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EXTENDED SPECTRAL OPERATORS

W. RICKER

0. INTRODUCTION

The spectral theory of non-selfadjoint operators has been developed by
N. Dunford and others. A comprehensive treatment can be found in the monographs
of Dunford and Schwartz, [4]. The central concept is that of a spectral operator. For
a spectral operator there exists a decomposition of the space into a discrete or con-
tinuous direct sum of reducing subspaces, in each of which the operator actsin a parti-
cularly simple way. This decomposition of the space is realised by a projection
valued measure called the resolution of the identity for that operator. However,
as pointed out by N. Dunford in the survey [2], many interesting and important
operators of analysis may fail to be spectral in this sense. For this reason it is desi-
rable to have a more general concept of spectral operator.

This note is devoted to extending the notion of spectral operator in the sense
of Dunford. For an operator T in a space X, we shall seek a space Y containing a
copy of X, such that T"has a natural extension to a spectral operator on Y. That is,
the space X - is continuously included in a space ¥ which accomodates the resolution
of the-identity for T.

For example, let T be the operator on the space X = L*([0,1]) given by
T(f) = g where g(t) = tf(t), t €[0,1]. A prospective resolution of the identity for T"
is defined by P(E)(f) = X/, f€ X, for each Borel subset E of [0,1]. However, the
map E — P(E) is not g-additive and so T'is not a spectral operator in X. All the
projections needed to form the resolution of the identity are available but the
topology of X is too strong to allow P to be countably additive. This can be simply
remedied by equipping X with a topology weaker than its norm topology.

Many differential operators T arising from boundary value problems are ¢‘al-
most” spectral operators (see Example 2.14 below). They have associated with them
a large family of projection operators which are in a certain sense dense in the
prospective resolution of the identity. However, the space X on which T acts is
too small to accomodate the additional projestions needed to form a resolution of
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the identity for 7. In this case, merely changing the topology of X cannot make T
a spectral operator. However, there may exist a space containing X as a proper
subspace, in which T does have enough reducing subspaces to form a resolution
of the identity.

There also exist operators which have very few reducing subspaces. For
example, the operator T on the space X -= C([0,1]) specified by T(f) «- g where
g(t) == tf(1), t €[0,1], has no non-trivial reducing subspaces. However, if X is inter-
preted as a part of the space Y == L1([0,1]), then the natural extension of T to the
space Y is a spectral operator. The projections which form the resolution of the iden-
tity for T in Y, are multiplication by characteristic functions of Borel subsets of
{0,1]. These projections are not available in the space X.

The idea of extending the space so as to make an operator spectral is not
new. It is recurring often in mathematical physics. For example, the (unbounded)
operator of differentiation does not have any eigenfunctions in L*R). However,
L*(R) can be considered as part of a larger space, such as L .(R), which accomo-
dates the complete set of eigenfunctions, x — exp(iix), of the differentiation operator.

It is interesting to note that the theory of Banach algebras or locally convex
algebras does not provide the most natural framework for this type of problem.
It does not aliow for the use of the inner structure of a specific operator. The theory
of integration provides a more effective means for studying individual operators
and is therefore the approach used in this note.

The author wishes to thank Professor I. Kluvanek for the theme of this note
and for many valuable discussions.

t. SPECTRAL OPERATORS IN LOCALLY CONVEX SPACES

Let X be a locally convex Hausdorff space, X’ its continuous dual and L(X)
the space of all continuous linear operators on X. The space X is always assumed to
be quasi-complete. The space L(X) will always have the topology of pointwise con-
vergence, If we wish to indicate the topology © of a space X, possibly different from
its original topology, we will denote the space by (X, 7). In particular, if W is a
total subspace of functionals in X”, then o(X, W) denotes the weakest topology on X
for which each member of W is continuous. The identity operator is denoted by L
The adjoint of an operator T in X is denoted by T'.

Let C denote the complex plane and C* the extended complex plane. L.et
Te L(X). If 2 C is such that R(4;T) = (4 — T)~?! exists in L(X), then R(4;T)
is called the resolvent operator of T at ). Define R{co; T) to be the zero operator.
1€ it is clear which operator T is being considered, then R(4;T) is denoted simply
by R(Z). The resolvent set of T, which is denoted by p(T), consists of thosc points
4 & C* for which the resolvent map R(-) = R(-;T) is defined and bounded (in L{X))
i1 a neighbourhood of 2 (see [19]). The complement of p(T) in C* is denoted by
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o(T), and is called the spectrum of T. It is always non-empty and closed, but may
be unbounded.

Let © be a set and .# a o-algebra of subsets of Q. A map P: .4 — L(X) is
called a spectral measure if,

(i) P(Q)—=0 and P(Q) =1,

(ii) P(ENn F) == P(E)P(F) for each E, Feu/l and;

(ili) E+~> P(EY(x), Ee.#, is o-additive for each x € X.

A spectral measure P:.# — L(X) is said to be equicontinuous if its range,
that is, {P(E); E e./tz’}, is an equicontinuous part of L(X). If the space X is bar-
relled, then any spectral measure with values in L(X) is equicontinuous.

An .#-measurable function f: Q — C is said to be P-integrable if,

(1) fis mtegrable with respect to the measure (P(-)(x),x’) for each xe X
and x' €X', and :

(1) for each E e there is an operator S fdP e L(X) such that

i : F:
(oey-fpms

for each x € X and x' € X’; (see [13]).
A measurable funetion ff Q — C is said to be P-essentially bounded if,

Iflp = mf{sup{]f(w)] we E}; Ee M, P(E) =1} < oo.

The space of P-essentxally bounded functions is denoted by Be(P) and is a Banach
algebra wn_th respect to the norm |-|p.

ProrosimioN 1.1. Let P: . # — IL(X) be an equicontinuous spectral measure.
Then every fiinction f€ Be(P) is P-integrable and the integration map

sor\ap, ren.)
2
is a continuous homomorphism.

Proof. Let W be a convex, balanced neighbourhood of zero. It is shown that
there exists a convex, balanced neighbourhood V of zero, such that for every simple
function f with ||f||, < 1 and for every Ee.#,

) (SfdP)(V) cw.

It suffices to assume that 0 < f < 1. By equicontinuity of P there is a convex,
balanced neighbourhood V of zero satisfying P(E) (V) < W for all Ee .#.
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Fix ve V. Then E — P(E) (v), E €.#, is an X-valued measure. If :

o= Y i,
i=1

with the £; pairwise disjoint and 0 < o, € ... < @, < 1, then it follows from

Abel’s summation formula that S JSdP(v) is a convex combination of points from the

E
range of P(-) (v). The inclusion (1) follows.
Let {f,}7°, be a sequence of simple functions converging uniformly on Q to
a function f It suffices to consider the case when ! fi, <1 and {f)/ <1,
=12 ....1f xe X, then P(-}(x) is an X-valued measure. By I, Lemmd 3 1 and
II, Theorem 4.2 of {13], fis P(-){(x)-integrable and {Sf,,dP(’x)} tends to SfdP('x)

n=1

uniformly with respect to E in.#. For each E ¢.#, denote by S fdP the linear map,

E

x»SfdP(x), xe X

E ) )
Since (1) implies that {Sf,,dl’; Eedl,n=12, ... } is an equicontinuous part of

L(X), it follows from Chapter 3, Theorem 4.3 of [21], that for each E¢ 4 the ope-
rator S fdP e L(X)can be defined (uniquely) as the limit of the sequence {S f,,dP}

n-:1

That the integration map is a continuous homomorphlsm followsE from the
multiplicativity of spectral measure and II, Lemma 3.1 of (i3]

If X is a Banach space, then a function f is P-integrable if and only if it belongs
10 Be(P). For locally convex spaces this is no longer the case. If P is an equicon-
tinuous spectral measure, then the space of P-integrable functions may be substan-
tially larger than B(P). In fact, a function f: @ — C is P-integrable if and only if
there is an increasing sequence E,e.#,n==1.2,..., with E, 1t Q such that
A f,{L is a member of Be(P) for each n == 1,2, ..., and the limits,

2) Iim S 4P,

n-»ooE
gxist in L(X) uniformly with respect to E in .#. In this case, tor each E &.#, the
@peratorS JdP is given by (2). It is important to note that if f is P-integrable

E
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and g € B,,(P), then fg is P-integrable and for each Ee .4,

§fg ap = (§fdP) (ISgdp).

An operator T e L(X) is called a scalar-type operator, briefly, a scalar ope-
rator, if there exists a spectral measure P:.# — L(X) and a P-integrable function f
such that .

- S fa.

2 .
If B(C) denotes the ¢-algebra of Borel sets in C, then the L(X)-valued map given by

Pf: E P(f—l(E))s Ee B(C),

is a spectral measure for which the identity function of C is integrable and

T = Szde(z).
¢

If p(T) # ©, then the measure P, is unique and is called the resolution of the iden-
tity for T (proof is similar to [20], Theorem 3). The support, S(P;), of Py, is the
complement of the union of all open sets U < C for which P,(U) = 0.

A proof similar to that of [20], Proposition 12, shows that any operator
S € L(X) which commutes with a scalar operator T also commutes with its reso-
lution of the identity.

PROPOSITION 1.2. Let Te L(X) be a scalar-type operator with o(T) # C such
that its resolution of the identity, P, is equicontinuous. Then S(P) = o(T).

Proof. See [3], Theorem 16, for example.

Scalar operators T'e L(X) for which ¢(T) € T = {z€ C; |z| = 1} are called
pseudo-unitary. Those for which ¢(T) = R are called pseudo-hermitean.

If X is a Rilbert space and Te L(X) is a self-adjoint operator with resolution
of the identity P, then there is.a well known formula which gives the projection ope-
rators, P((a, b)), fora < b, in terms of the resolvent map of T, (Chapter X, Theorem
6.1, [4]). Such a result remains valid for operators in more general spaces. The
following proof is included only to highlight the fact that the compactness of ¢(T)
is not. necessary.

ProrosiTioN 1.3. Let the space X be quasi-complete and T € L(X) be a pseudo-
-hermitean operator with equicontinuous resolution of the identity P. If E = (a, b),
a <b, is an open interval, then

b8

P(E) =lim lim 2 S (R(u — ig) — R(u + ig)) du

50+ e=0+ 271
a+d

in L(X), where R(-) is the resolvent map of T.
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Proof. Let ¢ >0 and 0 < d < ;. (b —a). Since 6> (u—0 4 i)~ oceR,
is P-essentially bounded, it follows that
R(u + ig) =S(u — 0 +1§)"1dP(s), peR.
R

If f(u,0) ==(pu--0—1) 1 —(u—o-+ig)~! for pe(a—+95,b—3) and oceR,
then

b--6 b8
1 . . 1
(3) U S (R(p — ie) — R(p + ie))dp ==~ -- S f(u, ) dP(a) du.
27 2ni
L a+é

Fix xe X. The equality f(u, 6) = 2ig(e? -+ (u — 0)*)~* together with

b o
; S | f(i, 6)idpu = arctan(e~}(b — 6 — o)) — arctan(e~(a -+ 6 — @)) = h; (0),
at+d
b d

shows that ¢ — S {f{u, 6) | du is  P(-}(x)-integrable and hence, that [ is

a4-6
P(-)(x) ® du-integrable in X. An application of the Fubini theorem in (3) gives
b--d
. . 1
S (R(u — ie) = R+ i0)) () du = -A-Sha,m 4P(0) (3.
n n
a+d

The result follows from 11, Theorem 4.2 of {13] since

lim lim /i;,(0) == 1 %,,(0), o€R.
-0 4604 !

An operator Ne L(X) is said to be quasi-nilpotent if
C)) lim KN7(x), x')|Y* = 0,
n—0o
for each xe X and x' e X".
An operator T € L(X) will be called a spectral operator if there exists a scalar

operator S € L(X) and a quasi-nilpotent operator N € L{X) which commutes with
S, such that T = S+ N.

2. EXTENDED SCALAR OPERATORS

N. Dunford noted in [2] that many operators 7€ L(X) which are natural can-
didates to be scalar operators, fail to be such. The operator does not have a coun-
tably additive resolution of the identity. An alternative point of view is not that the
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operator is deficient, but rather that the space on which it acts is deficient, in that
it is not “‘large enough” to accomodate a spectral decomposition of T. In this section
we shall seek criteria which imply the existence of a space Y containing X, such
that 7 has an extension to a scalar operator on Y. Adopting this point of view, many
unbounded operators can also be extended to continuous, everywhere defined scalar
operators.

It is assumed throughout this section that X is a quasi-complete, Hausdorff
locally convex space. Let T be a densely defined linear operator in X. A locally con-
vex, Hausdorff space Y is said to be admissible for T if there is a continuous, linear
injection 1: X — Y such that Y is the completion or quasi-completion of 1(X),
and an operator Ty € L(Y) such that for each x in the domain of T,

(5) Ty((x)) = «(T(x)).

Let Y be an admissible space for T and 1 the imbedding of X into Y. The
equality (5) is written simply as Ty(x) = T(x) for each x in the domain of T. Each
y' € Y'is a member of X’ when it is identified with the element y' o 1. Therefore, we
write Y’ € X'. If T’ denotes the adjoint of T in X, then Y’ is necessarily an invariant
subspace of T, that is, 7'(Y’') = Y'. The subspace Y’ of X’ separates the points of X.
If A is a subset of X, then we write A < Y rather than 1(4) < Y. Sets which are
bounded in X are also bounded in Y.

It is important to note that if Y is an admissible space for the operator T in X,
then o(Ty) can be vastly different from o(T). For example, if X = /Y(N) and
T e L(X) is given by

T(x) = (0, Xy, X3, ...), X :==(x;, X, ...)€X,

then o(T) = {Ae C; |3] < 1}. Let Y = CN with the topology of pointwise conver-
gence. Then Y is admissible for T. If Ty is the natural extension of T to Y, then
o(Ty) = {0}

ProprosiTiON 2.1. (i) Let T e L(X). Let W be a total subspace of X' which
is invariant for T'. If Y denotes the completion of (X, a(X, W)), then Y is admissible
for T.

(ii) Let the space X be barrelled and X' have a locally convex Hausdorff topo-
logy for which X = (X')'. Let Te L(X'). If X is an invariant subspace for T', then
X' equipped with the weak-star topology, a(X',X), is an admissible space for T.

Proof. If x€ X and {x,-) denotes the linear functional on W defined by
wi> (x,w), weW, then the map 1:X — Y given by 1(x) =(x, ), x€X,
is a continuous linear injection. Since W is invariant for 7', it follows that 7T is
continuous from (X, ¢(X, W)) into Y and hence, has a (unique) extension Tye L(Y).

Statement (ii) follows from the fact that the dual of a barrelled space is quasi-
-complete for the weak-star topology.
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 The following series of examples illustrate that the phenomenon of an operator
being scalar in an admissible space is in no way pathological.

ExaMpPLE 2.2. Let X =¢7(Z) for some p satisfying 1 < p <2 and Tc I(X)
be the bilateral shift operator. That is, T(x) == y, x € X, where y, - = x,.., for each
ne Z. Then T is not a scalar operator in X (Theorem 5.7, [6])). However, the space
Y := £%(Z) is admissible for T and the natural extension of T to Y is a scalar ope-
rator in Y.

ExXAMPLE 2.3. Let X = /®(Z). Define 4, == ¢/ for n # 0, ne Z, and 4, -= 1.
The operator T e L(X) specified by T(x) ==y, x € X, where y, == 4,x,, ne Z, is
an isorpetry of X onto X with ¢(7T) = T. However, T is not a scalar operator. 1f
Y == C% with the topology of pointwise convergence, then Y is an admissible space
and T has a natural extension Ty € L(Y). Let B(T) denote the Borel sets of T. Then

®) T, =SzdP(z),

T

where P is the L(Y)-valued spectral measure given by

P(E) == AZGEP"’ Eec B(T),

and P, € L(Y) is the operator of pointwise multiplication by X,y on Y.

ExampLr 2.4. Let X = C([0,1]) with the uniform norm and let T e L(X) be
the operator defined by T(f):=g, fe X, where g(t) = tf(t), t €[0,1]. Then T is
not scalar in X (Example 2.2, [6]). If Y := L? ([0,1]) for any p satisfying 1 < p < oo,
then Y is admissible and T has a natural extension Ty € L(Y) which is a scalar
operator. In fact

Ty =\ odP(0),

0,1}

where P is the spectral measure of multiplication by characteristic functions of
Borel subsets of [0, 1].

EXAMPLE 2.5. Let X = L¥[0,2n]) and let 7 be the unbounded oberator of
differentiation defined by T'(f) = -- if’. The domain of T consists of those func-
tions f for which f”’ exists and is 2 member of X. Let W < X’ be the subspace of tri-
gonometric polynomials and Y the completion of (X,o(X, W)). Then Y can be
identified as the space of formal expressions

{f == 2 aneinx; {an}zor:—oo e CZ} ,

n=—
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with the natural linear operations. If w = Y, 4w,,ei’”‘ € W, then the duality between

n=-—0oo

Y and W is given by the (finite) sum,

‘<f, wy = E aw,.

n=—00

The topology of Y is determined by the semi-norms p,, r = 1,2, ..., where

p,( Y ) — max{la, ; In] < r}.

n=— 00

The operator 7" has a natural extension Ty € L(Y), given by

oo ] o .
TY( Yy a,,e'"") = z na,e'*.

n=-=00 Ne=s—00

Furthermore, Ty is scalar. Inv fact, if B(R) denotes the Borel subsets of R, then

@ T, = SadP(a),
i |
where P is the L(Y)-valued spectral measure given by P(E) = Yy P, , Ec B(R),
. . ‘ meE B

and P, ( Z a e""‘) = a, e"~ ‘for each me Z

ExampLe 2.6. Let X = L*R) and T be the unbounded 'operator specified by
T(f) = g where g(¢t) = tf(t), t € R. The domain of T consists of those functions
feX for which ¢+ if(1), teR,. belongs to X. If Y ==L} (R) is the space of
locally square integrable functions on R, then Y is admissible and T has a natural
extension Ty & L(Y). Let P be the L(Y)-valued Spectral measure of multiplication
by characteristic functions of Borel subsets of R. Then Tyisa scalar operator given
as in (7). g

A collection, .#, of subsets of a non- -empty set, 2, is said to be a o- ring if
it is a ring of sets and is closed under countable mtersectlons The o-ring generated
by .# is"denoted by R (.#).
' Let .# be a ring of sets. An operator valued map Q:.# — L(X) is said to
be o- addmve if-

0 (u E) =¥ 0(E,)
n=1 =1

in the topology of L(X), whenever E,, n === 1,2, .. ., are pairwise disjoint members
of . # whose union belongs to .#. The map Q is said to be multiplicative if Q(E, n
nNE,)) = Q(EYQ(E,) for all E\,E, e . If Q(E)(x) =0 for all Ee . implies
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that x -= 0, and Q(E)'(x") = 0 for all Ee€ .# implies that x" == 0, then Q is said to
be determining.

Let Te L(X). Suppose that associated with T is an additive, equicontinuous,
projection valued map P defined on a ring or -ring, .#, such that P commutes with 7"
and P(E) is a reducing subspace of T for each Ee.#. The extension of P to an
L(X)-valued, o-additive measure on the o-ring generated by .# is not always pos-
sible. Even though the space X may be large enough to accomodate the projections
needed to extend P from .# to R,(.#), thereby forming a prospective resolution of
the identity for T, its topology may be too strong to allow countable additivity of
the extended map P. This problem can often be overcome by simply weakening
the topology of X. A proper, total subspace W of X' is declared to be the dual space
of X, and with respect to the topology, o(X, W), the operator T is a scalar operator.
A scalar operator of this type is referred to as a prespectral operator of class W~
(see [6]).

A more serious difficulty to overcome occurs when P is unbounded on the
ring .#. In this case P cannot be extended to an L(X)-valued measure by merely
weakening the topology of X. However, there may exist a space Y, admissible for ecach
operator P(E), E € .4, such that the set function E ~ P,(E), E € #,hasan L(Y)-va-
lued extension to a o-additive measure on R, (.#). Accordingly, if Y is admissible
for T, then Py is the resolution of the identity for T .

EXAMPLE 2.7. Let X =/°(N). Define 4, = (n — 1)/n for n 22, ne N, and
Ay == 1. The spectrum of the operator T € L{(X) specified by T(x) == y, x € X, where
Yu = AnX,, 2 € N, is the set {1,: n € N}. For u ¢ 6(T), the resolvent operator R(y)=-
== R(u; T) € L(X) is given by
R(W(x) = (h— ) 1x, (h— )7 x,,...), xeX
Carrying out the calculations of Proposition 1.3 formally, gives
(8) P((@, B)() == (%o o), Xekia (e, - )y X EX,

for each a < b. If .# denotes the ring generated by the family of intervals (a.b}
with a < b, then it follows from (8) that P is an additive, uniformly bounded, pro-
jection valued map on .# which commutes with 7. However, P cannot be extended
to a g-additive, L(X)-valued measure on B(R).

If Y denotes the space X equipped with the weak-star topology, then Y is
admissible for T and for each operator P(EF), Ee€.#. Let P, L(Y) be the operator
of pointwise multiplication by X for each n e N. Then the natural extension,
Ty, of Tis a scalar operator given by (7), where P is the L(Y)-valued measure defined

by P(E)= Y, P,, E€ B(R). In this case T is a prespectral operator of class (N).
)'/zeE

ExAMPLE 2.8. Let 1 < p < 2 and T denote the bilateral shift operator on
X »-/P(Z) (cf. Example 2.2). Let

Z={fcLAT); feX,
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where g satisfies p~1 4- ¢~* = 1 and f denotes the Fourier transform of f. With res-
pect to the norm specified by

Al = 1flla+ 1flx, feZ

the space Z is a Banach space which is isomorphic to X. The isomorphism is the
Fourier transform map F: Z — X. Let S e L(Z) denote the map F~1TF. Then S
is the operator defined by S(f) = g, fe Z, where g(2) = zf(z), ze T. Furthermore,
S is scalar if and only if T is scalar.

By an arc in T we mean a subset of the form {e”; ¢ € I}, where [ is an interval
in R. Let & denote the collection of all arcs in T and .# the ring generated by &.
‘The map P:.# — L(Z) defined by

PENf)=xcf, feZ

for each Ee./#, is additive and multiplicative. The theorem of M. Riesz (Theorem
6.4.2, [5]) implies that P is uniformly bounded on /. However, P is not uniformly
bounded on .# and so cannot be extended to a measure on B(T). This can be seen
for example, by the existence of sets E < T, of positive measure, for which ¥ ¢ Z, [9].
' However, the space Y == L¥T) is admissible for each P(E), E<.#, and for
S, and the natural extension, Sy, of S, is a pseudo-unitary operator in Y. In fact,
Sy is given by (6) where P is the spectral measure of multiplication by characteristic
functions of Borel subsets of T. Using the identification of £2(Z) with ¥ we deduce,
as in Example 2.2, that the natural extension of T from X to £2(Z) is pseudo-unitary.

The preceding examples illustrate the need for criteria which guarantee that
an additive, projection valued map in L(X) defined on a ring (algebra) of sets, can
be extended to an L(Y)-valued measure (spectral measure) with values in a suitable
space Y containing X.

Let .# be a ring of subsets of a set . Let P: .# — L(X) be an additive, multi-
plicative map. A locally convex space Y is said to be admissible for P if Y is admis-
sible for each operator P(E), E €., and if the L(Y)-valued set function E > Py(E),
Ee ./, has equicontinuous range in L(Y).

A family @ of subsets of Q is said to be compact if every countable subfamily
of ¢, which has the finite intersection property, has a non-empty intersection;
(see [18]).

Let .# be a ring of subsets of a set Q and ¥ a compact family in Q. An addi-
tive, C-valued function p defined on .7 is said to be @-regular if, for every A e. ¥
and ¢ > 0, there exist sets B e.# and Ce & such that B < C < A4 and |u(E)| <e
for every Ec.# such that E = A\B; (see [18]). An additivemap P: .# — L(X)
is said to be ¥-regular if, for every x€ X and x’e X’, the additive function

E s (P(E)(x), x>, EedJ,
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is ¥-regular. An additive, C-valued function x on .# or an additive map P: .# - L(X)
is called regular, if it is ¥-regular for some compact family ¢ of subsets of Q.

LemMMA 2.9. Let pu be a bounded, regular, additive C-valued function defined
on a ring 4. Then p is g-additive on .

Proof. Since the variation of p is again bounded and regular the result follows.
from 4(i) of [18].

PROPOSITION 2.10. Let .# be a ring of sets and P: .# — L(X) a multiplicative
additive map. Let Y be a barrelled space which is admissible for P. If the map
Py : & — L(Y) is regular, and for each y € Y the set {PY(E)(y) ; Ee ) is rvelatively
weakly compact in Y, then there exists a unique o-additive, multiplicative mup
A R (A) — L(Y), such that 3 (E) == Py(E) for every Ec. /.

Proof. The equicontinuity of {Py(E); Ee.#} and Lemma 2.9 imply that
the map
9 Er (Py(E)(»),¥'> Eec4,

is g-additive for each y € Y and 3" ¢ Y'. Hence, Py(-) (») is weakly g-additive on .#
for each y € Y. By the Theorem of Extension in [10], there exists a unique g-additive
measure A )(3): R(-#) = Y such that H(E)y) = Py(E)()) for every Ee.i.
If B == {Fe R,(M); X(E)e L(Y)}, then B contains .#. 1t follows from the
Banach-Steinhaus theorem that B is a monotone class. Hence, B = R (.#) and ¢~
is c-additive with values in L(Y).
It remains to show that if E, Fe R (./), then

(10) H(ENF) := A (E)H(F).

The multiplicativity of P, shows that (10) holds whenever E, F e .#. Let E¢.//.
Denote by B, the system of all sets F € R,(.#) such that (10) is valid. Clearly # < B;.
Due to the o-additivity of . the collection B, is a monotone class. Consequently
R, (.#) S B,. Now let F be an arbitrary element of R,(.#). Denote by B, the system
of all sets E€ R,(.#) such that (10) is valid. Since .#/ < B, and B, is a monotone class
it follows that R (.#) < B..

For certain types of spaces Y, the criterion of Proposition 2.10 can be sim-
plified.

A locally convex space X is said to be weakly Z-complete if every sequence
{x.}2> of its elements, such that {(x,, x')}7.; is absolutely summable for each
x'€ X', is itself summable with the sum belonging to X. Weakly sequentially com-
plete, in particular reflexive, spaces are weakly Z-complete.

PROPOSITION 2.11. Let .# be a ring of sets and P: .# — L(X) a multiplicative,
additive map. Let Y be a barrelled, weakly Z-complete space which is admissible
for P. If the map Py:. 4/ — L(Y) is regular, then there exists a unique o-additive,
snultiplicative map A : R, () — L(Y), such that H(E) = Py(E) for each Ee¢ 4.
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Proof. For each ye Y and y" € Y’ the map given by (9) is bounded and addi-
tive, hence, is g-additive. That is, the map m :.# — Y defined by m(E) = Py(E)(»)..
is weakly o-additive for each ye Y. Furthermore, as m is bounded and its range is
contained in the weakly X-complete space Y, by the Theorem of Extension in [10],

there exists a g-additive map #°(-)(¥): R (M) — Y such that H(E)Ny) = Py (E)»)
for each Ee. /.

That " is a g-additive, multiplicative map with values in L(Y) can be shown:
as in the proof of Proposition 2.10.

The following statement — which is a particular case of Proposition 2.11 —
provides a method for constructing admissible spaces.

PROPOSITION 2.12. Let .4 be a ring of sets and P: .4 — L(X) an additive, mul~
tiplicative map. Let W be a total subspace of X' which is invariant for each operator
P(E), Ee A4, and such that the range of P is an equicontinuous part of L((X, o(X, W))).
If Y is the completion of (X, o(X, W)) and the map Py: 4 — L(Y) is regular,
then Y is admissible for P and there exists a unique c-additive, multiplicative map
A R(A) = L(Y), such that A (E) = Py(E) for each Ec /.

Proof. By Proposition 2.1, for each E c.# there exists an operator Py(E) e
€ L(Y) which is an extension of P(E). From the hypothesis it follows that {Py(E);.
E e #} is an equicontinuous part of L(Y). Since the space ¥ is barrelled and weakly:
sequentially complete the result follows from Proposition 2.11.

If the ring of sets, .#, in Propositions 2.10, 2.11 and 2.12 is actually an algebra,,
and P()=I, then the measure /4" on the generated ¢-algebra is a spectral measure.

The following result (Theorem 2, [15]) gives another method of constructing
admissible spaces.

PROPOSITION 2.13. Let X be a Hilbert space and 4/ a 6-ring of Borel subsets
of C such that 4 contains every Borel subset of each of its.members. Let P: 4 — L(X)
be a o-additive, multiplicative map which is determining. If Y denotes the projective:
limit of the system

{(P(EXX), P(E)) ; Ee.},

then Y is complete and each operator P(E), E €./, has a unique extension Py(E) €
€ L(Y). The map E — Py(E), E €./, has an extension to the Borel sets of C which is-
an L(Y)-valued spectral measure.

Examples such as 2.7 and 2.8 illustrate the importance of extendibility of addi-
tive, projection valued maps to spectral measures in larger spaces. There are many
differential operators which give rise to such operator valued set functions on rings
and S-rings (see for example [16] and [22]). These operators can be treated as every-
where defined spectral operators in extended spaces.
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ExaMpLE 2.14. Under suitable hypotheses an operator 7 determined by a
singular second order formal differential operator

{11 — d-~— +p(), 0<1t< oo,
de2

is a spectral operator (see Chapter XX, [4]). The steps for calculating the spectral
resolution of 7, which are known to be valid by the Weyl-Kodaira theorem if T
is self-adjoint, can in any case be carried out formally. This gives rise to a family
of operators P(£) which are logical candidates for the spectral resolution of 7, if T
has in fact any spectral resolution. If the operator P(E) form a uniformly bounded
family it follows that T is spectral. However, if this is not the case, then T may still
be spectral but in a larger space.
Let p be a C-valued function satisfying

e =)
Se“ ;p(1)| dt < oo,
b

for some ¢ > 0, and y an arbitrary complex number. Consider the operator T given
by (11) together with the boundary condition

12 f'(0) -- ¢f(0) = 0.

The domain of T consists of those functions f'¢ X = L*([0, o0)), having derivatives
f’ absolutely continuous in bounded intervals of [0, oo), satisfying (12) and such
that T(f)e X.

The spectrum of T consists of the continuous spectrum [0, co) and of a finite
number of eigenvalues 4, == pZ, 1 < k < r, with Impy, > 0, which are zeros of
some function y holomorphic in the half-plane Imz > — ¢/2. These eigenvalues
are of finite multiplicity and the eigenfunctions corresponding to them belong to X,
(see [16]). It can happen that \ also has real zeros. They too can only be finite in
number. [f these real zeros are denoted by a,, ..., d,, then the positive numbers
given by 1; == 0%, 1 < i < p, are called the spectral singularities of the operator T.
The “‘eigenfunctions’” corresponding to the spectral singularities are not elements
of the space X.

Assume that p and y are such, that r = 0. Perhaps the simplest case of such
an operator occurs when p is identically zero and y = — i (see [22]). In this case
T has precisely one spectral singularity }71 == 1. The corresponding *‘eigenfunction”
is 2e~¥, t e [0, oo0), which is not an element of X.

Denote by .# the é-ring of all Borel sets in o(T) which are a positive distance
from the set A = {Z, e e s 7.,,}. Then there exists a projection valued map P: .# ~
— L(X ) which is s-additive, multiplicative and determining, [16). If E, , n=<1,2, . ..,
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is a sequence of sets from .# whose distance from A tends to zero as n — oo, then
the sequence {[|P(E,)|l, » = 1,2, ...} is unbounded. Accordingly, P cannot be ex-
tended to an L(X)-valued measure in B(C).

A suitable admissible space Y is suggested by Proposition 2.13. If Y denotes
the projective limit of the system {(P(E)(X), P(E)) ; E € .}, then there is an L(Y)-va-
lued spectral measure in B(C) such that Py(E) is the unique extension of P(E) for
each Ee./#. The operator T is scalar in Y with spectral resolution P, (Theorem
5.7, [16)).

3. EXTENDED QUASI-NILPOTENT OPERATORS

In the previous section it was shown that an operator 7 in X may not be scalar,
but that there may exist an admissible space Y for 7 in which the extended operator
Ty is scalar. In this section it is shown that an operator N in a space X may have an
admissible space in which the extension of N is quasi-nilpotent.

An operator Ne L(X) is quasi-nilpotent if and only if (4) is valid for each
x € X and x" e X’. If the space X is quasi-complete and barrelled, then this is equi-
valent to ¢(N) = {0}. In particular, if X is a Banach space, then an operator N is
quasi-nilpotent if and only if

lim N"|U" = 0.

n—+o0

Given an operator Ne€ L(X), it may happen that there exists a total subspace
W of X’, such that

lim [(N"(x), x'D" =0,

for all x e X and x' ¢ W. If W is an invariant subspace of N’, then it follows that
N e L((X, o(X, W))) is quasi-nilpotent and the completion, Y, of (X, a(X, W)), is
an admissible space for N. However, the extension Ny € L(Y), of N, may not be
quasi-nilpotent.

Exampre 3.1. Let X denote the space of all C-valued, C*®-functions, (x, y) —
> f(x,y) on E=[0,1]1 %R, such that

(i) (9%f]9x¥)(0,y) = 0 for k =0,1,2, ..., and y e R, and

(i) y = f(-,»), y€R, is rapidly decreasing as |y | — oo.
Convergence in X is determined by the semi-norms p; ,, , for k, m, q € {0,1,2, ...}
where

Pim ol ) = sup{|y(0"**f]ox"dy")(x,p)i; (x.y) € E}, feX.

If the operator N e L(X) is defined by

X

N(f)(x,y) = ySf(f, »dt, (x,y)e€kEfeX,

1]
then N is not quasi-nilpotent in X (see [17]).

6—-c. 2660
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Let W denote the space of all regular complex Borel measures u on E of the
form p = v®m, where v is a regular Borel measure on [0,1] and m is a regular Borel
measure on R such that y — )", ye R, is integrable for each n == 1,2, .. ., and the
sequence

1/n
(Slyé”d!ml(y)) L on=12...,
R

is bounded. Then W is a total subspace of functionals in X’ which is invariant for N".
Furthermore, N is a member of L((X, (X, W))) and is a quasi-nilpotent operator.
However, the extension of N to the completion of (X, ¢(X, W)) is not quasi-nil-
potent.

From the point of view of extending quasi-nilpotent operators to admissible
spaces, the definition (4) is too weak. This is partially so because, if a subset B in an
arbitrary locally convex space X is a barrel, then the closure, B, of B, in the comple-

tion, X, of X, need not be a barrel in X. The set B may fail to be absorbing in X
An operator N e L(X) is said to be uniforomly quasi-nilpotent in X if, for every
x’ € X' there is a barrel B in X such that, _
(i) the closure of B in the completion, X, is a barrel in X, and
(i1) the equality (4) is valid uniformly with respect to x in B.

An operator which is uniformly quasi-nilpotent is also quasi-nilpotent. It is
worth noting that if B € X is actually a closed, convex, balanced neighbourhood
cf zero satisfying (ii) of the previous definition, then it necessarily satisfies (i).

PROPOSITION 3.2. Let X be a locally convex space and N € L(X) a uniformly
guasi-nilpotent operator. If X is the completion of X and NeL(X ) is the extension of
N from X to X, then N is uniformly quasi-nilpotent in X

Proof. Let we X'. Then we X’ and there is a barrel, B, in X, whose closure in
X is again a barrel and such that

lim [ N(x),w)Hil" == 0,

n= 00
uniformly for x e B. If ¢ > 0, then there is a positive integer / such that
(13) :<]\7”(x), w) < (gf2)", xeB,nzl

I follows from the continuity of N that (13) is valid for all x € B, which is the re-
guired result.

Let X be a locally convex space and W a total subspace of X'. Then the barrels
of X arc the same for any locally convex topology consistent with the duality of X
ard W. However, whether the closure of a barrel in the completion of X with res-
pect to such a topology is again a barrel, depends on the particular topology. In
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this way duality can be used to construct ad missible spaces for uniformly quasi-nil
potent operators.

The proof of the following result is a consequence of the preceding discussion
and Proposition 3.2. Accordingly, the proof is omitted.

PROPOSITION 3.3. Let X be a locally convex space and N € L(X). Let W be a
total subspace of X'. Let T be a locally convex topology on X consistent with the dua-
lity of X and W, such that N € L((X, 1)) and N is uniformly quasi-nilpotent in (X, 1).
Then the completion, Y, of (X, 1), is an admissible space for N and the extension, Ny,
of N, is uniformly quasi-nilpotent.

ExAMPLE 3.4, Let X =/*(N) and N € L(X) be the operator given by
N =0, x5,%5,...), X =1(X, Xg, ...)EX.

Since ||[N"|| = 1 for each n = 1,2, .. ., it follows that N is not quasi-nilpotent. Yet
N is a natural candidate for being a quasi-nilpotent operator. It is an infinite dimen-
sional version of the nilpotent operator

N(xy, Xoy ooy X)) = (0,X7, + o5 Xj—1)

in finite dimensional C*-space. 1If W is the subspace of X’ consisting of sequences of
finite support, then W is invariant for N’ and N € L((X, a(X, W))). Furthermore, N
is uniformly quasi-nilpotent in (X, o (X, W)). Hence, the extension of N to the com
pletion, ¥ = CN, of (X, o(X, W)), is a quasi-nilpotent operator.

The previous example is a particular case of a large class of operators on
certain types of spaces.

Let X be a quasi-complete space. A set of vectors {¢;; j € £} in X, where # is
an interval of ordinal numbers, is said to be a basis for X if

(i) every element x € X has a unique expansion
(14 x= Y ae =1lim Y, e,

. jesf J O<k<i

and

(i) the associated coefficient functionals ej: X — C such that

<xaej">:aj3 jejs

for every x given by (14), belong to X.

It is clear that the above definition is an extension to locally convex spaces of
the notion of a Schauder base in Banach space.

Let X be a space with basis {e, ; n == 1,2, ... }. Let k be a positive integer and
T a densely defined linear operator in X. Then T will be called a weighted shift ope-
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rater of order k (with respect to this basis), if there exists a function ¢:N-» C
such that

oo
T(X) = Z 5n’zneu+k ’
n=:1

for each x given by (14) which belongs to the domain of T; (see § 10 of [7] for
example). The function ¢ is called the weight function.

PROPOSITION 3.5. Let X be a quasi-complete space with basis {e,: n == 1,2, ...}
and let W be the linear span of the associated coefficient functionals. Let N be a
weighted shift operator of order k in X with weight function &, satisfying N'(W) < W.
Then the completion, Y, of (X, a(X, W)), is an admissible space for N in which the natu-
ral extension Ny € L(Y) of N, is a quasi-nilpotent operator.

Proof. The space Y is CN with the topology of pointwise convergence. It is

clear that Y is an admissible space for N and that N, is the operator defined by
i

Ny(y) =:zwherez, :=0for ] <n < kandz, ==¢ _,y,;fork <nlfw::Y fel
no1

is a member of W and y € Y, then the duality of Y and W is specified by

4
<y9 W> = Z Bnyn'
n=14

It follows from the equation {N%(y),w) = 0 for all ye Y and n > { -k, that
Ny is quasi-nilpotent in Y.

Let N be a quasi-nilpotent operator in a space X. If Y is an admissible space
tor N, then it does not follow that N, is quasi-nilpotent.

ExampLE 3.6. Let X be the strict inductive limit of the spaces £1(1,), n =~ 1,2,. . .,
where 7, =« {1,2,...,n} for each ne N. The operator N € L(X) defined by

N(x) == (x9, X3, +..), X =(Xy, Xa, ...) €X,

is quasi-nilpotent. If Y == /1(N), then Y is admissible for &V, but the natural extension
of N to Y is not quasi-nilpotent in Y.

Similarly, if P is an L(X)-valued, equicontinuous spectral measure, f is a
P-integrable function and Y is an admissible space for P, then it does not follow that
[ is Py-integrable.

ExampLE 3.7. Let X be the strict inductive limit of the Banach spaces
LX{—n,n]), n =12, ... . The operator S € L(X) given by S(f) =g, f€ X, where
a(1) = tf(t), te R, is a scalar operator in X. In fact, S is given by (7) where Pis
the I(X)-valued spectral measure of multiplication by characteristic functions of
Borel subsets of R. If ¥ = L(R), then Y is admissible for P, but the identity func-
tion on R is not Py-integrable.
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Let S'and N be commuting operators in a space X. Suppose that S is a candi-
date for being an extended scalar operator and N is a candidate for being an extended
quasi-nilpotent operator. The previous two examples show the difficulties in choos-
ing an -admissible space in which S 4+ N has an extension to a spectral operator.
Such a space Y must be chosen so that Sy is a scalar operator and, simultaneously,
Ny is a quasi-nilpotent operator.

It is worth noting that an operator T on X which is not spectral in (X, o(X, W))
for any separating ' subspace W < X', can still have an extension, 7y, to an admis-
sible space, Y, for T, such Ty is spectral; (cf. Example 2.4. and [1], pp. 174).

4. GROUP REPRESENTATIONS

If X is a Banach space and T e L(X), then f(T) exists as a member of L(X)
for every function f analytic in a neighbourhood of ¢(T). Hence, as noted by various
authors (see for example [8] and [11]) the group

as - - {7 seR]},

exists for any .such 7. This group can then be effectively used for analysing the ope-
rator T.. : _ .

For locally convex spaces this is no longer the case. Even if fis an entire func-
tion, f{T) may not exist. Hence, the group (15) may not be available for the study
of the operator 7.

In this section, we give sufficient conditions, in terms of the group (15) or the
group {T"; n e Z}, for the existence of an admissible space Y for T such that the ex-
tension T, of T, is pseudo-hermitean or pseudo-unitary in Y.

Let G be a locally compact Hausdorff space. Let B (G) and B(G) be the g-ring
generated by all compact and all open sets, respectively. Regularity of a measure is
meant with réspect to the family of all compact subsets of G. Let C,(G) denote the
Banach space of continuous functions vanishing at infinity with the uniform norm.
The symbol M(G) denotes the space of all finite regular complex measures on B(G).
The set of those measures in M(G) which have finite support is denoted by M,(G).

If G is a locally compact Abelian group, then I' denotes the group dual to G.
The value of yeI' at the point ge G is denoted by {g,v)>. The symbols dg
and dy denote (a choice of) Haar measure on G and I, respectively.

Let X be a quasi-complete space and m: B,(I') —» X a regular vector measure.
The function m: G — X, defined by

Pi(g) = S@Sdmm, ¢<G,
r
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is called the Fourier-Stieltjes transform of the measure m. A function f: G — X
is a Fourier-Stieltjes transform in X if there exists a regular vector measure m: B,(I')—
— X such that f = m.

The proof of the following result is omitted as it is only a slight modification
of that in [11].

PROPOSITION 4.1. A weakly continuous function f: G — X is a Fourier-Sticltjes
transform in X if and only if one (hence, both) of the following sets is relatively weakly
compact in X:

(16) {Sh(g)f(g)dg; Wil < 1, he LG }
G

an {Sf(g)du(g); 1ile < 1, pe MG) }

Let I be a directed index set. Let the functions u;, i€ I, form an approximate
unit for LY(I') and let w,;, i eI, be their Fourier transforms. It is assumed that the
functions w;, i€ I, have compact supports, are nonnegative and tend to 1 uniformly
on compact subsets of G, [12]. A system of functionsu;, ie I,on N and w;, i ¢ I, on
G, which are so related, is said to be a summation kernel for I and is denoted by
fusT), iel

Let f: G — X be a bounded, weakly continuous function. Define F;: ' — X,
ie I, by

as) Fiy) = S<g, vole) fg)dg, ver.

G

The integral in (18) is in the sense of Pettis, [12]. If each F;, iel, is
integrable with respect to the Haar measure, then define linear maps &;: Co(I') —
—~ X,iel, by

19) o) = St//(v)F.-(v)dv, v € D).

r

The family of maps {®; ; i € I} is said to be weakly equicompact if there is a weakly
compact set C in X such that @,() € C for every {¥ with |¥|lo < 1 and every
icl.

The following result is from {12].

PROPOSITION 4.2. A bounded, weakly continuous function f: G — X is a Fourier-
-Stieltjes transform in X if and only if each function F,, i€ I, is integrable and the
enaps ©;, i €1, given by (19) are weakly equicompact.
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If X is weakly sequentially complete, then Propositions 4.1 and 4.2 remain
valid if relative weak compactness of the sets (16) and (17), and weak equicompact-
ness of the maps (19), is replaced by boundedness and equiboundedness, respectively.

A weakly continuous representation of the group G in the locally convex space
X is a homomorphism U: G — L(X) such that

g (U@ x),x), geg,

is continuous for each x € X and x'€ X’. A representation U is said to be equi-
continuous if {U(g) ; g € G} is an equicontinuous part of L(X).

If P. B(I') » L(X) is any equicontinuous spectral measure, it follows from
Proposition 1.1 that the map U: G — L(X) given by

(20) Ulg) = S<“g‘,“v>dp<v), <G,
I

is an equicontinuous representation. Conversely, we may ask which representations
U: G = L(X) can be written in the form (20) for some spectral measure P. If such
a measure P exists, then it is uniquely determined by U.

ProrosITION 4.3. Let the space X be quasi-complete and barrelled, U: G —
— L(X) a weakly continuous representation of G and (u;; I'l, i € I, a summation kernel
for I'. Suppose that one of the following conditions is satisfied :

(i) The set A(x) is relatively weakly compact in X for each x € X, where

A(x) = {Sh(g)U(g)(X)dg il < 1, he L1 (G) }

(ii) The set A(x) is relatively weakly compact in X for each x € X, where

A(x) = {S U@ (e ; il < 1, ueMd(c»}.
G

(iii) The representation U is bounded, the functions F;: I' - X, ie I, given by

Fiy) = S<g,v>w.-<g) Ug)(x)dg, yeT,
G

are integrable and the corresponding maps given by (19) are weakly equicompact
for every xe€X. ’

Then there exists a regular, equicontinuous spectral measure P: B(I') — L X)
such that (20) holds for every g € G.

Proof. 1t suffices to verify the result using any one of the conditions. If xe X s
then by Proposition 4.1 or 4.2 there exists a regular measure m,: B(I') = X such
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that U(-) (x) = ﬁzx. It follows that the map g~ U(g)(x), g ¢ G, is bounded and
continuous. Since X is barrelled, U is equicontinuous.
For every h € LY{G), define a linear map T,: X - X by

Tyx) == Sh(g) Ug)dg, xeX.
[e]

If M = X' is equicontinuous, then the continuous semi-norm p given by

p(x) = sup {i{x, X'>) ; x" e M},
satisfies the inequality

P(Ty(x)) < {jhy sup{i<x,U(g) (X)) g€ G, x" € M}.

Let K == {U(g)'(x'); g€ G, x' € M}. Then K is equicontinuous and
(21 P(Ty(x)) < ihiyg(x),
where g is the continuous semi-norm, g(x) == sup{;{x, x')i; X' € K}. Inequality (21)
implies that T, L(X) for each he L}(G). The relative weak compactness of A(x),
x € X, implies that the family {7}, ; :fl?;fw < 1, h € LX(G)} is equicontinuous.

Hence, given p, there exist continuous semi-norms ¢, .. ., g, and 2 > 0 such
that for every x € X and i € LY(G),

(22) p(S h(g)U(g)(x)dg) < oz;;/?uw max{g,(x); 1 < i< k}.

For xe X and /e [}(G), the equality

Sh(g)vcg)(x)dg . gl?(v)dmx(v),
G r

together with (22) shows that,

p(m(E)) < amax{q(x); 1 i<k}, xeX,
for all £ € B(I'). For each E € B(I'), define a map P(E): X - X by P(E)(x) == m(E},
x &€ X. Then the proof can be completed as in Theorem 4 of {11].

The following result was proved for reflexive Banach spaces in [8] and for arbi-
trary Banach spaces in [11]. In both cases the proofs use certain Banach algebra
techniques. The following proof uses only the theory of integration.

PROPOSITION 4.4, Let the space X be quasi-complete and barrelled and T € L(X).

Suppose that the representation U(s)= e, s€ R, exists, is weakly continuous and
P y

(23) lim -;1—~ (J—e¥Ty =T
s=+0 1§
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in L(X). If U satisfies any of the conditions of Proposition 4.3, then there exists a
regular spectral measure P: B(R) > L(X) such that T is pseudo-hermitean and is
given by (7).

Conversely, if T is pseudo-hermitean, then the equicontinuous representation
U:R = L(X) given by U(s) = €'7, seR, exists, is weakly continuous and (23) is
valid.

Proof. By Proposition 4.3 there is a regular measure P: B(R) — L(X) such
that

29 ehT = Se“"dP(a), seR.

R
Let {s,}%2,; be any real sequence converging to zero. Define bounded functions
fo€CR), n=1,2,..., by f,(6) =(s5,)"(1 —e %M, oeR, Then

(25) limf,(0) = ¢ = f(a), o<R.

1t follows from (23), (24) and (25) that for every E e B(R),

lim S £.(6) dP(0) = TP(E) = P(E)T.

Since {S J(0)d{P(0) (x),x’)} is a Cauchy sequence for each E e B(R), it fol-
n==1
E
lows that f is {P(-)(x), x">-Integrable for each x € X and x’ € X’ (Lemma 2.3, [14]).
Hence, f is P-integrable and (7) holds.
If x e X, then

(26) sup{[<e"“T(x), x| ; s € R} < [KP(-) (x), x| < o0
for each x’ € X’. This shows that U is necessarily equicontinuous.

Conversely, suppose that T is pseudo-hermitean. Then ¢(7T) = R and there is
a spectral measure Q: .# — L(X) together with a Q-integrable function % such that

T = Sh(co)dQ(co). Define a spectral measure P: B(C) — L(X) by P(E)=Q(h~Y(E)),
Q
E e B(C). Then Proposition 1.2 implies that S(P) = o(T) < R and (7) is valid. The
operator given by (24) exists in L(X) for each s € R by Proposition 1.1. Since f is
P-integrable, it follows from (25) that (23) is valid (Theorem 2, p. 30, [13]). Fix
x € X, x' € X’ and t€ R. The inequality
KT = <00 < 1s = 1\ oK@, %)
R

shows that U is weakly continuous. Equicontinuity of U is clear from (26).
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It was noted that the group (15) may not be defined if X is an arbitrary locally
convex space. Suppose that the space X is quasi-complete and barrelled and Te L(X)
has compact specttum in C. Then

sup {Iim sup(p(77))¥* ; p a continuous semi-norm on L(X)} < oo
n=+0

(see [19]). It follows that the group (15) exists, is continuous and (23) holds. However,
there are also many operators with unbounded spectrum which satisfy these condi-
‘tions.

PROPOSITION 4.5. Let the space X be quasi-complete and barrelled and T ¢ L(X).
Suppose that for each continuous semi-norim p determining the topology of X, there
is B> 0 and a function a: X — (0,00) such that

p(T(x) < a(x)p", xeX,n=0,12,....
Then €T exists in L(X) for each s € R, the representation s — €T, s ¢ R, is conti-
.nuous and (23) is valid.

Proof. Let p be a semi-norm determining the topology of X and

0,.=Y -}—(isT)’, n==0,12 ... .
j=o J!
"The estimate
n 1 .
P(Q,.(x) - Qm(x)) < GC(X) Z B _"‘ S}ﬁj’ xeX,
Jumtl Jo

shows that {Q,(x)}s..; is a Cauchy sequence for each x € X. Hence, {Q,}o. has
.a limit in L(X) denoted by e"“”. If ¢ € R, then the inequality

p(e—itT(eisT _ e“T)(x)) < a(x) (epls—tj — 1),

shows that lim e~*T(e"T —ei*T)(x) = O for each x € X. The continuity of s > ¢!/,

50
.5 € R, follows. The equality (23) is a consequence of the estimate

» ( (#(1 _ e—“’)(x)) — T(x)) < ka(i)sl, sel—1,1],
15

‘where k = § (H-p.
j=2
If the constants f§ in Proposition 4.5 can be chosen independent of the semi-
-norms p, then o(7T) is compact in C. In particular, this is the case if {T"; n=1,2, ...}
i$ equicontinuous.
The following result follows from Proposition 4.3 (ii) applied to the group
G=1Z7.
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PROPOSITION 4.6. Let the space X be quasi-complete and barrelled and the ope-
rator T € L(X) have an inverse in L(X). Let & denote the system of finite subsets of ZL.
If the set

Y, a2

neds

A(x) = {Zan’l'"(x) ;

nes

<1,5e./t’},

is relatively weakly compact in X for each x € X, where the a, € C are arbitrary, then
there exists a regular spectral measure P: B(T) — L(X) such that

(27 " = Sz"dP(z),

T

Sor each ne Z. In particular, 6(T) = T and T is pseudo-unitary.
Conversely, if T is a pseudo-unitary operator then (27) holds for every ne L.

Let X be a quasi-complete space and G a locally compact Abelian group.
Let U: G — L(X) be a representation of G in X. A locally convex space Y is said
to be U-admissible, if Y is an admissible space for each operator U(g), g € G, and
the representation Uy is equicontinuous in L(Y). The equicontinuity of the extended
representation Uy in L(Y) does not necessarily follow from the equicontinuity of U
in L{X). If 1 is the imbedding of X into Y, then a sufficient condition for Uy to be
equicontinuous is that 1(X) be of second category in Y.

If U is not a Fourier-Stieltjes transform in L(X), then there may exist a U-ad-
missible space Y such that Uy is a Fourier-Stieltjes transform in L(Y). There is no
general procedure for finding such a space Y. A first step towards constructing a
space Y is to find a total subspace W of X' such that each w € W is bounded on the
sets A(x) of Proposition 4.3 or on the union of the sets &,(D,), i € I, for every x € X,
where D, is the unit ball of Cy(I') and the maps ®;, i € I, are given by (19) for each
x € X. Then the problem reduces to finding a space ¥ which has W as its dual, con-
tains a copy of X and such that each operator U(g), g € G, has an extension to Y.

PROPOSITION 4.7. Let U: G - L(X) be a representation. Let W be a subspace
of X' which separates the points of X and is invariant for each operator U(g)', g € G.
Suppose that for each x € X and we W the function

(28) g (U@K), w), geg,
is continuous, and for each w € W there is oo > 0 such that
(29) sup{ CU(g)(x), w)| ; g€ G} < aldx, w)l, x€eX.

If Y is the completion of (X,a(X, W)), then the space Y is U-admissible for X and Uy
is a weakly continuous representation.
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Proof. The space Y is barrelled and it follows from Proposition 2.1 that ¥
is admissible for each operator U(g), g € G. The equicontinuity of the representation
Uy follows from (29).

Fix y € Y and 3’ € W. Then it must be shown that the function

Y(g) = {Uy(8)(»), ¥, g€q,

is continuous. Let ;€ G and ¢ > 0. By equicontinuity of Uy there is an element
X € X such that, for each g€ G,

(30) KUy -~ x), YOI < ;
1t follows from (28) that there is a neighbourhood V of /; such that
(31) (UR)(x) — UM)(), 37 < ;

for every g € V. The continuity of y follows from (30) and (31).

For spaces with a basis, the subspace W in the previous proposition can often
e taken as the linear span of the associated coefficient functionals.

PROPOSITION 4.8. Let G be a locally compact Abelian group and [u;; I'l, i€,
@ sumination kernel for I'. Let {e;; j € #} be a basis for the locally convex space X
and W the linear span of the associated coefficient functionals. Let U: G - L(X) be
a representation such that W is an invariant subspace for each operator U(g)', g ¢ G.
For each xe X and j e ¢, let a(x,-): G — C be the function satisfying

(32) Ug)x) = Y %(x.8)e;, ge€G.
jesf

Suppose that the function a;(x,-) is continuous for each x € X and j ¢ #. If for eaci
jeF, there is B; > 0, such that

(33) !aj(xs g)l < ﬁjl(xa e}>57

for each x€ X and g€ G, then the completion, Y, of (X, o(X,W)), is a U-admissible
space and the representation Uy is weakly continuous.

For each je § and g€ G, let 3;(-, g) denote the continuous extension of a;(-,g)
to Y. If

| N~ A .
(34) sup{ lS V@) G NN — v)dv} iel, ye Dl} < oo,
r

Jor each ye Y and j € ¢, then Uy is a Fourier-Stieltjes transform.
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Proof. As {U(g)(x),¢;) = a;(x,g), it follows from the continuity of a;(x,-)
and (33) that the conditions of Proposition 4.7 are satisfied. Hence, the space Y is
U-admissible and the representation U, is weakly continuous.

It also follows from (33) that for each j € # and g € G, the function x+>a;(x, g),
x € X, has a (unique) continuous extension, d;(+, g), to Y. Furthermore, Uy is
still given by (32) for the extended functions &;(-, g). The weak continuity of the
representation Uy implies that &;(y,-) is continuous on G foreachy e Yandje #.

Fix y € Y. Since each function u,, i € 1, is continuous with compact support and

CE), ey = S el g)dg, ver,
G

for each ie Iand j € ¢, it follows that each F,, i € I, as given by (18), is bounded and
scalarly dy-measurable. Consequently, since Y is reflexive, the functions F;,ie I,
are integrable in Y for each yeY.

Foreachiel, je # and y € Cy(I'), the equation

(D), € = Sw(w (D™ (— Dy,

r

is valid for every y € Y. It follows from (34) that each w € W is bounded on the
union of the sets ®,(D,), / € [, for each y € Y. Since the space Y is weakly sequentially
complete, Proposition 4.3 (iii) implies that Uy is a Fourier-Stieltjes transform.

The classical theorem of Stone asserts that if U: G — L(X) is a weakly con-
tinuous representation of the locally compact Abelian group by unitary operators
U(g), g € G, on a Hilbert space X, then there is a regular spectral measure P: B(I') —
— L(X) such that (20) is valid.

For Banach spaces (even reflexive) this is no longer the case. For example,
the group U = {T"; n € Z} of surjective isometries generated by the bilateral shift,
T, on X =¢7(Z), 1 < p <2,is not a Fourier-Stieltjes transform in L(X). Conse.
quently, T is not pseudo-unitary in X. However, if Y =/%(Z), then Y is U-admis-
sible and it follows from Stone’s theorem (or Proposition 4.6) that T is pseudo-uni-
tary (cf. Example 2.2).

If an operator T in X is not scalar, the results of this section applied to the

groups U = {T};ne Z} or U = {eiSTY; s e R}, can often be used to deduce that T
is pseudo-unitary or pseudo-hermitean in a suitable U-admissible space Y. In
fact, all of the operators in Examples 2.2 to 2.8 can be shown to be extended scalar
operators using the results of this section. In particular, Examples 2.3 and 2.5 illus-
trate the applicability of Proposition 4.8.
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