o ¢ K(t'). Thus K(¢"’) = K(t') and the proof is complete.
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