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ORTHOGONAL PAIRS OF #-SUBALGEBRAS IN FINITE
VON NEUMANN ALGEBRAS

SORIN POPA

1. INTRODUCTION

Let M be a finite von Neumann algebra with a finite faithful normal trace z,
1(1) = 1. Let By, B, « M be von Neumann subalgebras of M. B, is orthogonal to
B, if 1(byby) = 0 for all b e B,, b€ B,, 1(b) = (b)) = 0.

Starting from this notion we present in this paper a method of computing
the von Neumann algebra generated by the normalizer of certain subalgebras in
some type 11, factors. Let B = M be a von Neumann subalgebra, 4°(B) its nor-
malizer in M. In order to compute A(B)" it is enough to compute its orthogonal
in M (that is the set of all xe M such that ©(x*b) == 0 for b€ B). To this end we first
show the following technical result: if B has no atoms and « is a unitary element in
M such that uBu™* is orthogonal to B then u is orthogonal to A°(B)’’. Consequently,
to determine A(B)" it is sufficient to find enough such unitary elements in M.

This method is particularly useful in the case when M is the von Neumann
algebra L(G) associated to the left regular representation of a discrete group G.

Most of the paper contains applications of this method.

We show that the hyperfinite 1I, factor R has a proper subfactor R, such that
any maximal abelian x-subalgebra (abbreviated as MASA) of R, is maximal abe-
lian in R. This gives a negative answer to the type II, case of a problem of Kadison
(cf. [8], Problem 12; for the case when M is of type III, see [16]).

Let S be an arbitrary nonempty set and S, = S a nonempty subset of S.
Denote by Fg the free group with generators in S. Then L(Fso) is naturally embedded

as a subalgebra in L(Fg). We show that if B is an arbitrary completely nonatomic sub-
algebra of L(Fs)) then the normalizer of B in L(Fg) is contained in L(Fs ). In parti-
cular, this shows that any MASA of L(Fso) is maximal abelian in L(Fy). It also shows

that the commutant in L(Fg) of any completely nonatomic von Neumann subalgebra
is separable. Thus, if S is uncountable then L(Fg) is not the tensor product of two
type I, factors. Moreover, in this case, L(Fs) has no regular MASA’s.
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Let M be a type II, factor, » a free ultrafilter on N and denote by M the type
{1, factor defined as in [10], [4). We show in the last part of the paper that for any A,
M® has no regular MASA’s.

We mention that in Section 3 of the paper we include a discussion on ortho-
aonal pairs of MASA’s in the algebra M, of n by # complex matrices. More precise-
Iy, we show that for any n there exists such a pair of MASA’s in M, and that for n
prime there exist # -~ 1 mutually orthogonal MASA’s in M, . We also present a con-
jecture on the structure of orthogonal pairs of MASA's in A, .

Parts of this paper have been circulated as INCREST Preprint Series in Ma-
thematics no. 40/1981, and no.89/1981.

2. DEFINITIONS AND TECHNICAL RESULTS

Let M be a finite von Neumann algebra of countable type and 1 a fixed normal
finite faithful trace on M, t(1) = 1. If B< A is a von Neumann subalgebra then
we denote by Eg the unique normal z-preserving conditional expactation of 3
onto B (see [15], Chapter 10). Note that if 4, = M is finite dimensional and abelian,
with minimal projections ¢,, ..., e¢,, then

. 7 7(e.xe;) "
EA“(x) =y - ——-e, EA(,)HM(,\') = Y exe;, XE€ M.

i tle) i1

We also denote by |jx!y == t(x*x)1/? the Hilbert norm on M given by 7. If 3, is
the Hilbert space obtained by completing M in the norm || [, then Eg(x) may be
regarded as the orthogonal projection of the vector xe M < 5, on the subspace
B < #,. It follows that if B,, B< M are von Neumann subalgebras then B, < 8
iff IIEBO('x)!'g E"Eg(x)"s, for all x e M. In particular, for B, = Cwe get 7(x) <
<"Eg()f:, x& M. Moreover, if S* == {xe M 1(x*s)=0 for all s S} denotes
the orthogonal in M of a subset @ # S< M, then we have (B)* - B and By, B
iff B > B™.

2.1. LemMA. Let B,, B, be ven Neumann subalgebras of M. The following
conditions are equivalent :

(i) 1(byby) == 0, for byc By, bye By, 1(b) = (b)) =: 0;

(it) (byby) == T(by)t(by), for all bye By, bye B, ;

(i) bybyy == by lallbolls,  for all bye By, b.e By

(iv) EBLEB‘,(.\') s (X, xeM;

8% EBI(B:I) c C-ly.
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Moreover (1) — (V) are equivalent with the analogue conditions obtained by inter-
changing B, with B, .

Proof. Take b, € B,, b, e B, to be arbitrary elements. Then
((by — ©(5y)) (by — 1(by))) = 1(bybs) — 1(b1)T(dy)

so that (i) is equivalent to (ii). Since ||byb,|3=1(b}b,b:b}), (ii) implies (iii). Converse-
ly, if (iit) holds then 1(b,b,) = 1(b))1(b,), for all positive elements b, € B,, b, € B,,
and by linearity it follows that (iii) implies (ii). The equivalence between (i) and
(iv) follows by the equality

EBI(EBZ(X) — (X)) = EBxEBz(x) — (),

and by the interpretation of the conditional expectation EB1 as a Hilbert space or-
thogonal projection. Clearly (iv) implies (v). Conversely, if (v) holds then 1(x) =
=1(E31E52(x)) (since Ep and Ej, preservethetrace 7) so that EBlEyz(x) =1(x)1 .
Since (ii) is symmetric in B; and B, it follows that in all the conditions (i) —(v) we
may replace B, with B,. Q.E.D.

2.2. DeriNtTiON. The von Neumann subalgebras B; and B, of M are mutually
orthogonal (B, | B,) if one of the conditions (i) — (v) of Lemma 2.1 is satisfied.

2.3. REMARKS. 1) Since the orthogonality of two von Neumann subalgebras
By, B, ¢ M depends on 7, one should call it r-orthogonality and write B, | .B,.
However, as for the notation of the norm || {, (instead of || ||,) and of the t-pre-
serving conditional expectation Ej (instead of £}) we shall not mention 7. We do
this in order not to complicate the notations. There will be no confusions, since the
trace is always assumed fixed from the begining. [n fact, in most of the applications
the algebra M is a factor, so that the normalized trace 7 is unique.

2) By a result of A. Connes (see [15], 10.18) if B « M is a von Neumann sub-
algebra such that B’ n M < B then there exist a unique normal conditional expec-
tation of M onto B and so, in particular, this conditional expectation preserves all
traces on M. Suppose B,, B, @ M are von Neumann subalgebras of M and
BinM < B,. It follows that if EBI(Bg) < C -1, then B, is orthogonal to B,

with respect to any trace on M.

3) Suppose M is commutative and let (X, %, 1) be a probability space such that
(M, 1) is isomorphic to (L*(X), p). If B, , B, M are von Neumann subalgebras then
B, | B, if and only if the corresponding ¢-subalgebras of 4" are independent with
respect to the measure y. But in the case M is not commutative it is possible that
B, | B although B, does not commute with B, (as it is the case with all the exam-
ples in Sections 3—7). Thus, in the noncommutative case it is not appropriate to
use the term ““independence’ instead of ‘‘orthogonality’’.
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From Definition 2.2 we easily deduce:

2.4. Lemma. Let (M, t,), be a sequence of finite von Neumann algebras with
normal finite fuithful traces, ©,(1) =1, n=1. Let B}, Bic M, be von Neumann
subalgebras such that B} | B} ,n > 1. Denote by (M, 1)-=®(M,,, 1,), B~ ®(B}, 1, BY),

B, := @(BY, 1,:B}). Then B, | B, in (M, 7).
Proof. 1t is enough to show that t(xy) == ©(x) t(y) for x in a total subset of B,

and y in a total subset of B,. So, let X == x;®...®x,Q1, ¥y == 1®...0y,®I,
where x,e BY, y,e BY. Then

() = (@ ... 80N (1n® ... @)®1)) -
St ® ... ®X,Ya®1) = T () - .. T(X,) =
() s () 1) - (00 = T ® .. B, @)
(M ® ... ® 3®1) == w(xX)t(y). Q.E.D.

If B< M is a von Neumann subalgebra then we denote by A7(B) - {u unitary

clement in M ' uBu* =: B} the normalizer of B in M. Note that A'(B)" : = span*A(B)
and A(B)' o B, A/ (B) » B’ n M. The subalgebra B is called regular if
A(B)' == M. Tt is called singular if A (B)' = B (see [5)).

The next lemma is the basic tool in the proof of the main resuits of the paper.

2.5. LemMA. Let B € M be a von Neumann subalgebra and ue M a unitary
.¢lement. Suppose that for any ¢ > 0 there exists a finite dimensional abelian von
Neumann subalgebra A, in B such that 1(e) < ¢ for any minimal projection e in A,
and uAu* 3 B. Then u is orthogonal to the algebra A (B)".

Proof. Let ve A/(B), ¢ > 0 and denote by ¢,, ..., ¢, the minimal projections
of A,. Since udu*® |_B it follows that vudu“v® | vBv¥ = B and so

t(vueptvie)) == t(vueu® v®) 1(e;) == t(e;)>

Summing up over i we get

()} < LE g0\ (o)l == 1Y, eqouei; =
4
= Y lepuel = 3 t(vueavie) = Y 1(e)* <
I ) ]

< (max t(ey)) Y, t(e) < e.
J i
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Tending with ¢ to zero we obtain t(vu) = 0. Thus <(xu) =0 for all
x € span" A (B) =: #(B)" and u is orthogonal to A(B)". Q.E.D.

2.6. COROLLARY. Let B be a von Neumann subalgebra of M and ue M a unitary

element. If there exists a completely nonatomic von Neumann subalgebra B, < B
such that uByu* { B then u is orthogonal to N (B)".

Proof. Since B, has no atoms, given any ¢ > 0, there exist projections e, ...
..., ¢,€ Bysuch that ¥ ¢; = 1, 1(e;) < e. By 2.5 the statement follows. ~ Q.E.D.

Before proceeding with applications of 2.5 and 2.6 we construct some exam-
ples of mutually orthogonal MASA’s in finite dimensional factors.

3. ORTHOGONAL PAIRS OF MASA’S IN MATRIX ALGEBRAS

In this section M, will denote the type I, factor, that is the algebra of n by n
complex matrices, and 7 will be the unique normalized trace on M, .

3.1. LEMMA. Let u,, u,€ M, be unitary elements satisfying uju, = Augtiy ,
for some primitive root of the identity A€ C. Denote by A,, A, the »-algebras generated
by uy and u, respectively. Then Ay and A, are mutually orthogonal MASA’s in M,,.

Proof. Note first that A;, A, are abelian von Neumann subalgebras of M, ,
u,, u; being unitary elements. Since wuuyt==2uy,, it follows that the spectrum of
u, is invariant to rotations by A. Thus specuy == {yg, ol , - . -, tpA" =1}, for some
scalar poeC, || = 1. Similary specuy == {p;, m4, ..., wA" "1}, weC, |py; = 1.
It follows that A,, 4, have linear dimension », so that they are maximal abelian
in M,.

Taking pg'uy, pi 'y, instead of u,, ¥, We may suppose Spec u, == Spec uy =
={1, A, ..., A" 1} Let &), ..., % be the spectral projections of u, corresponding
to the spectral sets {1}, {1}, ..., {A*~1}. Then uefuf = e}, , 2<k<n, uefuf = e;.
Thus, we may represent M, as the algebra of all bounded operators on a Hilbert
space ##, with orthonormal basis &,,. .., &, such that the projection onto C¢, 1s ¢,
1 <k <n and il =&, 2 <k < n, ué; ==¢,. It follows that, with respect to
he basis &, ..., ¢&,, u, and u; have the matrix form:

1 010...0
A 0 001...0

Uy = . ’ =

! 100...0
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A straightforward computation shows that t(uful) =: 0 whenever 0 € &,/ €
< n- - 1 and either &k or [ are not zero. Since any element in A, (or A,) is a linear
combination of powers of i, (resp. 1), we get 4, | A4,. Q.E.D.

3.2. THEOREM. For any n = 2 there exist two mutually orthogonal MASA’s
in M,. Moreover if n is prime then there exist n - 1 mutually orthogonal MASA's
in M,.

Proof. Let uy, u; be two unitaries in M, , satisfying u,u, == lugu, , where 4 - -
—~ exp2mifin; for instance

» 0 010...0
(. 001...0
Uy == - , Yy ==
tn-1 :
0 8 100...0

By Lemma 3.1 it follows that the =-algebras 4, and 4,, generated by 1, and respec-
tively u,, are maximal abelian and mutually orthogonal.

If in addition a is prime then let u), == u§~'4,,2 < k < n, and denote by 4,
the algebra generated by u,. An easy calculation shows that any pair of unitaries
i;,1;,0 < i < j < n, satisfies the conditions of Lemma 3.1. Thus {4;}o<i<» are maxi-
mal abelian and mutually orthogonal in M, . Q.E.D.

3.3. ReMARk. Let K, be the maximal number of mutually orthogonal
MASA’s in M,,. Since each MASA in M, has linear dimension » and M, has linear
dimension #?, it follows that K (n- - 1) -+ 1 < #? Thus K, < n-~ 1, so that for
n prime K, := n ;- 1. In the case n is not prime we know two possibilities of con-
structing sets of mutually orthogonal MASA’s: cither as in the proof of the case n
prime in 3.2 (i.e. consider a set < {0, I, ..., #} of maximal cardinal such that u;, ;
satisfy 3.1 for any 7, j € I, i ¥ j) or by decomposing M,, in a tensor product of algebras
M, , with p prime, and then applying 3.2 and 2.6. In both cases one gets g, - 1
mutually orthogonal MASA’s in M, , g, being the minimal prime divizor of #. Hence
K, > ¢, + 1. In particular K, > 3, for #n > 2. In the case » is prime it seems
reasonable to believe that the construction in Theorem 3.2 is the only possible onc.
More precisely we have the following:

3.4. CONJECTURE. If n is prime and Ay, Ay ¢ M, are mutually orthogonal
MASA's then there exist unitaries uy,€ A,, u, € Ay, such that wuy - = tuguy ,
A= exp 2rija.

Let us mention that 3.4 is equivalent with the following statement:

I wis prime then there exists a unique unitary matrix of the form
M, jans With by =2y, =1,14;i==1,1 <i, j< n (the uniqueness is
understood modulo permutations of rows and columns).
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This unitary matrix is the one that conjugates the MASA of the main diagonal
on a MASA orthogonal to it, and this statement says that it should be equal to
n~V2 (A-DU=NY, oy, where A = exp 27i/n.

We end this section with a useful technical result:

3.4. LEMMA. Let M be a finite von Neumann algebra of countable type and
My = M a finite dimensional subfactor of M. If A,, As ¢ M, are mutually ortho-
gonal MASA’s of My then A, is orthogonal to A, n M with respect to any trace on M.

Proof. Since (A;n MY nM = A, c A, n M it follows that thereis a unique
normal conditional expectation EAQ“M of M onto A;nM. Ife, ...,e, are the

minimal projections of A, then EA; o X)=13 exe;, x € M, so thatif x € M, then

EAénM(x)eMo. But EAénM(x)eA;nM and so EAénM(x)e(Ag nMnM, =

= A N My = A, for all x ¢ M. It follows that if E, denotes the conditional expecta-
tion of M, onto A, (which is unique since A4; N M, == A,) then E, is the restriction of
EAénM to M,, so that EAZ,nM(A,_) = Ey(A4) <C- 1M0=C-1M. By 2.1and 2.3, 2) the

statement follows. QE.D

4. SOME CONSEQUENCES FOR GROUP ALGEBRAS

We shall consider now the case when M is a group algebra (cf. {11]; see also
[15, Chapter 22]). So, let G be a discrete group and A the left regular representation
of G on the Hilbert space £%(G). Denote by L(G) the von Neumann algebra generated
by A(G) in B(£%(G)). An operator Toe Z(£*(G)) is in L(G) if and only if there exists
an element f; €/*(G) such that Ty(f) = fyxf for any fe £%(G). Such an f; is called
a convolver on £%(G). Hence we may identify L(G) with a subset of £2(G), i.e. with the
set of convolvers. Denote by 7 the normal finite faithful trace on L(G) given by eva-
luation in e € G, the unit of G. So, L(G)is a finite von Neumann algebra with the normal
finite faithful trace 7, 7(1) = 1. L(G) is a factor iff G is an I.C.C. group, and in this
case L(G) is of type II,. L(G) is completely nonatomic iff G' is an infinite group.

It is easy to see that, with the above identification of L(G) as a subset of £3(G),
the completion of L(G) in the Hilbert norm ]} |, given by 7 is £%(G).

If Gy = G is a subgroup of G then the natural inclusion £%(G,) = £*(G) induces
the inclusion of L(G,) as a von Neumann subalgebra of L(G). The t-preserving
conditional expectation of L(G) onto L(G,) is induced by the orthogonal projection
of £2(G) onto £*G,): if xe L(G) then

x( , if gGG
Epe,)(x) (g) ={ i) elsewhe:e
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If G,, G; = G are subgroups then L(G,) is orthogonal to L(G,) iff G,
n Gg -2 {(’}.
As a consequence of 2.6 we get:

4.1. ProposITION. Let Gy, < G, = G be infinite discrete groups. Suppose that
Jor any ge G\G,,gGog ' n G, == {e}. If B = L(G,) is a completely nonatomic von
Neumann subalgebra then N/ (B)' < L(G,). If in addition G, is a normal subgroup
of G, then A (L(Gy))'" == L(G,) (all normalizers are considered in L(G)).

Proof. In order to prove .47(B)' < L(G,) it is enough to prove LA’(B,)"' =

> L(G))™". Since {A(g) ' g€ G\G,} is a total subset of L(G,)*, itis enough to show
that A(g) | A7(B)" forany ge G\G,. But gGyg—* 0 G, -= {e}, so that A(g)L(Gy)Ag~")
is orthogonal to L(G,). In particular A(g)BA(g-1) is orthogonal to B. By 2.6 we
get that i(g) ! A(B)".

The second part of the statement follows now ecasily, since the normality of
G, in Gy entails A(L(G,))" o L(G)). Q.E.D.

4.2. ReMaRrks. 1) The preceding proposition can be used instead of Lemma 3
in {5] to obtain all the examples of MASA’s in [2], [5], [14].

2) Recall that if (M, 7) is a type LI, factor then a central sequence of M is a
sequence of elements (x,), < M bounded in the uniform norm and commuting asym-
ptotically with all elements in M, |xx, — x,x"s = 0, xe M. A central sequence is
called trivial if 'x, — t(x,)'s = 0. Suppose B < M is a von Neumann subalgebra
of M and u € M is a unitary element such that #Bu* | B. Then B contains no non-
trivial central sequence of M. Indeed, if (x,), < B is central for M then (x, - - 7(x,)),
is also central, so that we may suppose t(x,) == 0, n > 1. It follows that 2ilx,5: -
o luxu® — x,"3 - 0 and thus (x,), is trivial.

In particular if G is an L.C.C. group and G, < G is a subgroup such that
2Gog~1n Gy == {e} for some ge G, then the subalgebra L(G,) contains no nontri-
vial central sequence of L(G).

From 2.6 we also obtain a criterion for two von Neumann subalgebras of a
group algebra to be not unitarily conjugated:

4.3. COROLLARY. Let G be a discrete group and G,, G, = G two infinite sub-
groups. Suppose that gG.,g~*n G, = {e} for all g€ G. If B, < L(G,), B; < L(G,)
are completely nonatomic von Newnann subalgebras then they are not unitarily con-
jugated in L(G).

Proof. Suppose that uByu* == B; for some unitary element « ¢ L(G). Since
£Gog~1n G, = {e} it follows that

Mg)uBu“M(g)* = Mg)B: A(g)* < L(gG.g~Y) L L(GY.
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Thus A(g)uBu*A(g)* 1 B;. By 2.6 we get that A(g)u is orthogonal to A(By))"”. In

particular t(A(g)u) = 0 for all ge G, so that z(xu) = 0 for all xe L(G) =

span"{A(g) | g € G}. Hence 1 = 7(1) = t(w*u) = 0, which is a contradiction.
Q.E.D.

5. APPLICATIONS TO THE HYPERFINITE II, FACTOR

In connection with the strong form of the Stone-Weierstrass theorem for
C*-algebras, R. V. Xadison asked at the Baton Rouge Conference in 1967 the
following question: if all MASA’s of a subfactor N < M are maximal abelian in M
does it follow that N == M? This problem was answered in the negative by Takesaki
([16]), who gave a conterexample for the case when M is of type II1. The next theorem
give another counterexample, for the case when M is of type I1,.

S.1. THEOREM. If R is the separable hyperfinite 11, factor then there exists a
proper subfactor R, in R such that for any nonatomic von Neumann subalgebra
B < Ry, /' (B)' < R,.In particular any MASA of R, is maximal abelian in R and
its normalizer in R is contained in R, .

Proof. Using Section 3 and Connes’ results in [4] all we have to do is to
construct a countable I.C.C. amenable group G with a proper I.C.C. subgroup G,
such that gGog~1n G, = {e} for all ge G\G,.

Let G, be the group of affine transformations over the rationals. Then G, is
amenable and [.C.C..Take P(G,) to be the group of all the permutations of G, and
denote by S = P(G,) the normal subgroup of finite permutations. G, may be iden-
tified with the subgroup of translations in P(G,). Denote by G the group generated
by S and G, in P(G,). It is easy to check that G/S is isomorphic to G,. Since S is
also amenable, G is amenable. Moreover gGog~'n G, = {e} for all ge G\G,.
This implies that G is 1.C.C., since G, is 1.C.C.. Q.E.D.

5.2. REMARKS. 1) The subfactor R, = R constructed in Theorem 2.1 satis-
fies in particular #(R;)"" = R,,i.e. R, is singular in R. In fact, if R, R is a sub-
factor such that any maximal abelian =#-subalgebra of R, is maximal abelian in R
then R, is singular in R. Suppose on the contrary that R, = A (R,)"’ #R,. Using
Connes’ theorem ([14]) and Ocneanu’s results ([12]), as in [7] it follows that there
exist an amenable group G acting freely on the hyperfinite factor R,, such that
R, =R, X G and such that the inclusion R, = R, becomes the natural inclusion of R, in
R, X G. Using again Ocneanu’s results we can choose any free action of G on R,.
For instance we can take Ry = L®(T%) X« , where TC is the probability space of all
sequences (fg)gec in the thorus T, « is the action on T¢ given by the same irrational
rotation over each T, and G to act on R, as the Bernoulli shift on L°(T°) and tri-
vially on a.Thus, the unitary elements u, and u, canonically implementing the ac-
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tions z and G commutes in R,, although u, generates a maximal abelian subalgebra
in R,. 1t follows that R, has a maximal abelian subalgebra which is not maximal
abelian in R, and thus it is not maximal abclian in R.
2) In [17] R. J. Tauer constructed the following examples of MASA’s in R.
Let {M,},>1 be an increasing sequence of matrix subalgebras such that 4 M, : : R.
n
Take A, ¢ M, to be maximal abelianin M, , such that A4, < A,.,. Then A == U 4} =

n

< R is maximal abelian. Indeed, let x€ M, [x, A] = 0. Then [x, 4,] := 0 so that
[EM”(X), A} == 0, which implies Ey(x)€ A, . Thus x = lim En, (x) €Ay A

Take now %, < M, to be the set of nilpotent minimal partial isometries nor-
malizing A, (ie. ve M,, tA,* < A,, vv*, t*v minimal projections in M, and
(v%0)(pv¥) == 0); let ¥ == U9,. Then A+ = sp” #. Suppose that for a certain 4

n

the set % may be splitted in two sets, % =:%* U %*, where %! is included in the group-
oid associated to .4°(4) and ‘%2 consists of elements v in % for which there exists a
completely nonatomic abelian subalgebra B = A (B depends on t) such that ¢Be¢*
is orthogonal to Avv® in Rov*. Using a slightly different version of 2.6 we obtain
that every v€ #?® is orthogonal to #°(4)”, so that 4* is orthogonal to #(A4)" and
A(A)" = (A U ). Thus for such an algebra A, 47 (A4)"' is completely determined,
Note that if %' : = (3, %> = ¥, then A is singular (see [17], Section 4); if #* is big
enough and %2 # @), then A is semiregular but not regular ([17], Section 5). Using
Section 3, the algebras A, can be constructed recursively such that % satisfies the
above condition and such that %! and %2 have certain properties (for instance
Wr D, U U

The next result give a counterexample to a conjecture of V. Jones and the
author (cf. 3.2 in [7]):

5.3. THEOREM. Let Ac R be a regular MASA in the hyperfinite 11, factor.
There exists a proper subfactor R, < R containing A such that for any subfactor
A = N < Ry, the normalizer of N in R is contained in Ry. In particular, there are
no regular subfactors of R between A and R,.

Proof. Let G be the group of affine transformations over Q. Denote by
T, < (; the subgroups of translations and respectively homotheties over Q. Note
that gHg~1n H - = {e} for all ge G\ H (e = = idg is the unit of G).
Let (X, , i) be a two point probability space and denote by (X, y)- = II( (Ko tto)g -
4EG

Take A -:7°(X) and denote by « the Bernoulli shift action of G on A. Since
¢; is amenable R == A X,G is the hyperfinite 1I, factor (cf. [4]). Let R, =: 4 X, H.
Also, denote by {u,}.cc the unitary elements of R-:4 X ,G which canonically imple-
ment the action z. 4 and R, will be identified with their canonical images in R. We
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infer that 4 < R, < R satisfy the requirements. Indeed, let 4 « N <R, be a sub-
factor. Givene > O lete,, . . ., ¢, be projectionsin 4 such that Y e; = 1, 1(e;) = n%,

1 €7 < n, where 7 is the unique normalized trace on R. Thus ¢, ... e, are equi-
valent projections in R and also in N. So, we may choose a matrix algebra M, c N
such thate;, ..., ¢, are in M, and generate a MASA in M,. Let A, = span{e;};
and choose 4, a MASA in M, such that 4, L A4, (cf. Section 3). By 3.5 we get
Ay 1 AGN R o A, so that A4, | A. We show that u,4,u¥ | N for every ge G\H.
To do this let xe 4,, t1(x) = 0. Then xe R, (since 4, «c M, =« N < R)) and x is
orthogonal to A. Thus x = Y, a,u,, with a, € 4. Consequently

heH
h#e
* * o , ,
upuy = Y, Uy = Y, by,ug,
he H g’eG\H
h+e

withb,. € A. It follows that w,xuf is orthogonal to R, and hence u,Auf 1 N.
Now Lemma 2.5 applies and we get that u, is orthogonal to A(N)”. Since
A = A(N)" this implies that au, is orthogonal to A (N)Y’ for all ae A. Thus

R} =span” {du | g e G\H} < (N (NY") . QE.D.

5.4. REMARKS. 1) The subfactors R,, R, of R constructed in 5.1, 5.3 have tri-
vial relative commutant in R, since both contain MASA’s of R.

2) Using 4.2. 2) one can compute the set of central sequences of R contained
in R, (resp. R)). So, let (x,), = Ry, (¥,), = R; be central sequences of R. By the
proof of 4.1 there exist unitary elements u€ R such that uRu™ | R,. It follows that
(x,), is trivial. Next we show that ||y, — E,(»,)|l- = 0, where 4 < R, = R is the
regular MASA in the proof of 5.3. To do this, note first that (E ,(3,)), is also a cen-
tral sequence of R, since for any ve A (4) we have vE,(v¥y,v)v* = E (3,) (by the
uniqueness of the conditional expectation E,), so that

“vEA(yn) - ~EA(yn)vH2 = ”UEA(yn)v# - EA(J’:;) ”2 =
== ” EA(Uy,,U*) - EA(.yll)H2 < Hvy,,v”’ - J’n”'z - 0.

Hence ||xE (yn) — Ey)x]ly = 0 for any xespan“A°(4) = R. It follows that
(3, — E4«(¥), = R, is also a central sequence of R. By the proof of 5.3 there exists a
unitary element u€ R such that uxu* is orthogonal to x for any xe R;, x | A. We
get that u(y, — E, (»,))u* is orthogonal to y, — E,(,), so that u cannot commute
asymptotically with (y, — E (¥,)),, unless {|y, - E (3,)|ls = 0. We have thus proved
that if a central sequence of R is contained in R, then it is contained in 4 (of course,
asimptotically).

3) By 2) and [10] it follows that there exist no type II, subfactors N < R,
(or N = R,) such that R splits as N® M for some factor M. So, the inclusion R} « R
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give a counterexample to a conjecture of V. Jones ([6]), on whether any subfactor
of R containing a regular MASA of R has a subfactor that splits R in a tensor
product.

6. APPLICATIONS TO ALGEBRAS ASSOCIATED WITH FREE GROUPS

Consider an arbitrary set S with at least two elements, and denote by ¥y the
frec group with generators in S. If S, < § is a nonempty subset then we have a
natural inclusion Fs < Fg which implements the inclusion L(Fs) = L(Fy).

6.1. THEOREM. If B L(Fso) is a completely nonatomic von Neumann sub-
algebra then the normalizer of B in L(Fy) is contained in L(Fso).

Proof. If ge F¢\Fs then clearly gFs g~*n Fs == {e}. By 3.1 it follows
that #(B)" < L(Fs ). Q.E.D.

6.2. COROLLARY. Every MASA in L(FSO) is @ MASA in L(Fg).

6.3. REMARKS. 1) Take S, = S to be a subset with one element and denote
by u ¢ L(F) the unitary element that corresponds to the image of S, by 4. Denote
L(Fso) = A, Then A, is itself a completely nonatomic abelian von Neumann sub-

algebra so that by 6.1 it is a singular MASA of L(Fg). Moreover if 4 < 4, is a
completely nonatomic proper von Neumann subalgebra of A, ,such as for instance
{u?}", then by 6.1, A’ n L(Fy) = A, so that A’ n L(Fg) = A,. Suppose now that
Sy < §is another subset with one element, S, ¢ S,,and denote by v and A, the ana-
fogues of 1 and A, corresponding to .1t is easy to see that nglg"l n FS“ < fe)
for any ge Fg, so that by 4.3 4, and A4, are not unitarily conjugated in IL(Fs). We
reobtained in this way some well-known results of R. V. Kadison, part of which
can be found in [8].

2) Let N,, N, be finite von Neumann algebras with normal finite faithful
traces 1, and 7, respectively. Let (N, = N,, 1, = 1,) be the frec product of (N, 1)
with (N, 72), as in [3]. Then N,, N, are naturally included in N, = N,. If we suppose
N, is completely nonatormic then the same results as 6.1, 6.2 and 1) hold for the
pair N, = N, = N,, instead of L(FSO) < L(Fs).

6.4. COROLLARY. The relative commutant of any completely nonatoniic von
Neumann subalgebra of L(Fg) is separable !in the weak topology). In particilar any
abelian von Neumann subalgebra of L(Fy) is separable.

Proof. Let B < L(Fg) be completely nonatomic. It follows that there exist

projections {e;}, , n = B such that t(ef) ==27", €} =1, 7' -2 ey i,
n»>0

n20,2" 2 k > 1. Thus {e}}x, » generate a completely nonatomic von Neumann subai-
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gebra By in B. If we regard ek as a convolver, eX e ¢2(Fy), then it is supported on acoun-
table subset of Fg. Consequently there exists a countable subset Sy < S such that every
ek,n > 0,2"> k >1, is supported in Fs, and thus By, < L(Fs,). Since B' 0 L(F) =
< By N L(Fg) = /' (By)' < L(FSN), it follows that B’ n L(F) is scparable, because
L(FSN) is separable. Q.ED.

6.5. COROLLARY. If' S is uncountable then L(Fg) has no regular MASA’s.

Proof. If A < L(Fg)is a MASA then, by 6.4, 4 < L(FSN) for some countable
Sy < S. It follows by 6.1 that /7 (A4)" < L(Fs,) # L(Fg) and so A4 is not regular
in L(Fy). Q.E.D.

6.6. COROLLARY. If S is uncountable then L(Fs) is not a tensor product of two
Il factors.

Proof. If L(Fs) = M,®M, then M, or M, is not separable. Suppose M, is
not separable. If M, is of type II, then it is completely nonatomic and by 6.4,
(M, ® 1) n L(Fs) = 1® M, is separable, contradiction. Q.E.D.

6.7. COROLLARY. If S is uncountable then the reduced C*-algebra of the group
Fs, C¥(Fy), is not separable in the uniform norm but all its abelian *-subalgebras are
norm separable.

Proof. Consider C¥(Fg) as the norm closed #-subalgebra generated by A(Fg)
in L(Fg) and let 4, = C}¥(F;) be an abelian =x-subalgebra. Take 4 < L(Fs) tobe a
MASA such that 4, < 4. By 6.4 there exists a countable set Sy < § such
that 4 < L(Fs)). Thus 4, = Cy(Fs) n L(Fs,) = CF(Fs,), so that A, is norm
separable. Q.E.D.

The problem of the existence of a nonseparable C#-algebra with only norm
separable abelian =x-subalgebras was raised by J. Dixmier at the Nice Congress in
1970, in connection with Naimark’s problem. In [I] C. Akemann and J. Doner
construct another example using the continuum hypothesis.

7. M@ HAS NO REGULAR MASA’S

Let w be a free ultrafilter on N and M a type 11, factor with normalized trace 1.
Denote by M the quotient of the von Neumann algebra /°(N, M) by the zero
ideal of the trace t,,, defined by 7,((x,),) = lim 7(x,) (see[10], [4]). Then M*is a type

n-—-w

11, factor.

7.1. LEMMA. Let A, A, = M® be a pair of separable completely nonatomic
commutative von Neumann subalgebras of M®. Then there exists a unitary element w
in M® such that udu* = A,.
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Proof. Let {epi} , be a set of projections in A4;, i: : 1,2, generating

Y T
12>0

A; and such that:

Y i), nz0 i--12;

2>k

2) tlep?)y:=27"" 2"2kzl, n20,i==12
3y el e ez, 272k >, 20, i=:12

Choose by induction over k and n, sequences of projections (ef:1),..¢ in M,
representing ef'* and such that:

D Y epi=1, >0 m>0, i=12;

2"s6>1

2y tw(epiy==2"" 2"2k>21, nz20 m=0, i==12;

3) et el =i, 222 k21 n>0,m2=0

7

For each m > 0 choose a unitary element u,, in M such that u,ef™u¥ - ef7,

2> k= 1. It foliows that the unitary element o == (tp)m>0€ M® satisfics
vePlu® -~ ef®forall 2° > k> 1, n > 0, so that udu® == 4,. Q.E.D.

7.2. Limma. Let M be an arbitrary type 11, factor and let R < M be a sub-
factor of M isomorphic to the hyperfinite I, factor., There exist two MASA's of R,
A and B, such that A |_ B’ n M.

Proof. Let N, be the algebra of two by two matrices. Let 4,, B, = N, be two
mutually orthogonal MASA’s of N, (cf. Section 3).

Let {Nulm»1. {40},>1 and {B)},., be sequences of algebras isomorphic to
Ny, Ay and respectively B,. Then ® N,, is isomorphic to R and A = ® A",

m>1 m>1
B -: ®B), are maximal abelian subalgebras of R. Moreover if M, == ® N,,,
(2R3 n>m>1
A, ® AL, B, == ® B). then A,, B, are maximal abelian subalgebras

nxm>1 nmm>1

in M, such that A, ' B,. By Lemma 3.5, A, : B,nM. Since B,nM>B' nM
it follows that A4, ! B'r M and thus A4 -={_A4, .. B’ n M. QED.

7.3. 'THEOREM. M® has no regular MASA’s.

Proof. Let A = M be a maximal abelian =-subalgebra in M. Let B« Abea
separable completely nonatomic von Neumann subalgebra of A. By Lemma 7.1
and Lemma 7.2 there exist a hyperfinite subfactor R in M and a maximal abelian
subalgebra 4, of R, such that B < R and such that 4, | B'nAl. Since Bc A
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it follows that B n M = A'n M = A so that 4, | A. Moreover by Lemma 7.1
there exists a unitary element w in M* such that uBu* == A, | A. Applying Lemma
1.3 it follows that u is orthogonal to A7 (4)” so that A/ (4)" # M. Q.E.D.

7.4. REMARKS. 1) The same result as 7.3 holds if instead of M we take the
ultraproduct algebra JIM, of a sequence of type II, factors M,, as in [4]. The
n | .

proof is obviously the same.

2) We have thus provided in 6.5 and 7.3 two classes of examples of type II,
factors without regular MASA’s. All these factors are not separable, but there is a
big difference between 6.5 and 7.3: while all MASA’s of L(F) are separable, the
MASA’s of M are all nonseparable (cf. 4.3 in [13}).

3) If (M,), is a sequence of 11, factors and 4, = M, are semiregular MASA’s,
n =1, then A =J[4, =« TIM, is a semiregular MASA (recall that a MASA in a
factor is semiregular if its normalizer generates a subfactor). This follows easily by
2.3 in [13]. Thus N = A(4)" < M, is a nonseparable 11, factor (since A is nonse-
parable), with regular MASA, A.
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