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PERTURBATION THEORY FOR DEFINITIZABLE
OPERATORS IN KREIN SPACES

H. LANGER and B. NAIMAN

Definitizable selfadjoint operators in Krein spaces have a spectral function
with, possibly, certain critical points. Besides the real spectrum they can also have
a finite number of nonreal eigenvalues, see [1]%), [3], [7]. It is the aim of this note to
generalize some classical results on continuous perturbations of selfadjoint opera-
tors in Hilbert space, in particular the Theorem of F. Rellich about the strong con-
vergence of the spectral functions and the Theorem of H. F. Trotter — T. Kato
about the strong convergence of the corresponding unitary groups (see [5], [12],
[17]) to the case of definitizable selfadjoint operators in Krein spaces.

§ 2 contains some estimates for the resolvents of definitizable operators
which are the main tools for the proofs in § 3.

The generalizations of F. Rellich’s Theorem are given in § 3. We first consider
a sequence of definitizable selfadjoint operators A4, ina Krein space with definitiz-
ing polynomials of uniformly bounded degrees, which converges strongly (in resol-
vent sense) to a selfadjoint operator 4. The Krein space structure, that is the indefi-
nite scalar product, is also allowed to depend on s. In Theorem 3.1 we give condi-
tions which ensure that for certain complex sets 4 the spectral projections E,(4) of
A, converge strongly to the spectral projection E(4) of A. Subsequently (Theorem
3.4) these results are specialized for the case of Pontrjagin spaces of (fixed) index x
(each selfadjoint operator in such a space has a definitizing polynomial of degree
< 2%). In some situations the spectral projections, which correspond to nonreal
eigenvalues, converge even in norm, while the operators themselves are only sup-
posed to converge strongly (see Remark 4 after Theorem 3.4).

In §4 we prove the above mentioned generalization of the Trotter — Kato
theorem under the additional stipulation that the definitizing polynomials are of
cven degree.

An application to a second order differential equation in Hilbert space is
given in § 5. However, the results of §§ 3,4 (in particular Theorem 3.5) allow the

*) In [1] definitizable operators are called positizable.
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treatment of cases not covered by Theorem 5.1. We intend to consider these appli-
cations in a subsequent paper.

In § 6 we deal shortly with the case where the spaces (and not only the inde-
finite forms) may change. Then the main results of §§ 3,4 still hold true with ob-
vious modifications.

Partial results of §§ 3,4 have been obtained earlier in [6], Satz 1.2, [8] and in
particular, in [9], where corresponding results for Pontrjagin spaces have been
obtained under stronger assumptions. We mention also the papers [2], [4], [13],
{14], [15], which contain related results. As a rule, to each statement in § 3 for defini-
tizable sefadjoint operators there corresponds a statement for definitizable unitary
operators. Their formulations will be left to the reader.

i. PRELIMINARIES

Let 5 be a Hilbert space with the scalar product (,), J a regular (i.e.a
bounded and boundedly invertible) selfadjoint operator in 2. If J is not definite, the
space J# equipped with the Hermitian form

{i.1) [4, 0}:= (Ju,v) (u, ve K)

is a Kreln space ((1]) which will be denoted by % == (H, /).

For a selfadjoint operator®™® B in # with spectral function £ we write
ind B:=xdim Ex(( — 00, 0)) (<00). If indJ == 3 < oo the space # - (H#,J) is a
=,~space or Pontrjagin space of index 3 in this case we shall also write ind.#" : - 5.

Operators which are selfadjoint or unitary with respect to the form (1.1) are
called J-selfudjoint or J-unitary, respectively, or sometimes, as in [1], simply selfad-
Joint or unitary operators in the Krein space #".

The J-selfadjoint operator A is called definitizable if p(A) # © and if there
exists a polynomial p (the definitizing polynomial) such that

[p(ADu,u] =0 (ue 2(4%)

where & := degp. Without loss of generality we shall always assume that p is real

and normalized, ie. [p' ==1; where for p(z)== Y] pjzj we put
i=e

(1.2) =
o

If indJ == % < oo and A is J-selfadjoint, then A is definitizable with a defini-
tizing polynomial of degree < 2, see [1], Theorem 1X.7.3. If A is J-selfadjoint and

*) Throughout the paper operators are always linear but not necessarily bounded.
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indJ(A4 — AI) = x < oo for some A€ R, then 4 is definitizable with a definitizing
polynomial of degree < 2 - 1, see {7].

A definitizing polynomial p of A4 is called minimal if it is of minimal possible
degree. Evidently, every definitizable operator has a minimal definitizing polynomial.

A definitizable J-selfadjoint operator has a unique spectral function, possibly
with critical points on the real axis, see [1], [3], [7]. The spectral function of the defi-
nitizable operator A (4,) will always be denoted by E(E,, resp.), the set of critical
points of E, which are also called the critical points of A, by c(A). We recall that
E(4) is defined for all complex Borel sets 4 not having any critical point of E on
the boundary, and 23€ R is a critical point of A if for each interval 4 containing 2,
and with endpoints not in c(4) the subspace £(4)# is indefinite, i.e. contains posi-
tive as well as negative elements.

We shall make use of the following results of [7]: If 4 is a definitizable operator

with definitizing polynomial p, zy€ p(4) and r(z2): = p(z)_ 2k >
(7o — 2 Go — 2)*

> degp), then for each pair x, ye A there exists a real function o,y of bounded

variation on the real axis such that

1.3) ydwﬂﬂhﬁd@&xWﬂd@»ﬂ“,

R

aquwwblgmwhltwmmummwmﬂx
riz) ) z—t r(z)

R

where Q(1, z):= =@ ong
t—z

(1.5) (E(A)x, y]= S dow,y(®).
r(t)
for each real interval 4 with the property p(f) # 0 if t€ 4 n a(A).

We also recall that the nonreal spectrum o¢,(4) of a definitizable J-self-
adjoint operator A consists of a finite number of isolated points which are poles of
the resolvent R, :==(z] — 4)- It is symmetric with respect to the real axis and
coincides with the set of nonreal zeros of any minimal definitizing polynomial.

If 4 is a real interval and a > 0, we put 1(4; a): = {z: Reze4, |Imz| < a},
I'(4; a) is the boundary of ¥(4; a) with positive orientation. If the nonreal part of
I'(4; a) is contained in the resolvent set of 4 and the endpoints of 4 are not critical
points, we write E(A; a) = E(¥(4; a)). In that case

E(4; a) = E(4) + L E({A})
‘where summation takes place over all 1€ £(4;a) n ¢,(4).

T — 2660 2
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Finally, n,(A4) denotes the set of all eigenvalues of A with a nonpositive eigen-
vector; evidently ny(A4) contains ao(A).

2. BASIC ESTIMATES

By A we denote again a definitizable J-selfadjoint operator with definitizing
polynomial p, by E its spectral function. Further, let zye p(A4), r(t):=
T —--————I:(t?—-———I, where 2k > degp, and y(J):== "JH1J710,

(20— Eo--1)
The following two lemmas are easy consequences of the relations(1.4) and (1.5).
LemmMa 2.1, If A is a real interval, then

1 :
130 | p———d Y| 0"\ '
1) 1@< —s— gy YO A
1€4 N o(4)
Proof. Note that (2.1) has sense only if p(f)#0 on 4na(4). In that case
we can use (1.5) and (1.3):

(E@) x, J9))= S Lo < min ()2 BAY, A, P
r(1) t€anod)
4nq(4)
< ( min (@) ()] T Lx]
tedno(4)

and (2.1) follows.
In the following lemma we choose the function r as above with k == degp.

LemMaA 2.2, Let t be a closed set in the complex plane, z,,z, ¢ T, ko a positive
integer and ¢ > 0. Then for any J-selfadjoint definitizable operator A with a definitiz-
ing polynomial p of degree k < ko and with the property z4€ p(A), (2l — A)~15 < ¢,
we have

(T — A~ < @)1 (n + v(dist(z, a(4) nR)Y) (ze En p(4))

with constants vy, 7y independent of A, J, p and z (depending only on ¥, ¢ and z,).
Proof. First we observe that for arbitrary / = 0,1, ..., k it holds

IRE == (Rl = (ool — JAT) " = RLI-] < chy(D),

LARE | = (=T + zoR.) RET < (1 + |zgle)*e max(l,¢*) =:d

and
A'RE | = IJA'REJ-! < y(J)d.
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Thus because of |jp]l =1 we have

R lp(A) RENl < d,  [Ip(4) RE| < y(J)a.
Moreover, ‘

0(4;2) = (4 — 2I)~1 (r(A) — r(2)) =
= “R(PARERE — p(z) (50 — 2)* (Fo — 2)) =
— — p(A) RRE(RE, — (z — 2) %) — R(p(4) — p)RE(zo — )-* —

— R.p(2)(zp — 2)H(RE. — (2 — 2)™) =

k Jj~1
1, j~1-1Rk
p; Y Az R¥ +
J==1 1=0

k-1
=pA)RE Y, (20— 2)* R + (20— 2)7*
120

o (= —kRl+1 _ .
(Zo—“z)l kR;:‘ =.OC1+0(2—}—0!3.

+p(2) (20— 2)7* Y,

k~1
=0

Further, by the above estimates, we get
k—-1
floall < ¥ Y, jzo— 21" 4R, I* 2 < ¥(J)d 0y,
, i=o

J

k -1
loall < 1z — 2I7*9(N)d Y, Ipjt Y, 12/ =71 = v(J)dd,,
: i1 =0

H
k-1

loagll < 1p(2)] |2 — z|7% Y |20 — 2/ 7% !+ 13(J) < p(J) 3,
1=0

Here 6,, é,, 05 depend only on ¢, kq, z, and z and remain bounded if z runs through f.
Thus it follows

19(4; 2l < ¥y, for all ze T n p(4)

and for all operators 4, J with the properties formulated in the lemma; p, depends
only on ¢, k,, zo and f. Moreover,

Ir(A)I = IP(ARERE] < 9(J)e*d,
and we get finally from (1.4) and (1.3) for z e I n p(A)
IR 1 < 1r(2) [y lir(4)]] (dist(z; a(4) N R))~* + ¥(J) IQ(4; 2] <
S YUY @)t (n + 7, dist(z,0(4) A R) ).

The lemma is proved.
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3. EXTENSION OF RELLICH'S THEOREM

3.1. We start with some simple observations about a sequence (p,) of poly-
nomials, !jp,i == 1, degp, < k. Convergence of a sequence of polynomials to a
polynomial means uniform convergence on compact subsets of the complex plane,
which is equivalent to the convergence of the sequences of coefficients.

(i) There exists a subsequence (p,,j) of (p,), converging to a polynomial p of
degree < k, lipil == 1.

(i) If (p,) converges to p and z4 is a zero of p of multiplicity k, then for suffi-
ciently large n each p, has zeros of total multiplicity k, near z,.

(iii) If degp < lim degp,, and (p,) converges to p, then for sufficiently large n
each p, has zeros of total multiplicity degp,—deg p near oo.

For a given sequence (p,) of polynomials by ={(p,)] we denote the set of all
limit points of the zeros of p,: 2q€ n[(p,)] if for each neighbourhood u, of 4, there
are infinitely many polynomials p, hbaving a zero in u,.

In the sequel (4,) is a sequence of definitizable J,-selfadjoint operators in #,
A and J are operators in #, such that the following conditions are satisfied:

6) J, 5T (n>00), suplJ;l| < oo.

(a) There exists a zy€ p (4) n p(A,) for all » such that
R :izz (zf — A) "1 > (2 — A)~2 =:R,, (n — o0).

(p) There exists an integer £ such that each A4, has a definitizing polyno-
mial p, such that degp, < k.

Condition (a) implies |R™}| < C for some C > 0and all n == 1,2, ... . More-
over, using (j), (p) and Lemma 2.2 we conclude:

(iv) For each compact set Ywith £ 0 n[(p,)] = O and z,, Zy ¢ there exist
aumbers C > 0 and ny > 0 such that

3.1) IRME <

T - foralln>ny zet, z # z.

(v) For each compact set T with ¥ 0 nl(p,)] == O, 2o, 2, ¢ ¥ and dist(t, a(4,) 1
NR) = vy for some y > 0 and all sufficiently large n there exist numbers C > 0
and ny > 0 such that [RI™ < C forallze ¥, n > n,.

In a similar way we can deduce from Lemma 2.1:

(vi) If 4 is a bounded real interval, an l{p,)] = 9, then there exist num-
bers C > 0, ny > 0 such that

E(ii < C for all n > ny.
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Here and in the sequel E, denotes the spectral function of A,.
REMARK 1. If the operators 4, and A are bounded, the condition (a) is

evidently equivalent to A4, 5 A (n — co0). If the operators are unbounded,
the following two conditions (3) and (b) are sufficient for (a):
(3) There is a core 2 of A (see [5]) such that ue @ implies ue 2(4,) for n
large enough and A,u — Au (n - 00);
(b) There exists z,€ p(4,) N p(A4), n = 1,2, ... such that sup |RP?|| < oo.
n

REMARK 2. If the conditions (j) and

(%) w:=indJ=indJ, < oo, n=12,...
hold, then (3) implies (a).

This statement is contained in [9]), Theorem 3.1.b).

3.2. THEOREM 3.1. Assume that the sequence (A,) of definitizable J,-self-
adjoint operators and the operator A satisfy (j), () and (p). Then the following con-
clusions hold:

1) The operator A is J-selfadjoint and definitizable.

2) If Ag€ 04(A) and vy is an open neighbourhood of %y such that uy N o(A) =
= {4} then

(32 E,(u0) = E({As}) (n - o0).
3) If A is a bounded real interval, a > 0 and

(3.3) (A\4) 0o (4) =0, I'(da)nn(p,)] =9,
then
(3.4) E(4;a) > E(4; a) (n— o).

Proof. We can additionally suppose that the sequence (p,) converges to a poly-
nomial p. Indeed, by (i) above, for 1) this is evident, for 2) (and similarly for 3))
this follows from the fact that if each subsequence of (£,(u,)) contains a subsequence
which converges to E({4,}) then (3.2) holds.

1) It follows from (a) that (R{)* strongly converges for every k, so any poly-
nomial in R{» also strongly converges. This implies that the rational functions
Po(A)(RINE strongly converge to p(A)RE.

Denote [x,)],:= (J,x, y). From (j) we have

[p(4) RE x, REx] = lim [p,(4,) REY*x, (R x], 20 (xe ).

Thus A is definitizable and p a definitizing polynomial.

2) Without loss of generality we assume uy:= {z : |z — 4| < r} to be such
that it does not intersect the real axis. Let I'y be the boundary of u,, n, an integer
such that n > n, implies I'y = p(4,). From the statement (v) it follows that || R™|| is
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uniformly bounded on I,. By (5], Theorem VIIL.1.3 we conclude that R!® strongly
converges to R,, uniformly on I,. Therefore,

E ({4})x = l~ R"xdz —» - ! AR, xdz = E({4p}) x
2mi 2ni

I‘O ro

as n— oo for every xe #.

3) Let 4 =: (4, ). By assumption, p has no zeros on I'(4;a), in particular x
and f are not zeros of p.

Assume for the moment that p does not vanish on 4. Choose a > 0 so that
(4 a) contains neither z, (from (a)) nor zeros of p. By (ii), we can assume that p,,
an=:12, ..., has no zeros in ¥{4; a).

Statement (iv) implies that the functions z ~ RI™(z - 2)(z -- 8) are bound-
ed on I'(4; a)\{z, B}, uniformly in #. From [S], Theorem VIII.1.3 it follows that

for each ze I'(4; a)\{«, f} we have R® 3 R, as n - oo. Therefore by. the domi-
nated convergence theorem we get for every xe .7

tim E,(4) (A, — al) (A4, — BI) (R®)? x ==

(3.5) i lim @riyt ( EZDE P gy -
e (2o — 2)? '

Ir'(4; a)

= (2mi)-1 (E—0GE=B) g vdz E) (4 — al) (4 — B REN.

2
z)*

Zo—

I'(A; a)
Further,
IE4) (A — al) (4 — BD R, x — E(4) (A — al) (4 — DR, 5 <

SIE(4) (A —al) (A4 ~ PR x — Ej(4) (A, — al) (4, — BI) (RW)x" +
-HEL4) (A4, — al) (4, — BI)(RE)2x — E(A) (4 — al) (4 ~ BDRE x, <

<A = al) (4 — BOREx — (A, — al) (A, — BI) (R))* xIi sup  E,(4). =

4 LEAA) (A, — al) (A, — BI) (RO)Ex — E(4) (A —.al) (A~ BI) REXT.

By (vi), (a) and (3.5) both terms on the right hand side converge to zero as n — oo.
Using (vi) once again as well as the density of the range of {4 — al) (4 — pl) we

conclude E,(4) 35 E(4), thus 3) is proved in this particular case.
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Now let p have zeros in 4. We can assume that f, is the only zero of p in.4 and
that 0 ¢ 4. Let o', B’ be such that o', f'¢o(4), a <& <ty < f < p and set
4y = (@, o), dy= (B, p), 4= (', B). Then

E(4) = E(4,) + E(4,) - E(4,).

Choose @ > 0 such that t(4;; @) contains no zeros of p, i = 1,2, and that ¢,

is the only zero of p in ¥(4,; a). Then for n > n,, ¥(4;; a) contains no zeros of p,,
i =1,2. For such n define

Apie= A1 — E(4,u DY), A:= A — E(4,0 4,)).
Then '
[Azp(A)x x] = [Ap(4A) (I — E(4, U 4.))x, A(I — E(4, U 4,))x1=0

for every xe D(A%+2); the corresponding statement for ﬁ,, also holds. Therefore the
operators A/:,, A are definitizable with definitizing polynomials z%,(z) and z2p(z)
respectively. Moreover, as E,(4)) 5 E(4); i == 1,2, by the first part of 3) in this
proof we find (z,1 — A':,)‘1 3 (2ol — AA)—1 as n — oo. The corresponding spectral
projections obviously satisfy

E(4y; ) = E(40;0), E(4y;a) = E(4y; a),

so all we have to prove is the relation
(3.6) B )5 Edy;a) (0> o).

Lct A% be such that 4, = 4 < 4. For sufficiently large n we haVe F(Ao, a) c
< p(A,,) and (3.6) follows as above using the Riesz contour mtegral

E(dy; @) = =~ S (T— Ay dz > S (el — A1z = Bty @)
) 27 ' 27

r(ag; ay rag; @ '

as n — o0,
The theorem is proved.

" We extract a special case of 3) in Theorem 3.1 and note a semlcontmulty pro-
perty of the spectrum.

COROLLARY 3.2. Let (A,), (4) be as in Theorem 3.1.
1) If 4 is a real interval such that 4 contains no poim.sbof n[(p,,)]vkmd ‘that the

endpoints of A are not eigenvalues of A, then E(4) 3 E(4) (n — o0). .
2) Let A€ a(A) and let u be a neighbourhood of A. There exists ny such that
uno(d,) # O if n = n,. :
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Proof. Only 2) has to be proved. The case of nonreal 4 is contained in part 2)
of Theorem 3.1. If 1 is real, we can again assume (without loss of generality) that
P — p (i1 — oo}, u - - ¥(4; a) for some 4 and a, that the endpoints of 4 are not eigen-
values of A and that p has no zeros on I'(4; @). It remains to apply part 3) of
Theorem 3.1.

REMARK. The first condition in (3.3) is familiar from the classical Rellich
theorem. In order to see that the second condition in (3.3) is essential, choose # :. . £2,

Qo
Jyi= (-, ) € - 2( *, €;) e; where (e;) is the canonical orthogonal system in /%,
joa

A; a bounded J,-selfadjoint operator in /2 with a singular critical point at some given
real 2 and U the (right) shift operator. Then A,: = U"A4,U*" is J -selfadjoint,
Jyie: I — UPUP - UJ,U*, and we have 4, — 0, J, - I (1 —» oo). Evidently, the
conditions (j), (a), (p) are satisfied. However, E,,(A; a) is not even defined if A is a
boundary point of 4.

We mention that a condition analogous to (j) was used in [10] in the Hilbert
space case in order to treat variable scalar products.

It is easy to find examples where real or nonreal eigenvalues or parts of the
continuous spectrum disappear in the limit. If, however ind J, is finite and constant
for all sufficiently large n, then, as J is supposed to be regular, it is preserved in the
limit and the eigenvalues in my(A4) are ‘‘stable’’. The second condition in (3.3) car
be considerably simplified in this case. This will be considered in the following section.

3.3. If A€ ny(A) we denote by »,(2) the dimension of a maximal J-nonpo-

sitive subspace of the algebraic eigenspace & () of A corresponding to A, and for
a subset u of the complex plane we put

xau):= Y 2,(4)
where the summation runs over all A€ ny(4) Nu with Im4 > 0.
The proof of the following simple lemma will be left to the reader.
LEMMA 3.3, Assume (E,) is a sequence of bounded J -selfadjoint operators
such that E, > E, J, 57 (n — 00). Then for sufficiently large n
ind JE < ind J E,.
THEOREM 3.4. Let the sequence (A,) of J,-selfadjoint operators and the operator
A satisfy the conditions (j) and (a). Moreover suppose
indJ==-indJ=:x<0c0 ®m=12...).
Then the following conclusions hold:
1) mo(A,) converges to ny(A) in the Hausdorff set metrics. Moreover, if iy € mg(A)
and n, is a neighbourhood of 2, such that 1y N no(A) = {}.0} then there exists an iy,

such that
(3.7 na () = % (o) (r = my).
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2) If MAeoy(Ad) and uy is an open neighbourhood of -Ay such that
Uy N a(A) == {A}, then

E,(15) > E({A)) (1 — o0).

3) If A is a real interval, a > 0 and I'(4; a) N o (A) = O, then

E(4, a) > E(4,8) (n > o).

Proof. The condition (x) implies that (p) also holds [1]. The definitizing poly-
nomials p, can be chosen of minimal degree (< 21) and we can suppose that they con-
verge to a definitizing polynomial p of 4 (see the proof of Theorem 3.1).

Moreover, in order to find ‘‘enough’ points on the real axis which do not
belong to o,(4), we suppose that the space # is separable. Otherwise it can be
decomposed as # = ', @ o, such that o, is separable, reduces all the operators
A, A, J,, Jand J | #,, J,| #, are uniformly positive. The space 4, can be chosen,
e.g., as the closed linear span, generated by the vectors of E,n(( — o0, 0)) #,

ng

E,((—00,0)) s and their images with respect to all the ‘“powers Bji Bjz ... B,{:.-

where B, is any of the operators A,J,A4,, J,n=12,..., and j, ...,j, are
arbitrary nonnegative integers, k = 1,2, ... . Then it is sufficient to consider the
restrictions of all the operators to 3#,.
As the p, are of minimal degree each zero 4 of p, belongs to my(4,) and %, (4)>0.
n

Consider an arbitrary neighbourhood u of n,(A), which is a union of mutually dis-
joint rectangles f,:= (4,; a,) with boundary points not in o (A4), each contain-
ing one real point 1, and no other points of my(A4), u = 1,2, ...,n’, and nonreal
discs ,, each containing one point 4, of my(A4), Im Ay#zO p=m 4 1,..., m.
Assume that there is a subsequence (A,,j) of (A4,), such that each no(A,,j) contains
some point A9, not belonging to u,. Then from Theorem 3.1 it follows

J

Eﬂj (4, a) > E(4,3a), p=12..,m (j— o0),

E. (1) > E{%)), w=m+1,..,m (j- oo).

Hence, by Lemma 3.3 we have for sufficiently large j

® o= Z ”A(fu) < Z ¥4 (fu) S A — %y (/15'0))’
a=1 p=1 " KA

which is impossible as %4 (4®) > 0. This yields my(A4,)=u,. By Lemma3.3 each I,
njny

contains at least one point of m,(4,). Hence my(A,) converges to my(A) in the Haus-
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dorff set metrics. Further, ﬁ “4,, (£):--% implies 3,(f,) = ", (t,) for all 4 and all
ni-l

sufficiently large /. Thus 1) is proved. The statement 2) follows immediately from
Theorem 3.1, 2). The statement 3) for bounded intervals A follows from Theorem
3.1, 3) since n[(p,)] is contained in ¢ ,(4) by the proof of I). The case of an unbounded
interval can easily be treated by means of the statement for bounded intervals and
corresponding results for the Hilbert space case, or by using a fractional linear map-
ping which transforms 4 into a bounded interval.

RemARK 1. We do not claim that (p,) is convergent.

Remark 2. Examples show that the projections E,,(A ;a), E(A; a) in 3) can
not in general be replaced by £,(4), E(4) respectively.

REMARK 3. Under the conditions of Theorem 3.4 let (p,) be a minimal defini-
tizing polynomial of A4, and p a limit point of (p,). Then we have

"[(I’n)] e no(A) = {t : p(‘t) P= 0}

RemARK 4. The strong convergence in 2) can be often strengthened to norm
convergence. This holds, e.g., if the weak convergence in condition (j) is replaced by
strong convergence, in particular, if J, is independent of .

We shall show this, e.g., in the case dim E, (1y) ~ 1, - 1,2, ... . Writing
E(up) = (-, e E({/’.o}) =: (-, e)f, the strong convergence in 2) is equivalent to

S w . -
fi > f, e, =¢ (n > o0o). On the other hand, with 1u,: = {Z : z€ u,}

En(ul) - ‘Ilz_IEn(uO)*Jn e ( s Jnﬁa)"; n"n ’ L 152’ crey

.. s . s
and 2), applied to 4,, gives J; ¢, 3yt (n —» o0). Thus from J, —» Sweégete, — ¢
{n — o0), and the statement follows.

3.4. In some applications the form [u, ] has an infinite number of negative
squares but the number of negative squares of the form [Au, 4] (ue Z(A)) is finite.
By 7,(a) we denote the set of all eigenvalues of the definitizable seifadjoint operator A4
for which there exists a JA-nonpositive eigenvector x, (i.e. [Axy, x} € 0). If
/& my(A) we denote by x{{)(2) the dimension of a maximal JA-nonpositive subspace
of 2 ,(4) and for a subset u in the complex plane

wPuy =Y, A,
A€M NN
imiz0

Tarorum 3.5, Assume that the sequence (A,) of J-selfadjoint operators and

the operator A satisfy (3), (3) and (b). Moreover suppose

{3.8) indJ,A,=indJ4 =:x(<o0), n=12,....
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Then the following conclusions hold:

1) m,(A,) converges to n,(A) in the Hausdorff set metrics. Moreover, if Ay€ m,(A)
and v, is a neighbourhood of A, such that w, N m,(A) == {Ae}, then there exists n,
such that
G9 D) =P (1> ).

2) If 2y€ 64(A) and u, is an open neighbourhood of %y such that uyn o(A) =

== {Ao), then E,(ug) > E({A}) (n > o).

3) If 4 is a bounded real interval, a > 0 and I'(4;a)n (o (A u{0}) =@,

then
If,,(A; Q) 5 E(A; a) (n— o0).

Proof. The operators 4, and A are definitizable with definitizing polynomials
Pit) = 1p,(t), p(t):~= tp(t), where p,, p are polynomials of degree < 2%; p, can
be chosen so that its zeros coincide with points of w,(A4,).

Now the proof of (3.9) is similar to the proof of (3.7). Let b be a neighbour-
hood of m,(A4); assume (after passing to a subsequence) that p, converges to p. Let
b, < b be a neighbourhood of n,(4) which is the union of mutually disjoint sets T,
as in the proof of Theorem 3.4 and with I'(4;;a;) not intersecting o,(4) or zero.
Note that E,(v,) is J-selfadjoint, E(v,) is J-selfadjoint. From Theorem 3.1, 3) we

again find E,(v) AR E(v,) (n —> o0). This implies for ue 2

(3.10) |[A,E,(0)u — AE)ul} < || E,(0)) (A, — Aull -+ [E,(0,) — E(0,)] Aull — 0
(n - o0). .

As @ is dense in 7, the numbers of negative squares of [AE(v)u, u] on A
and @ coincide, so from (3.10) we conclude indJ/,A4,E,(v,) > ind JAE(V,) = x.
By (3.8) we have equality, thus m,(4,) c b,. From this one can finish the proof in
a similar way as in the proof of Theorem 3.4.

REMARK. We mention that the definitizing polynomial p, (p) of A, (A4 resp.)
can be chosen such that for any limit point p of (p,) we have

l(p)] = my(A) U {0} = {1 pl1) = 0}.

4. EXTENSIONS OF THE TROTTER —KATO THEOREM

If 4 is a definitizable J-selfadjoint operator in a separable Hilbert space* and
©o is not a singular critical point of A4, then A generates a strongly continuous group

*#) In this section the separability condition is imposed in order to ensure the existence of real
points not belonging to a,(4). It can be replaced by the separability of all the ranges of the positive
{or negative) parts of J,,, J.
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of (definitizable) J-unitary operators ¢4, t € R. They can be defined e.g. in the
following way. Choose a bounded real interval 4 = («, ) and a > 0 such that
a, B ¢a,(4) and ¥(4; a) > ne(4). Then

!’

4.1) (e"x,y)-= -21-.- ei'* (R, x,y)dz + S e d(EQ) x, ») (x,yedf, teR).
i

I4;a) R\ 4
Here stands for the integral in the principal value sense at o, 8. The relation
I'4 ;a)
(4.1) implies
4.2) e = e F(4; a) + Sem dE()) (teR).
R\4

We mention that co is not a critical point of A4 if 4 has a definitizing poly-
nomial of even degree.

THEOREM 4.1. Let # be a separable Hilbert space and let the sequence (A,)
of definitizable J -selfadjoint operators and the operator A satisfy the conditions (),
(a) and (p). Additionally suppose that the definitizing polynomials p, are of even degree
and that their zeros are contained in a compact subset of the complex plane. Denote
w:-=max {|{Im zi:ze€ n[(p,)]}. Thenforeverye >0 thereexist C > Qand ny, > 0 such
that

(4.3) lleta]l < CelP+a  (re R,n = ny).
Moreover, we have
(4.4) e, 5 ¢4 (n— oo, teR).

Proof. We can again suppose that the sequence (p,) is convergent. Then its
limit is a polynomial p of even degree, hence e'n, ' are well defined. If we only

show that (4.3) holds, then (4.4) follows from [5], Theorem IX. 2.16.

Let p be a definitizing polynomial of A, deg p~=2k. Put r(s) = - - ~-——"— s
(2g—95)K(Zy—s)*
where z, is the complex number in (a), and let 4 be chosen as in (4.1). Then (1.5)
implies

) S ei”d[E(/l)X,)’]i=' S eimr(,l)—ldax’y(}») <

R4 R4
(4.5)

< (anf ir(A)) 7 -ir(A)E B
AER\ 4
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Now choose a > w and 4 = («, p) such that =[(p,)] = ¥(4;a) and «, B ¢0o,(A).
Then (4; a) contains all the zeros of p, for sufficiently large n.
From (4.2) we conclude for these n

(4.6) ¢n = ¢“YE (4;a) + S e“* dE,(A) (teR).

R’ 4

The definition of 4 implies p,: = lim inf |r,(s)|>0. From the proof of Lemma
n s€R\A

2.2 it follows that there exists C > 0 such that |jr,(4,)l| < C for all sufficiently large
n. By (4.5) and (j) the second term on the right hand side of (4.6) is uniformly bounded
for all ze R and sufficiently large n). In order to estimate the first term, we choosea
(bounded interval 4,, 4 c 4,. Then

@.7 e“nE(4;a) = i)~ \ ei*R™ E, (4;a)dz

I',; a)

as soon as n is so large that all zeros of p, are in ¥(4; a). Note that RPE,(4; a) is
norm-continuous in z on I (Al,a)

The operators A = A, E w(4;a), A= AE(A a) evidently satisfy the condi-
tions (j) and (p). Moreover, the relation

ROE(4;a) = (zf — Ayt + 271 (I — E(4;0))

and Theorem 3.1, 3) imply that (a) also holds. Therefore we conclude from Theorem
3.1, 3) and the statement (v) of § 3.1 that Rf."’E:,(A ;a) are uniformly bounded:
lim sup ||R™E(4;a)] < oo.
n z€I(4y;0)
Hence (4.7) yields

(4.8) s E(4;a)] < Ce®l (1€ R)

for some C > 0 and all sufficiently large n. Thus (4.3) follows and the theorem is
proved.

REMARK 1. It follows from Theorem 4.1 that ¢4 is of type max {Imz : z€ 6(A4)}
(for the definition of the type of a semigroup see [5], IX. 1.4).

Remark 2. 1If (%), (j) and (3) are satisfied, then the conclusions of Theorem
4.1 hold true. Indeed, in this case (a) holds by Remarks 1 and 2 of § 3.1, (%) implies
{p)- In this case it is possible to choose p, of even degree, degp, = degp and the
zeros of p, accumulate only in points of n,(4) (see Theorem 3.4.).
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REMARK 3. If the strong convergence of the projections, corresponding to
nonreal spectral points of A, can be replaced by norm convergence (sec Remark 4

after Theorem 3.4), then the projections of e*n to the corresponding subspaces
converge in norm, even in Hilbert-Schmidt norm. This fact can be useful for nume-

rical approximation methods.

5. AN APPLICATION TO ABSTRACT DIFFERENTIAL EQUATIONS

Let % be a Hilbert space and K, H be selfadjoint operators in ¥. We consider
the differential equation

{5.1) u(t) —iKu(t) + Hu(t) =0 on R*

where u is a function on R with values in % and «, # denote the derivatives of u. We
always assume that the operator H (as well as the operators H, below) has a bounded

inverse H-1 (H;! respectively).
The set Z(iH{¥?) equipped with the norm | H{Y*u| (ue Q(HY¥Y)) is a
Hilbert space denoted by ¥,. We put

H=9 @Y
The form
[u, t] 1= (sgn H{HM2 u  \HPR ¢)) 4 (1, 1) (=1 @ us, v =10, @ ty)

is continuous on ¢, symmetric and nondegenerate. Since H-! is bounded,
A = (K, [-, -]) is a Krein space. 1t is a n,-space if and only if ind H - .
With the differential equation (5.1) we associate the operator

) 0 1
5.2 A= , XA :=- Q(H 2(K) n Z(H M%),
(5.2) [HK] (A):=+ 2(H) ® (2(K) n D(HP)

If K is an |H*2-bounded operator, 4 is a closed operator in 5# with G(A4)-=
< (H) @ @(H %), Moreover A is selfadjoint in the Krein space .

We mention that this definition of 4 corresponds to the usual writing of (5.1)
as a first order system:

o(t) = ido(t), o(t) == u(t) & [—ia(e)].

Now suppose that besides (5.1) we are given a sequence of ‘‘approximating’’
equations in ¢ with operators K, H replaced by K, H,. The spaces #,, ., and th

*) The term —iKu(z) is called gyroscopic. In what follows the letters 1 and v denote functions
as well as elements of some Hilbert space.
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operator A, are defined in the same way. We assume that the following conditions.
are satisfied:

(D) 2(|HPM?) = @(|H,M?) for all n*) and there exist m, M > 0 such that

mil |HM2ul| < |[|H,P2 ul|< M|[|H"ul] (e D(HM), n=12,...);

(I1) K,|H|-Y2,  K|H|-2 are bounded;

(1) K,|H|-*2 5 K|H|=2 in § (n - o0);

(1V) There is a core & of H such that ue & implies ue Q(H,,) for n large
enough and H,u —» Hu (n — oo).

The assumption (1) implies that #, coincides with # (with equivalent norms)..
Therefore we can use the scalar product (-, ) of 5 in s,. Then the spaces 2, and
A are Krein spaces and we have

[w, o], = (S, 0), [, 0] = (Ju,v) (4,veH)
\H|-*H, O], Jie [sgnH 0]_

0 I 0 I
As a consequence of (I1), 4, is J,-selfadjoint, A is J-selfadjoint.

with J, = [

THEOREM 5.1. Let K, H, (n = 1,2, ...), K and H be selfadjoint operators in 4
such that (I) — (IV) are satisfied. Moreover assume

(5.3) »:=ind H =ind H, < co for all n.

Then A,, A satisfy the conditions (j), () and (x) from § 3. Therefore the conclusions of
Theorems 3.1, 3.4 and 4.1 hold for these operators.

' Proof. Condition (I) implies ||J,;||<1 + || |HP/2H; | H*?|] < C < oo for all n.
Letw, € D, uye 9, u = u; ® u,. From (IV) we have Ju — Ju (n -» 00) in #. Since &
is dense in %, and the sequence (J,) is bounded by (I),we conclude J, 3, J, thus §)

holds. As ' = 2 @ D(|H|’?) is a core of A, the conditions (III) and (IV) imply
(3). Finally (5.3) is exactly the condition (x) of § 3. Thus Theorems 3.1, 3.4 and 4.1

are applicable (note Remark 2 in § 3.1 and Remark 2 after Theorem 4.1).

COROLLARY 5.2. Let the conditions of Theorem 5.1 be satisfied and suppose
Uy o€ D(H,), ug€ D(H), uyy, b€ Yy and u, g — ug in Gy, u,; — uy in G (n — 00).
Denote by u,, u the unique solutions of the initial problems

(1) — iKu, (1) + Hu, (1) =0, 4,(0) = w, 9, %,0) =1y,

u(t) — iKu(t) + Hu(t) =0, u(0) = uy, u(0)=u,

*) In this and subsequent conditions “for al) #° can evidently be replaced by “for alk
sufficiently large n”,
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such that
ullE @(R’ g) n CI(R9 gl)y Hn ue C(R; g))

ue C*)(R, %) n CY(R,%,), HueC(R, %).
Then for any te R we have u,(t) — u(t), u,(t) = u(t) in % (n » oo). Moreover,

Lu(O)1F -+ (Hu(t), w()) = lju; |I* -+ (Huo, up) (1€ R),

Hun(DN® -+ (Han(8), u,(8)) == [t 21 + (Kot 0, Un9) (€ R, n€N).

RemARK 1. Note that the Remark 3 after Theorem 4.1 sometimes gives addi-
tional information about the convergence of u,.

REMARK 2. We could weaken the assumptions on u, o, 4y, U, 1, 14, allowing u, o,
u€ Y, u,,, u €% foralln, by considering the weak solutions instead of the strong
ones. We could weaken the assumptions even more, leaving the space # and using a
larger space. In that case we should use Theorem 3.5 instead of Theorem 3.4. These
questions will be considered in a subsequent paper.

REMARK 3. In many approximation schemes for the equation (5.1), the appro-
ximating equations (with K, H,) act in different spaces ¢, and ¥, ‘‘approximates’
%. In that case also 5, is different from # but ‘“approximates” it (see § 6). Note
that even in case ¢, = ¥ this situation may arise if (I} does not hold.

In connection with the results of [16] we formulate the following consequence
of Theorem 5.1 and Remark 4 after Theorem 3.4 for the special case K, := K -= 0.
It implies in particular the stability of the negative eigenvalues and associated eigen-
vectors of H under the imposed assumptions.

COROLLARY 5.3. Let H,, H be selfadjoint operators in the Hilbert space % such
that (1), (IV) and (5.3) hold. Then

;iEn((—OO, t]) - E((_OO’ t]) u -0 (fl =00, 1< 0, ¢ ¢0p(H))
where E,, E are the spectral functions of H,, H respectively.

In order to see this, we only have to note that the eigenvalues of A in the
upper half plane are the square roots of the negative eigenvalues of H.

6. VARTIABLE SPACES

6.1. Let #°, #, (n==1,2,...) be Banach spaces, P, (not necessarily linear)
mappings from s into 3#,. We say that 2, approximates #, (see [11], I; the verb
““approximate’ is used here for ‘‘discretely converge™ in [11]), if the relations

(6.1) [Pull, - !u|| and {jaPu+ P, — P(oau + Bo)|l, =0 (7~ o0)
hold for all u, ve 7.
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If there exists a dense linear manifold ¢ in 5 and mappings P, from & into
, with the properties (6.1) then P, can be extended by continuity to all of 5 in a
unique way and 5, approximates . 1f the mappings P, are linear and continuous,
they are uniformly bounded [12].

We shall say that the sequence (u,), u,€ #, (n = 1,2, ...) strongly approxi-
mates ue A u, AR u, if |lu, — Pull, = 0 (n - 00). The strong approximation of
operators is defined analogously: If S,, S are bounded linear operators in J#,, #
respectively, then S, approximates S strongly (S, 5 S) if S,Pu e S, holds for
each ue # (n - o0).

If #°,,# are Hilbert spaces, @ is a dense linear manifold in s and P, are
mappings from ¢ into #, (n= 1,2,...), then #, approximates 5# if and only if

(Pu, P,v), = (u,v) (n—> oco; u,ve @).
We say that the sequence (u,), u,€ #, (n = 1,2, ...) weakly approximates
ueH:u, Zau, if (u,, P,v), — (u, v) (n — o0) for each ve #. Itis easy to see that
u, 3w if and only if u, u and |ty lls = 2]l (n — o0). .

If S,, S are as above, then the sequence (S,) weakly approximates S: S, = S,
if
(S,Pu, P, v), > (Su,v) (n— oo;u,veH).
Generalizations of the Rellich and Trotter—Kato theorems to the case of
approximating sequences of operators are given in [10] and [12] (see also [5], [L7]).

6.2. Let o#, #,(n = 1,2, ...) be Hilbert spaces, P, be mappings from #
into 5, such that 5, approximates . If J,, J are selfadjoint operators in 3¢, and #,

respectively, such that ", = (#,, J,), A" = (#, J) are Kreln spaces and J, I 4
then we say that o, approximates . 1f, additionally, supl||J; |, < oo, the

approximation is called stable.
In other words, a sequence 4", of Krein spaces with indefinite scalar products
{-,-], approximates the Krein space # with indefinite scalar product [-,-] if

[Pu, Pv], = [u, v] (n— oo0; u,veX)
and if there exist bounded selfadjoint regular positive *’ operators K,,, K in %", A,
respectively, such that
[K,Pu, Pv], — [Ku,v] (n— oco;u, veX).

Here it is again sufficient that this convergence holds for all &, v from a dense linear
manifold in .

%) This means, e.g, for K,, [K,u, u], > valdl?  (ueX,) with some y, > 0.

8 — 2660
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The approximation is stable if there exists a y > 0, independent of # and n,
such that

(K7 u,u), > 3w, ul,l (wex,;n=12..).

As J, 2T implies supiiJ, i, < oo (see {11, 1], p. 60), the approximation is stable if
sup ¥(J,) < co.

Now suppose that the sequence (4,) of Krein spaces stably approximates the
Krein space .#". Moreover, assume that 4,, A are definitizable selfadjoint operators
in ., A, respectively, #n- - 1,2, ..., with definitizing polynomials p,, p such that
the following conditions are satisfied:

(p) supdegp, < co;

n

(a) there exists a zge p(A4,) np(A4), n-=12,..., such that (o] — A4,)"*
strongly approximates (zo/ —- A)~':

(ol — A) VS (2, I — A)? (0 > ©0).

Then the conclusions of Theorems 3.1, 3.4 and 3.5 remain valid, if the strong con-
vergence i replaced by strong approximation. If, additionally, the P, are linear
and continuous, then Theorem 4.1 remains also valid. This follows by repeating
the proofs of §§ 3, 4, using Stummel’s method [11, 11] in order to obtain the conver-
gence of the contour integrals.

In the special case of Pontrjagin spaces the stable approximation of .%#" by the
7, can be obtained from the following statement:

Assume A, X are Pontrjagin spaces, ® is a dense linear manifold in % and
P, are mappings from ® into X, such that

(1) ind',-=ind# <oco (n::12,..).
(ii) itm [P, u, P,v), - =[u, v] (4, ve ®).

Then A, stably approximates K .

If - % and if the P, are linear continuous surjections. the proot can be
found in [9]. These two stipulations can easily be dropped by choosing a funda-
menta}l decomposition " =K - [4-]1 .4+ of % such that ¥~ < @.

The second author has been supported in part by SIZ VI SRH.
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