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BOREL MAPS ON SETS OF VON NEUMANN ALGEBRAS

EDWARD A. AZOFF

1. INTRODUCTION

In {2], E. Effros showed how to make the collection of closed subsets of a
Polish space into a standard Borel space. Applying this idea in [3], he introduced a
standard Borel structure on the collection &/ of von Neumann algebras acting on a
fixed separable Hilbert space H. The subcollection & of factor von Neumann alge-
bras in & is easily seen to be Borel, and it makes sense to ask whether the various sub-
collections of & connected with type classification theory are Borel as well. In the
follow-up paper [4], Effros provided affirmative answers to most of these questions;
in particular he showed that the collection Z of finite factors on H is Borel, but did
not resolve the issue for the collection & of semi-finite factors.

Since a projection e in a factor A is finite if and only if ede supports a finite
trace, it is easy to see that & is analytic. In[11], O. Nielsen applied the Tomita-Take-
saki theory of modular automorphism groups to show that £ \% is also analytic,
thereby proving that & is Borel. A second proof that & is Borel, outlined on pages
136—7 of [12] is based on a representation-theoretic argument of G. Pedersen [13].

The main result of the present paper, Theorem 5.3, states that there is a Borel
function defined on & which selects a non-zero finite projection from each factor
belonging to &. The key idea in the proof is the application of a selection theorem
which asserts that cach Borel set in a product of Polish spaces all of whose sections
are o-compact admits a Borel uniformization. The paper uses only classical results
from the theory of von Neumann algebras. In particular, a priori knowledge that &
is Borel is not required, and this fact is established independently.

It is the theme of this paper that descriptive set theory, especially those parts
of it dealing with set-valued maps, can be profitably applied to the study of the Effros
Borel structure. Conversely, the existence of a standard Borel structure on the col-
lection of closed subsets of a Polish space suggests a reformulation and reinterpreta-
tion of some of the classical results. An expository account of these topics, including
corollaries of the above selection theorem, is presented in Section 2. This account is
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intended to be readable by non-experts in either coperator algebras or descriptive
set theory; it is supplemented in § 3 by historical comments and references to the
literature.

The material in § 2 leads to a quick proof, at the begiining of Section 4, that
the space <7 of von Neumann algebras is standard. Section 4 also contains several new
results, most notably that the set-valued function sending each A €% to its (*-sirongly
closed) set of partial isometries is Borel. The proof of the main theorem is given in
§ 5, and this is followed in §§ 6 and 7 by several applications to the finer structure of
semi-finite factors.

The main result of § 6 implies that there is a Borel choice of unitary equiva-
lences between type 11, factors and tensor products of type II, factors with 1.{f1).
This amounts to choosing, in a Borel fashion, a supplementary orthogonal family of
mutually equivalent, finite projections from each type Il factor. Since Theorem 5.3
chooses one such projection from each factor, the basic problem is one of exhaustion;
the required arguments are based on a somewhat unusual application of an optimal
selection theorem.

It is an immediate consequence of Theorem 5.3 that there is a Borel choice
of traces for semi-finite factors. In Section 7, it is shown that there is a Borel choice
of operators in L(H) which induce these traces: the proof again relies on the exhaus-
t‘on arguments of § 6. The final section of the paper raises three open problems.

In closing this introductory section, I would like to thank Dan Mauldin for
first bringing Theorem 2.4 to my attention, and the referee for his expository sug-

gestions.

2. THE BOREL SPACE OF CLOSED SUBSETS OF A POLISH SPACE

This section is an expository presentation of slight variations of known re-
sults. Its topics are (1) a brief review of the general theory of Borel spaces, (2) a
short description of the Hausdorfl Borel structure, and (3) an amalgamation of the
Hzusdorfl Borel structure with certain topics in descriptive set theory. A good refe-
recce for (1) is provided by K. Kuratowski and A. Mostowski’s book [8]; Section
16 of O. Nicisen’s monograph [12] contains a more leisurely treatment, inciuding
omitted proofs, of the Hausdorff Borel structure than is given here. Historical
comments and further references will be given in the next section.

A Borel structure on a set X is a distinguished o-algebra # of subsets of X;
the pair (X, #)is called a Borel space and if 4 is understood, its elements are referred
to as Borel subsets of X. Subspaces and cartesian products of Borel spaces are defined
in a natural fashion. A map between Borel spaces is said to be Borel measurable
(Borel for short) if its inverse images of Borel sets are themselves Borel.
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If X is equipped with a metric, the Borel structure on X will be taken to be the
one generated by the metric topology on X. A simple fact, which we will often
exploit, is that if {f,: X — Y,} is a countable family of Borel functions between sepa-
rable metric spaces, then the cartesian product xf,: X — X Y, is also Borel. Thus
if the {Y,} coincide, the domain of agreement of the {/,}, being the inverse image
of the diagonal under xf,, will be Borel; in particular, the set of fixed points of a
Borel map on a scparable metric space is always a Borel subset of the space.

A Polish space is a complete separable metric space; a Borel space which
is (Borel) isomorphic to such a space is called standard. Every one-to-one Borel
map between standard spaces is automatically an isomorphism. This explains why
Borel structures are often more ‘‘canonical’’ than topological structures: if 1, = 1,
are topologies induced by complete separable metrics on X, then the identity map:
(X, 1)) = (X, 15) is Borel, so 1, and 7, generate the same (standard) Borel structure
on X. Standard Borel spaces are ubiquitous: the relative Borel structure on a Borel
subset of a standard space is itself standard, and countable products of standard
spaces are standard; somewhat paradoxically, all uncountable standard spaces are
isomorphic,

The direct image of one Polish space in another under a Borel map is said
to be analytic. Not every analytic set is Borel, and many of the deepest results of
the theory rely on efforts to circumvent this difficulty. For example, the classical
result that disjoint analytic sets can be separated by Borel sets plays a major role in
establishing the assertions of the preceding paragraph. As mentioned in the [ntroduc-
tion, Nielsen’s proof [11] that the space & of semi-finite factors is standard is also
based on this classical result.

Let £ be a subset of the cartesian product of the standard spaces X and Y.
The projection D of E on X is called the domain of E. By a uniformization of E is
meant a subset i of E which is (the graph of) a function mapping D into Y. Since the
map x - (x, Y(x)) is one-to-one, requiring ¢y to be a Borel measurable function with
Borel domain is the same as requiring { to be a Borel subset of XX Y. In particular,
showing that £ has a Borel uniformization is one way of guaranteeing that it has a
Borel domain. This is the way & will be proven standard in the present paper.

Let X be a Polish space and write €(X) for the collection of non-empty closed
subsets of X. Our next goal is to make €(X) into a standard Borel space. Let (Y, d)
be a metrizable compactification of X. The Hausdorff metric p on €(Y) is defined by

(81, 8;) = max{ Sug(l(yl, Sa), Sugd(yzs Sl)}'
y

1€5, Y& 2,

Under this metric, ¢(Y) is itself compact, and we equip it with the subordinate
Borel structure, which is of course standard. Let j be the one-to-one map from €{X)
into ¥(Y) which sends each set Se€ ¥(X) to its Y-closure. Then j induces metric, topo-
logical, and Borel structures on ¥(X). There is nothing unique about the first two
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of these, but the induced Borel structure on ¢(X) is independent of the choice of Y.
We will always regard ¥(X) as equipped with this Hausdorff Borel structure, which
makes it a standard Borel space. (We are following [12] in reserving the term
““Effros Borel structure’ for spaces of von Neumann algebras.)

Given an open subset U of X, we write {U) for {Se ¥(X)!Sn U#@} and
[U] for {Se¥(X)iS < U}.

PROPOSITION 2.1. The family {{U) U open in X} gencrates the Hausdorff
Borel structure on € (X).

Proof. 1t is easy to see that the family {[V], (V) | V open in Y} is a subbasis
for the topology on %(Y). Let ¥ be open in Y. Then we can write Y\V::: M\ ¥V,
7 |

where the {V,] are open and for each n, the closure of V,,, is contained in V,.

(o]
By compactness, we thus have [V]=%(Y)\ () (V,). This shows that the family

n=:1
{{V'> iV open in Y} generates the Borel structure on %(Y). The proof is completed
by the observation that for ¥ open in Y, we have /~}{V)) = (V' n X). 173

The advantages of Proposition 2.1 are analogous to those of knowing that the
open scts generate the Borel structure on R. The following proposition and corol-
lary can often be used to apply knowledge of X-valued maps to the study of %(X)-
~valued ones.

PROPOSITION 2.2. Let X be Polish. Then there is a sequence {y1,}2. of Borel
Junctions from €(X) into X such that {y,(S)\2, is a dense subset of S for each
Se ¢ (X).

Proof. Let {x,}2., be dense in X and » > 0. Define 5,: 4(X) - X by sctting
7:(S) = x, where k is the smallest integer for which S intersects the ball of radius
r/2 about x;. Assuming #, to be defined, let n,,,: 4(X) — X by taking 7,..,(S) to
be the x, of smallest index satisfying the two conditions:

{1) the distance from x, to 7,(S) is less than 2’;, and

{2) the ball of radius 2:+ ; about x, intersects S.

The sequence {5,}%.; converges (uniformliy) to a Borel function y: ¥(X) — X
such that Y(S)e S for every S€ €(X). Note that §(S) is within 2r of x, whenever
the ball of radius r/2 about x, intersects S.

Repeat the construction of i for each sequence obtained from {x,}2., by
interchanging x, and some other x;, and for every rational » > 0. The resulting sequ-
ence {Y,}2., of functions has the desired properties. %
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Suppose X is Polish, Y is standard Borel, and ¢: Y — €(X). By a selector of ¢
is meant a function ¢: Y — X satisfying ¢(y)e @(y) for all yeY. A dense sequence

of selectors for & is a sequence {,}%., of sclectors for @ such that {¢,(»)}3.,
is dense in @(y) for all yeY.

COROLLARY 2.3. A map from Y into €(X) is Borel iff it has a dense sequence of
Borel selectors.

Proof. If ®: Y — ¥(X) is Borel, set ¢, = y, o ® where the {,} are from Pro-
position 2.2; then the {¢,} are a dense sequence of Borel selectors for .
Suppose conversely, that we have a dense sequence {¢,}%., of Borel selectors

oo
for &. Then if V is openin X, wehave @ -*({¥))= |_J ¢, (V) which is Borel in Y.
n==1
The following is the selection theorem mentioned in the Introduction. Given
a subset £ of a product space Xx Y, we employ the usual sectional notation
E, = {y|(x,y)e E} for each xe X. The domain of Eis {xe X | E, # @}. The
section map associated with E sends x in the domain of E to the section E,.

THEOREM 2.4. Let X and Y be Polish. Suppose E is a Borel subset of XXY
such that each section E, is a-compact. Then the domain D of E is Borel and there
exists a Borel function \y: D —~ Y whose graph is contained in E.

COROLLARY 2.5. Suppose in Theorem 2.4 that Y is compact. Then there is a
sequence {@,}3.1 of Borel functions : D — Y such that {¢,(x)}%., is dense in E, for
each xe X.

If, in addition, each E, is compact, then the associated section map from D to
€(Y) is Borel.

Proof. Let V be open in Y. Then E n (X x V) satisfies the hypotheses of Theo-
rem 2.4. Thus the domain D, of this relation is Borel and there is a Borel function
¢y :Dy — Y whose graph is contained in E and satisfies ¢,(x)eV whenever xeD,, .
Using the function iy of Theorem 2.4, it is easy to extend ¢, to a Borel function on
all of D. We obtain the desired sequence {¢,}2., by repeating this construction for
each ¥ in some countable basis for the topology of Y. The final statement of the
corollary now follows from Corollary 2.3.

PROPOSITION 2.6. Let X be Polish. Then *‘(closed) countable union is a

(=2}
Borel map from X G(X) to €(X).
n=1

If X is compact, then ‘‘countable intersection’ is also Borel.

o] '007 --04
Proof. If V is open in X, and the sequence {S,}7.1€ X #(X), then| J S, meets
n-=1 n=1
V iff some S, meets V. The Borel measurability of ‘‘countable union” now follows:
from Proposition 2.1.
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The precise meaning of the final assertion of the Proposition is that

nin:
D!

co I oo
D= {{S Pie X EX). M S, # Q)} is Borel and the map from D into ¥(X)
Foal

o
defined by {S,}2.1 — (M) S, is Borel. Choose a countable basis { U, }%._., for the topo-

n-:1

(o]
logy on X and note that xe (M) S, iff every U,, which meets {x} also meets each S, .
nexl

This shows that the set of ordered pairs ({S,}.;, x) in X @(X)xX for which

=]
X€ (M) S, is Borel. The proof is therefore completed by applying Corollary 2.5. ]
ol
J. P. R. Christensen has shown [1, Theorem 5] that ‘‘intersection’™ can fail
to be Borel when X is not compact. The following result will be used to avoid this
difficulty in § 6. The graph of a function @: Y - G(X) is {(y, X)€Y XX | x& d(3)}.
This notion is dual to that of section map.

PROPOSITION 2.7. Let @: Y — G(X) be Borel, where Y is standard and X is
Polish. Let E be a Borel subset of the graph of ® having the property that E, is relati-
vely open in ®(y) for each y€Y. Then the domain D of E is Borel as is the map
¥: D — G(X) sending y€Y to the closure of E,.

Proof. Let {¢,} be a dense sequence of selectors for @. Note that the pair (), x)
belongs to the graph of @ iff infd(¢,(y), x) - 0, so the graph of @ is Borel. Thus for
n

cach #, the intersection v, of the graph of @, and £ is the graph of a Borel function;
in particular ¢, has a Borel domain D,. By the relative openness hypotheses,

0o
D1 D,,so Dis Borel. Using the {,} for k # i, we can extend each ¢, to 2 Borel
Rzl
function on D, at which point the {i,} will be a dense sequence of selectors for ¥. ¥

ProrosiTION 2.8. Let Y be standard, X Polish, and @: Y — €(X) Borel. Sup-
pose 0 is a bounded real-valued Borel function defined on the graph of &, which is
continuous in its second variable. Then there is a Borel selector ¢ of © satisfying

1
0(y, o(3) = - sup 0(y, x).
2 xeow)

Proof. Let {¢,}., be a dense sequence of selectors for &. Take ¢(y) to be

the ¢,(y) of lowest subscript satisfying 0(y, ¢ (y)) > ; sup8(y, @un(¥))- 2
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3. COMMENTS ON THE PRECEDING SECTION

Let X be Polish. Although Effros [2] is responsible for equipping €(X) with
a standard Borel structure, there is an extensive literature on methods of topolo-
gizing ¥(X) and on notions of measurability for ¢ (X)-valued maps. The purpose of
this section is to make some of the connections between these concepts explicit.
This material will not be used in the sequel. General surveys of topologies on € (X)
and of measurability for set-valued functions can be found in the papers [10] and
[6] of E. Michael and C. J. Himmelberg respectively. The state of the art concerning
measurable selection theorems is catalogued in D. H. Wagner’s papers [16) and [17].

Proposition 2.1, which is implicit in [2], is the bridge to the literature on measu-
rability of set-valued maps. A map @ defined on a (standard) Borel space Y and
taking values in €(X) is said to be weakly measurable {6] if {y|®(y)n U # O}
is Borel for each open subset of U of X. By Proposition 2.1, this is the same as
requiring @ to be measurable as a function when ¥(X) is equipped with the
Hausdorff Borel structure. It seems quite natural when speaking of ‘‘measurable
maps’’ to be referring to a fixed Borel structure on the range space, but this often
seems to have been overlooked in the study of set-valued maps. As a practical mat-
ter, having any Borel structure on %(X) encourages composition of set-valued
maps; knowing that such a structure is standard is a bonus which allows the appli-
cation of the deep classical theory. The paper [2] thus singles out weak measurability
of set-valued maps as being more natural than the competing notions.

Wagner refers to Corollary 2.3 as the ‘‘Fundamental Measurable Selection
Theorem™ because of its importance; pages 867 and 901 of his first survey paper
[16] give a detailed account of its origin. Although we derived Corollary 2.3 from
Proposition 2.2, the reverse implication is equally transparent. In fact, our proof
of the latter is essentially the one used by K. Kuratowski and C. Ryll-Nardzewksi
to establish their main result [8, page 458).

There are many names associated with the development of Theorem 2.4.
W. J. Arsenin, K. Kunugui, P. Novikov, and E. Stchegolkov worked in the clas-
sical setting (X == Y = R), and other mathematicians generalized their results to
arbitrary Polish spaces. A. D. Ioffe’s supplement [7] to Wagner’s survey articles
nicely documents this history. An interesting, self-contained proof of Theorem
2.4 has been given by J. Saint-Raymond [14].

The proofs of 2.5 through 2.8 given above are slight variations of arguments
in {6]. When the function ¢ of Proposition 2.8 is compact-valued, it has a Borel
selector ¢ for which 0(y, ¢(»)) = m;i(x 0(y, x) [16, Section 9]. Such optimal selection

xS Py)

theorems are important in dynamic programming. The applications of Proposition
2.8 in § 6 have a somewhat different flavor, being concerned with exhaustion rather
than with optimization.
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We close this section with a comparison of topologies. The family {{(U)'
Uopen in X} forms a sub-basis for the (Jower) semi-finite topology on %(X) ; the finite
topology on %(X) has the larger family {{U], {U) | U open in X} as a sub-basis
[10, Section 9). On first thought, it might seem that the finite topology is the more
natural of the two: it always separates points and is the topology induced by the
Hausdorfl metric when X is compact. The overriding fact however (Proposition 2.1)
is that the semi-finite topology generates the Hausdorff Borel structure on #%(X)
even when X fails to be compact. On the other hand, it can happen that the finite
topology on #(X) is not even contained in this Borel structure. This follows from
Theorem 8 of [1]; it is also a consequence of an example of J. Kaniewski {17, Example
2.4), namely a weakly measurable, i.e. Borel, function into ¥ (X) which is not measu-
rable in the sense of [6].

4. THE BOREL SPACE OF VON NEUMANN ALGEBRAS

Fix a separable infinite-dimensional Hilbert space H, and denote by C the
set of its contraction operators, i.e., those bounded linear operators on H of norm
less than or equal to one. We equip C with the weak operator topology, under which
it becomes a compact metric space. We will use the fact that operator multiplica-
tion is a Borel map from Cx C inte C. This can be seen either by noting that multi-
plication is weakly continuous in each variable separately, or by realizing that the
Borel structure on C is the same as that generated by the strong operator topology
and that multiplication is jointly strongly continuous on bounded sets.

PROPOSITION 4.1. The following are Borel maps on €(C):

(1) 8 — S (the set of adjoints of operators in S)

(2) § = S’ (the set of contractions commuting with each operator in S).

Proof. Let {¢,}2 ,: 4(C) - C be as in Proposition 2.2.°

(1) Since taking adjoints is continuous in the weak operator topology the
fE1e form a dense sequence of Borel selectors for the map in question, and we
have only to apply Corollary 2.3.

(2) Let & be the set of ordered pairs (S, @) in $(C) X C such that a commutes
with the {i/,(S)}2 . Since each of the maps (S, a) = ay,(S)—¥,(S)a is Borel, we
see that & is Borel and has compact sections. An application of Corollary 2.5 thus
completes the proof. 23

COROLLARY 4.2, The collection & of von Neumann algebras on H and its
subcollection F of factors are Borel subsets of €(C).
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Proof. The von Neumann algebras are the common fixed points of the Borel
maps S — S* and S — S§” on ¢(C) so & is Borel. By Proposition 2.6, the map
A— An A'isBorel on &, and & is the inverse image of a singleton under
this map. %,

In Corollary 4.2, and in the sequel, we identify von Neumann algebras with
their unit balls. This point of view, due originally to O. Maréchal [9], enables us to
apply Theorem 2.4 and its consequences.

Recall that by spectral theory, every bounded Borel function A on R induces
a function on the positive operators on A. In the next, well-known result (and only

there), the latter function will be denoted by A to distinguish it from A. Lemma 4.3
is the last result from this section needed in § 5.

Lemma 4.3. Suppose A:[0, 1] = R is bounded and Borel. Then 1 is strongly

Borel. If A is continuous, then A is strongly continuous.

Proof. Since the range of 1 may contain non-contractions, the lemma refers
to the Borel structure on the space of all bounded operators which is subordinate to
the strong operator topology; the relativizations of this structure to each bounded

ball is standard. With this understanding, we have only to note that 1 is strongly

continuous whenever 1 is a polynomial. This completes the proof since {2 | 7 is
strongly continuous} is closed under uniform limits, while {1| 4 is Borel} is closed
under bounded pointwise limits. %

It will be convenient to have fixed notations for certain subsets of C. We
adopt:

P for the set of positive (semi-definite) operators in C,

W for the set of partial isometries in C, and

E for the set of (self-adjoint) projections in C.
We will equip P with the weak operator topology, under which it is compact. Unfor-
tunately, W and E are not weakly closed; we equip them with the relative *-strong
operator topology, under which they are Polish, but not compact. See the beginning
of Chapter 2 of J. Ernest’s memoir [5] for an exposition of the basic properties of
this topology. Of course, the strong and *-strong topologies agree on P. On occa-
sion, we will regard C or P as equipped with the *-strong topology; this will be indi-
cated by the notations Cand P respectively. It is perhaps well to point out that

the identity map: C — C is continuous, so the Borel structures on C and C coincide.

ProproSITION 4.4. Let ¥ denote the set of ordered triples (A, e, f) where A is
a von Neumann algebra on H while e and f are projections in A. The maps which
send (A, e, f) to

(1) the set of positive operators in eAe
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(2) the set of partial isosnetries in fAe
(3) the set of projections in eAe
are Borel maps from ¢ into €(P), €(W), and €(E) respectively.

CorOLLARY 4.5. The following are Borel maps from £ into 6(P), (W),
and G(E) respectively:

() A->AnP
(2) A AnW
(3) A— AnE.

The corollary follows immediately from the proposition by composing the
obviously Borel correspondence A4 — (4, i, i) with the maps of the latter. (We
write ¢ for the identity operator on H.) Also, since the map (A4, e, f) - ede clearly
has a dense sequence of Borel selectors, Proposition 4.4 (1) follows directly from
Proposition 2.6. By contrast, the non-compactness of W and E makes the rest of
Proposition 4.4 more difficuit to establish.

As motivation for the following lemmas, note that every continuous map be-
tween Polish spaces induces a Borel set-valued function. In proving Proposition 4.4,
we start with maps which enjoy only a vestigal form of continuity.

LEMMA 4.6. Let /. be the map from Pt E corresponding to the characteristic
Junction of the interval [1[2, {].

Then 4 is Borel, idempotent, and continuous at each ec E.

Proof. That 2 is Borel follows from the preceding lemma. Also i maps P
into £ and since i(e¢) - - e for any projection e, we see Ao A 4, ie. that A is
idempotent. It remains to check that 1 is continuous at each e¢e £. Let
j, v [0,1] = {0, 1] by

0 if se [0, 1/4] 0 if se [0, 1/2]

u(s) - {4 ~— 1/4) if se[i/4, 1/2] v(s)=:J4(s — 1/2) if s€[1/2, 3/4]

I if se[1/2, 1] 1 if se[3/4, 1].

Then p and v are continuous, so if {a,}%., is a sequence in P converging strongly
to a projection e, then both of the sequences {u(a,)}®.; and {v(a,)}%., converge
strongly to e. Now for any i€ A, and any n,

H[Aa,) — vial k] < l[n(a,) — v(a)h|l.

Thus {i(e,)]® , converges strongly to e as well, so A is continuous at ¢ and the proof
is complete. 7!
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Recall the polar decomposition of an operator a is given by a = w|a| where
la] == /a* a and the null space of w contains the null space of |a|. These conditions
determine w uniquely, and it is automatically a partial isometry.

LEMMA 4.7. The map p which sends each contraction to the partial isometry
appearing in its polar decomposition is Borel.

Proof. For each ae C and integer n, set p,(a) == ai,(a“a) where 1,:{0,1] - R*

by
if s >>1---
s n?
All(s) ==
0 if s S-l-—-

n*

Consideration of p,(a)*u,(a) shows each u,(a) is a partial isometry, so u, is a
Borel map from Cto W. Let aeC. If the vector / is in the null space of |a|, we
have lim y,(a)h =: 0 while for & = |ajk in the range of |a|, we have

N—=»C0
limy,(a)h = limp,(a) |alk = ak.
71—00 =00
This shows {u,(a)}2., converges strongly to u(a) and completes the proof. %

LeEMMA 4.8. Let 2 and p be as in the preceding two lemmas and define v: Cow
by v(a) == u[AMaa*)al(a*a)]. Then v is Borel, idempotent, and continuous at each
weW.

Proof. v is Borel since 1 and p are, and v maps into W since u does. If we W
then v(w) = pu(ww*ww*w) = u(w) = w so we see that v is idempotent. To establish

A

the assertion concerning continuity, let {a,}.; be a sequence in C converging
(*-strongly) to the partial isometry w. Set e, == A(af¥a,), f, = Ma,a¥), e = w*w,
and f = ww*. Jt follows from Lemma 4.6 that the {¢,} and {f,} are sequences of pro-
Jections converging strongly to e, f respectively.

Write b, ::: f,a,¢,, and let b, = w,|b,| be its polar decomposition. We must
show {w,} converges *-strongly to w. We begin by noting that {|5,2} and hence
{Ib,1} converges strongly to e. Now for # in the null space of w, we have lim ¢4 = 0

n—co

50
limw h =limweh = 0= wh.
n—00 n—oo

On the other hand, if 4 belongs to the initial space of w, then

limw,h = lim w,|b,|h = limayh = wh.
n—oo H =00 n—oo

This shows that w, — w strongly.
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In particular w, - w and hence w® — w* weakly. But then expansion of
fOwy - w¥h? in terms of inner products shows w?¥ — w* strongly as well and
the proof is complete. %

Proof of Proposition 4.4. We have already proved (1). To establish (2), let
{¥,}2., bea (weakly) dense sequence of Borel selectors for the map (4, e, f) — fAe,
taking # into %(C). Since this map is convex-valued, by augmenting the
{¥,}1 by all of their rational convex combinations if necessary, we can assume

that they are “-strongly dense selectors for (4, e, ) — fAe viewed as a map into ’(f(é).
But then taking v from Lemma 4.8, we see that the {v o, }%.; are a dense sequence
of selectors for the map (4, e, f) — (f4e) n W and the proof of (2) is complete.

We establish (3) by composing the map 4 of Lemma 4.6 with a “-strongly

dense sequence of Borel selectors for the map (4, e,f) — (ede) n P of (1). 7|

5. A BOREL CHOICE OF FINITE PROJECTIONS

The main result of the paper appears as Theorem 5.3 below. As mentioned
in the Introduction, the key idea in the proof is use of the selection result, Theorem
2.4; before this can be done, we need two observations concerning von Neumann's
comparison theory for projections. We use the standard notations and terminology,
as found for example in D. Topping’s notes [I5].

ProrosiTiON 5.1. The following sets are Borel.

(1) The set of pairs (A, e) such that A is a factor on H and e is a finite projec-
tion in A.

(2) The set of triples (A, e, f) such that A is a factor on H and e < f are projec-
tions in A.

Proof. (1) We follow Nielsen [12, pages 89 f]. The set of triples (4, e, w)&
¢ FXEXW with eeA and wed satisfying ww* === ¢ and w*w < e is Borel, so
the set of (1) is at least coanalytic.

Let 7 denote the set of trace class operators in P, and write © for the canonical
trace. Since t is weakly lower semi-continuous, we conclude that T is a o-compact
subset of C and that 7 is weakly Borel on T. Let {¢,}%.; be a dense sequence of Borel
selectors for the identity map on &. The set of ordered triples

{(A,e,t)e FXEXT!ecA, 1(t)=1, and 1(te,(A)ep,(A)e) =
= 1(te@,(A)e ¢, (A)e) for all n, m}
is Borel. Since ¢ is a finite projection in A precisely when e4e admits a finite trace, the

projection of this set of triples on Z X E is the set of (1). This shows the set of (1)
is also analytic, hence Borel.
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(2) Since e < f always holds when f is infinite, but never holds when e is
infinite and £ is finite, it suffices to restrict attention to those ordered triples having
e and f finite. Now each of the sets

{(A,e,f, e FXEXEXW |e,f finite projections in 4, we A4,
with ww* < ¢ and w¥w =f}
{(4, e, f, Wl A, e, f, w as above, but ww* = e, w'w = f}

{(4, e, f, w)| A, e, f, w as above, but ww* = e, w*w < f}

is Borel, so their projections on # X EX E are analytic. Since these projected sets
are disjoint and have a Borel union they are in fact themselves Borel, and the proof
is complete. %

We use the notation 7, for a trace on the semi-finite factor 4. When A is
finite we will assume 1,(i) = 1, which determines t, uniquely. When A4 is infinite,
7T, has no convenient normalization, but the quotient appeaiing below does not
reflect this arbitrariness.

A(€)

PROPOSITION 5.2, The map (A, e, f) — A s Borel on the set of ordered
triples in F X EX E for which it is defined.

Proof. Set
G ={(A,e,f)| Ae F, e, f are finite projections in 4, f # 0}.

Then £ is Borel and is the domain of the map in question. For convenience of nota-
7,4()

tion, write 6(4, e, f) = T, . For any positive real number r, we have
Ta
a7 1([0, r)) = {(A, e,f)€ 9 | there exist integers m and n with M <+ such that
n

e and f admit orthogonal decompositions in 4 of the form e=e¢, +
4+ ... +eyand f=f + ...+ f, where the {f;} arc mutually

equivalent and each e; 5]’1} )

‘which is clearly an aha]ytic set. Similarly, o~ ([r, ob)) is also analytic, whence
a is Borel. . 7

THEOREM 5.3. The collection & of semi-finite factors on H is Borel and there is
a Borel function which selects a non-zero finite projection from each of its elements.

Proof. Write & for the set of ordered pairs (4, ¢) such that A4 is a factor on H
and ¢ is a non-zero, positive trace-class contraction in 4. Since any trace on a semi-
finite facter is lower semi-continuous, for any factor A and integer n, the set

90660
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{te An P|1,(t) < n}is(weakly) compact. This shows the vertical sections of # are
g-compact. The main idea of this proof is to apply Theorem 2.4 to #; in order to do
50, we must only show that £ is Borel.

For each positive integer n, let 4,: [0, 1] - [0, 1] be the characteristic function
of the interval (1/2%, 1/2"~1]. According to Proposition 4.3, the {7} can be regarded
as Borel functions on P. Now if (A, t)e Z then all of the projections {2,(¢)},
are finite, there is one of lowest index, u(¢), which is non-zero, and the sum

o
N zA0) converges; these conditions are also sufficient for membership
w1 27 T,(u(1)

in . Proposition 5.1 implies that
Ry ={(A,)e FXPit+#0 and A1) is finite for all n}

is Borel. Moreover, since u is Borel and composition preserves Borel measurability,
we can apply Proposition 5.2 to conclude that for each n the map

TA()“n(’))

A, 1) = (A4, 2, 1(2)) -
(4,8 = (4, 2,(0), 1(2)) a0

is Berel on %, . This completes the proof that £ is Borel since we have characterized
A as

{(A, t)e A, the partial sums of Y}, L 20) are bounded}.
n1 2% T,(u(1))

We are now in a position to apply Theorem 2.4. This tells us that the pro-
jection of # on .#, namely &, is Borel, and we get a Borel function ¢: & — P\{0}
such that ¢(A4) has finite 4-trace for each 4 €. With u as above, set &(A4) : = u(@p(A4))
to get the desired selection of projections. %

NotE. In future references to £(4), we will assume it has been redefined to
satisfy ¢(A4) - i whenever A is finite.
COROLLARY 5.4. There is a Borel choice of traces for semi-finite factors. More
precisely, the set
Q::{(A4, )e XC it is of trace class in A}

is Borel and there is a Borel function 6: Q — C such that for each Ae &, the functional
o(4, -) is a trace on A.

Proof. Note that ¢t is of trace class in A4 iff the positive and negative parts of
Ret, Im¢ are. This shows Q is Borel. Let ¢: & — E be the selection of finite projec-

. \
tions constructed in Theorem 5.3. Take (4, 1) == lim 2. 2lnil) for >0,
k—00 =, k TA(E(A))
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where 1, , is the characteristic function of (n — 1/k, n/k] and extend o by linearity
to all of Q. %

COROLLARY 5.5. The classification of factors is Borel.

Proof. We already know the sets of finite, semi-finite and type 111 factors on H
are Borel. The type I factors are those with abelian projections, while a semi-finite
factor A fails to be of type 1 iff it contains a sequence of non-zero projections
with t,(e,) | O ; thus both of these sets are analytic and hence Borel. Since a finite
factor A4 is of type I, iff it contains an abelian projection e with 7,(e) = 1/n,
these classes are also analytic and hence Borel. %

6. EXHAUSTION ARGUMENTS IN SEMI-FINITE FACTORS

Let 4 be a type 11, factor with e; a finite non-zero projection in A. Then A4
contains a sequence {w,}5%.; of partial isometries having e, as their common ini-
tial projection, and final projections {e,}3.; which are mutually orthogonal and
supplementary. This is a precise way of saying that A is (unitarily equivalent to)
the tensor product of the type II, factor e,4e, with the type I, factor L(H); to a
large extent, this reduces the study of semi-finite factors to that of finite factors. This
principle can be applied to the measurability considerations of the present paper by
making the {w,} Borel functions of A.

Theorem 5.3 tells us how to make a Borel choice of e,(4) and we may as well
take wy(4) = e,(4). Consider the problem of constructing wy(4). We can apply
Proposition 4.4 (2) to get a non-zero partial isometry v,(4) with initial projection
/i(A) < ¢,(A) and final projection g,(A4)} 1 e;(A4). This could be repeated to get
v(4) with initial projection f,(4) < e,(4) — fi(4) and final projection g,(4) |
1 (ex(A) + g,(A)). If this process were continued transfinitely, the sum of the »’s
obtained would provide a candidate for wy(A4). The only problem with this con-
struction is that the limit of an uncountable net of Borel functions can fail to be
Borel. What is required is a version of this exhaustion process which does not de-
pend on transfinite induction; the technical means of achieving this is provided by
Proposition 2.8.

PROPOSITION 6.1. Let # be the set of ordered triples (A, e, f) where A is a
semi-finite factor on H, and e and f are projections in A with e finite and e < f. There
is a Borel function w: # — W satisfying :

(1) the initial projection of w(A,e,f) is e, and

(2) the final projection of w(A,e,f) is a subprojection of f.
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Proof. Let &: # — G(W) by
D(A,e,f)=={we AnNW | w*w < e and ww* < f}.

By Proposition 4.4 (2), ¢ is Borel. Define § on the graph of @ by

©o

O, e.fon) = 3, o W = n(o)

n—=1 &

where the {/1,}2., form a norm-dense sequence in the unit ball of H. Let ¢: & — W
be one of the selections of @ guaranteed by Proposition 2.8. Define a sequence
{@,}21: F = W inductively as follows:

¢ =@
and

e =:¢(A,e— Y 020 h f— 5 o) <pz=(-)).
k-1

k=1

Note that both the initial and final projections of the partial isometries {¢,(4. ¢,f)}&.,

are mutually orthogonal for each (4, e, f) so the infinite series E @q(-) converges
ne=1

pointwise “-strongly to a Borel function w(-). Fixing (4, e, f), it is clear that the

initial and final projections e, and f, of w(A4, e, ) are subprojections of e and f respec-

tively, so it only remains to check that e, actually equals e.

If fy-~f, then ey ~ fo==f> e, s0 e==¢, by the finiteness of e. On the other hand,
if g < e and £, < f both held, then there would be a non-zero partial isometry weA
orthogonal to all of the {¢,(4, e, )}3.1. (We say two partial isometries are orthogonal
if they have orthogonal initial projections and orthogonal final projections.) Now,
by definition of ¢, we have n(w) < 2iy(@,(4, e,f)) for all n. Moreover, since the
L4, e,)}¥ ., are mutually orthogonal, we have limn(¢,(4,e,f)) =:0. But this

leads to the contradiction »(w)==0, so w does not exist and the proof is complete. ]

COROLLARY 6.2. There is a sequence of Borel functions which associate with
each semi-finite but infinite factor A on H the partial isometries {®,(A)}2 ,. For cach
A, these partial isometries have a common finite initial projection £,(A), and their
Sinal projections {e,(A)}X.1 are mutually orthogonal and supplementary.

Proof. Let ¢: & — E be the selection of finite projections constructed in
Theorem 5.3. For each Ae $\7, set w,(4) = g(4):=¢(4). Adopting the
notations of the proof of Theorem 6.1, define «w, (A) inductively by the formula

D) = 04 o), = 3, (Dt

k=1
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The range projections {¢,(4)}32.; of the {w,(4)}3.; are clearly orthogonal; thus by
definition of n, we have lim#n(w,(4)) = 0. Since the construction of w in the proof of

Theorem 6.1 begins with an application of the selector ¢, we conclude that the only

[>+]
partial isometry in A whose final projection is orthogonal to Y, ¢.(4) is zero. This
n=1

means the {¢,(4)}32., are supplementary and completes the proof. %

Corollary 6.2 is the result promised in the opening paragraph of the section.
The iteration of @ occurring in the proof can be carried out in finite factors as well ;
although this could have been incorporated in the statement of Corollary 6.2, it
seems less awkward to formalize it in a separate corollary.

COROLLARY 6.3. Let A denote the set of ordered pairs (A, e) with A a finite factor
and e a projection in A. There is a sequence {w,}32., of Borel functions: # — W
such that for each (A, e)e A,

(1) the initial projections of the {w,(A, €)} are all subprojections of e,

(2) the final projections of the {w,(A,e)} are mutually orthogonal and supple-
mentary, and

(3) all but finitely many of the {w,(A, €)} are zero.

Proof. Let w be as in Proposition 6.1. Set w,(A4, e) = e. Assuming w,(4, ¢)
to be defined, set

84, )=i— Y, @4, 0) 04, e)

k=1
and define

w(A, e e,(4,e),e) if e <e(A,e)
@*(A4, &,(4, e), e) otherwise.

W, 41(4, €) = {

As long as e < ¢,(4, e), the initial projections of the {w,(A4, €)} will all be e. Since A
is finite and the final projections of the {w,(4, e)} are clearly mutually orthogonal,
this will stop after finitely many steps, and then there can be at most one more
non-zero (A4, e). 2

The following lemma on linear functionals is included in this section because
its proof depends on an exhaustion argument. Write ¥ for the set of ordered pairs
(A, a) where A is a finite factor and a € A. Suppose 1: ¥ — C is Borel and for each
A, the functional @ — (4, a) is linear, self-adjoint, contractive, and ultraweakly
continuous. For example, n might be given by n(4, a) = (ah, k) for some fixed
h e H, or n(A, a) = 1,(a), or (the application we will make in §7) a real linear
combination of these types.
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LeMMA 6.4. Let 5: 9 — C be as above, and suppose y(A, i):=-0 for all finite
Juctors A. Then there is a Borel function €: T — EN{O} such that for each finite
Jactor A€ T, the projection e(A) has the property that n(A, a) <0 for all ac A
with 0 < a < ¢(4).

Proof. Let

& = {(Ad,e)e G iceE},

and define &: % - €(E) by ®(A,e) == {fe ApE|f< e}. That & is Borel is a
consequence of Proposition 4.4 (3). Now let

& = {(A, e,f) in the graph of @ ' n(4,f) > O}.

Applying Proposition 2.7, we conclude that thc map ¥ sending (A4, ¢) to the
“-strong closure of &, ., is Borel. In order to make sure the domain of ¥ is ail
of &, we replace it by its union with the constant set-valued map (4, ¢) -» [0}.
Recapitulating then, ¥ is the Borel map from & into ¥ (E) which sends (4, ¢) to
the “-strong closure of {fe A n Ejeither f--0 or fis a subprojection of e with
(A,f) > 0}. Define 0 on the graph of ¥ by 0(4,e,f) = #(A,f), and let y: & - E
be a sclector for W given by Proposition 2.8.

Define d,: 9 — E inductively by §,{(4) = ¥(4,7), and 9J,.(d) : -

:_;q[/(A,i-- ¥ ék(A)). Set
4 |

I, if 5(4, ,(4)) =0

&(A) = o
i~ Y 8,(A), if n(A. 8,(4) >0
n-=1

Note that by definition of i, if e is a projection in the finite factor A which is a sub-
projection of g(A4), we must have 5(4, e) < 0, so by spectral theory, 5(4,a) <0,
for all0 € a < &(A). Finally we note that £(A) is non-zeto: indeed, if (4, 5,(4)) > 0,

then n(A, e(A) == — Y, n(4, 9,(A)) is strictly negative. A

el

7. EXTENSION OF TRACES

Every trace on a semi-finite factor is induced by a bounded linear operator
on the underlying Hilbert space. [n this section, we make a Borel choice of these
operators.



BOREL MAPS ON SETS OF VON NEUMANN ALGEBRAS 337

ProposITION 7.1. There is a Borel map ¢ from  into the finite rank positive
contractions of H satisfying t,(a) = 1(ap(A)) for all ac A T

Proof. Fix a unit vector he H. With ¢ as in Lemma 6.4, take #: 9 —» C by
n(A, a) = t4(a) — {ah, h); let &2 T — E\{0} be as in the conclusion of that lemma.
Next, with {®,}$.; as in Corollary 6.3, define v,: I~ - W by v,(4) = w,(4, &(A4)).

(=4
We then have v;(A)v,(4) < &(A) for each n, and 'y} v,(A)v¥(4) =i for each
n=1

A€ . An elementary computation shows that for ae 4 n P, with Ae J, we have

@) = 3, T (R Aar(A) < 5, (v (A) by B,
n -1

n=1

Since this inequality continues to hold when a is replaced by i — a, we actuall'y have
oo

equality. The proof is thus completed by taking @(A) = ¥, v,(A)h® v,(A)h;this
ne=1

operator is always finite rank since all but finitely many of the {v,(A4)} vanish. P&

It remains to generalize Proposition 7.1 to the semi-finite case. We first con-
sider the problem for a single semi-finite factor A4, i.c., we do not worry about mea-
surability. As mentioned in the introduction to §6, there is a sequence {w,}3,
of partial isometries in A all having a common finite initial projection e, and final
projections {e,},; which are mutually orthogonal and supplementary. Then e,Ae,
is a finite factor acting on the Hilbert space ¢, H. Let =:e,Ade, - L(H) by n(a) =

=]
== Y wawk. (It is helpful to think matricially here: a is an infinite matrix with a
n-:1

single non-zero entry in the (1,1) position, while n(a) has this entry repeated all along
the diagonal.) Then = is an algebraic isomorphism onto a finite factor B on H. Write
74(7y) for the trace on A(B) normalized by taking t,(e,) == | (respectively t4() = 1).

LeEmMMA 7.2. Suppose t is a positive trace class operator in L(H) which induces
Ty in the sense that ty(b) = ©(bt) for all beB. Let s = Y wwrtww¥. Then s is a
iv7

positive contraction satisfying the following conditions :

(1) The domain of 1, consists of precisely those operators acA with Via[/;v-of
trace class in L(H).

(2) For a in the domain of 74, we have 1,(a) == T(V:{ a]/;).
Proof. The operator 'y wjtw; is positive, has trace less than or equal to (¢),
7

and is supported on e, H. Since the projections w,w¥ are mutually orthogonal, the
sum defining § converges strongly to a positive contraction.
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Suppose first that aee (A n P)e,. Then as = aw (Y wfmpuwE. On
the other hand, 1,(@) == 1 (wFaw) = 14(n(wFaw))). Since n(v:';faw,;) commutes
with each ¢;, we thus have tA(a)fr(i (wg a;t'k)ejtej) whence it follows
that t,(a) =: 7(as). Since s has an orthogollglll basis of eigenvectors, we conclude
that z(as) = T(V;al/g). Thus formula (2) holds for all @ in the linear span of the
{e:de}.

n 2]
Now let a be an arbitrary element of 4 n P. The projections { Z oi}
i::1 1
converge strongly to the identity and thus by normality of 7, and 1, we conclude

T4(a) < oo iff r(]/&hl/E) < co, with equality hodling in the finite case. The proof is
completed by the observation that the map a — [/Ea[/E preserves decompositions
into real and imaginary and positive and negative parts. 73]

THEOREM 7.3. There is a Borel function Yr: & — C such that for any Ac &,

(1) The trace class operators of A are precisely those operators a ¢ A with
Y(A)ay(A) of trace class in L(H).
(2) The map a — (Y(A)ay(A4)) is a trace in A.

Proof. Write 4 for the set of ordered pairs (A, @) with A semi-finite and a€4,
andletg: % — C by a(4, a)=: Y, w,(4)a w;(4)*. Then for fixed A, the map a — o(4,a)
7

takes dense sequences of A to dense sequences of a von Neumann algebra =(A), so
72 Is a Borel map from & into . Let ¢: F — C be the function given by Proposition
7.1. Take Y(A) to be the positive square root of Y, w,(A)w;(4)*@(n(A)) v A)w (A)*.

i
Then ¢ is Borel and, by virtue of Lemma 7.2, it satisfies properties (1) and (2). &£

8. SOME OPEN PROBLEMS

The following problems are suggested by the body of this paper.

ProBLEM 8.1. Prove directly that the set of semi-finite von Neumann alge-
Bras on H is Borel.

ProBreM 8.2, For X Polish, find general conditions on Borel maps into #(X)
auaranteeing that their intersection is also Borel.

ProsriM 8.3, Is there a Borel method of choosing a maximal projection from
each closed subset of E?
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In this paper, we have dealt with the classification and structure of factor von
Neumann algebras. It is natural to ask whether this can be carried out in non-fac-
tors. One way to approach this is to employ direct integral theory. Actually all proofs
of the fact that the set of global semi-finite von Neumann algebras is Borel rely on
this technique. This is somewhat awkward, and suggests Problem 8.1.

It is interesting to observe how the proof of Theorem 5.3 fails in this connec-
tion. Although there is no canonical trace on a semi-finite factor, its trace class is
independent of which trace one chooses. This fact was used in the proof of Theorem
5.3 to show that the set

R=={(A, 1) | A€ F, te AN P, 1,(t) < o0}

is Borel and has g-compact sections — without having to make a choice of 7,. By
contrast, when A is not a factor, {te AN P|7,(t) < oo} depends on the choice
of t,. Now, on the one hand, a haphazard choice of trace classes {7,} may leave
{(4,t) | Ae A, te & n PN T,} non-Borel, while

{(A4,1) | A, te ANP, ¢ belongs to any (faithful) trace class},

which can be shown to be Borel, no longer has g-compact sections. The hope of
resolving Problem 8.1 along the lines of this paper thus lies in making a different
kind of choice of # and/or finding a different selection theorem to apply.

Problem 8.2 is suggested by the ad hoc nature of the proofs of Propositions
2.7 and 4.4. Although Christensen [1] shows that intersection is not globally well-be-
haved — his Theorem 8 even implies the intersection of the identity map on #(X)
with a constant map can fail to be Borel — it should be possible to obtain some posi-
tive results.

Problem 8.3 is motivated by the exhaustion arguments of Section 6. Proposi-
tion 2.8 is clearly a primitive tool for these, and it would be useful to have more
powerful techniques for choosing maximal projections and partial isometries.

This work was supported by a grant from the National Science Foundation.
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