THE SPECTRUM OF HILBERT SPACE SEMIGROUPS

I. HERBST

1. INTRODUCTION

Suppose $\{P(t): t \ge 0\}$ is a strongly continuous semigroup of operators on a Hilbert space \mathcal{H} . We introduce the generator, A, of the semigroup by writing $P(t) = \exp(-tA)$ and consider the problem of determining the spectrum, $\sigma(P(t))$, given some knowledge of the operator A.

The inclusion

(1.1)
$$\sigma(\exp(-tA)) \supset \overline{\exp(-\sigma(tA))}$$

is known to hold for all such semigroups [5] but there are cases where the reverse inclusion fails [5]. (Here $\exp(-\sigma(tA))$ is the closure of the set $\{e^{-z}: z \in \sigma(tA)\}$.) In fact, as is demonstrated in [5], it is possible to have $\sigma(A) = \emptyset$ while $\exp(-tA)$ has circles in its spectrum. There are of course examples where $\sigma(A) = \emptyset$ while $\sigma(\exp(-tA)) = \{0\}$ for t > 0 so that in general, $\sigma(\exp(-tA))$ is not determined by $\sigma(A)$ alone.

It follows from the assumed strong continuity of P(t) that the bound

$$(1.2) ||P(t)|| \leq K \exp(t\omega); t \geq 0$$

is valid for some $K \ge 1$ and $\omega \in \mathbb{R}$ [5]. If K can be set equal to one then $P(t)\exp(-t\omega) = \exp(-t(A+\omega))$ is a strongly continuous semigroup of contractions. In Hilbert space such semigroups are well studied and structure theorems comparable to the spectral theorem for normal operators are known [1].

Using this additional structure, L. Gearhart [2] showed that if K=1 in (1.2) and \mathcal{H} is separable then $\sigma(P(t))$ can be determined from a knowledge of $\sigma(A)$ and the behavior of $||(z-A)^{-1}||$ for z near infinity. Specifically, Gearhart proved the following result [2]. (In stating the result we use the notation $\rho(B)$ for the resolvent set of an operator B.)

THEOREM 1.1. ([2]). Suppose $\{\exp(-tA): t \ge 0\}$ is a strongly continuous semiroup of operators on a separable Hilbert space with $\|\exp(-tA)\| \le \exp(t\omega)$ for some $\omega \in \mathbf{R}$. Then 88 I. HERBST

(1) $\exp(-z_0) \in \rho(\exp(-A))$ if and only if $z_0 + 2\pi i n \in \rho(A)$ for all integers n and

$$\sup_{n\in\mathbb{Z}}\|(z_0+2\pi i n-A)^{-1}\|<\infty;$$

(2) $0 \in \rho(\exp(-A))$ if and only if there are numbers c_0 and $\omega_0 > 0$ so that $\{z : \operatorname{Re} z > \omega_0\} \subset \rho(A)$ and for $\operatorname{Re} z > \omega_0$

$$||(z-A)^{-1}|| \le c_0 (\operatorname{Re} z)^{-1}.$$

Gearhart's proof of this theorem is not elementary. It is the purpose of this note to give a generalization of Theorem 1.1 with an elementary proof. This we do in Section 2.

In [4] Gearhart's theorem was applied to determine the essential spectrum of certain non-self adjoint partial differential operators related to the Stark-effect. In [3] Gearhart's theorem was used to generalize a theorem of Ichinose on the spectrum of $A_1 \otimes I + I \otimes A_2$. Given Theorem 2.1 of this paper, many of the results of [3] can be generalized further in an obvious way.

It is a pleasure to thank L. Carleson for the hospitality of the Mittag-Leffler Institute and for useful discussions. In addition, I would like to thank J. Rovnyak for showing me another proof of part (2) of Theorem 1.1.

2. A GENERALIZATION OF GEARHART'S THEOREM

In this section we will prove the following two results.

THEOREM 2.1. Suppose $\{\exp(-tA): t \ge 0\}$ is a strongly continuous semi-group of operators on a Hilbert space. Then conclusions (1) and (2) of Theorem 1.1 are valid.

THEOREM 2.2. Under the same hypotheses as in Theorem 2.1, the resolvent $(z - \exp(-A))^{-1}$ has at most a pole at z = 0 if and only if there are numbers $c_j > 0$ such that for all z with Re z sufficiently large

(2.1)
$$||(z-A)^{-1}|| \leq c_1 \exp(c_2 \operatorname{Re} z).$$

If given any $\varepsilon > 0$ there is a c_{ε} such that

$$||(z-A)^{-1}|| \leq c_c \exp(\varepsilon \operatorname{Re} z)$$

for Rez large, then $0 \in \rho(\exp(-A))$.

The main ingredient in our proof of these results is the Parseval relation for Fourier series:

LEMMA 2.3. Suppose \mathcal{H} is a Hilbert space and f and g are continuous functions on [0,1] with values in \mathcal{H} . Define the Fourier coefficients of f as

$$f_n = \int_0^1 e^{2\pi i nt} f(t) dt$$

and similarly for g. Then

(2.3)
$$\int_{0}^{1} (f(t), g(t)) dt = \sum_{n=-\infty}^{\infty} (f_{n}, g_{n})$$

where the series on the right converges absolutely.

Proof of Lemma 2.3. Let $T \subset [0,1]$ and $\Lambda \subset \mathbb{C}$ be countable sets such that T is dense in [0,1] and Λ is dense in \mathbb{C} . Let \mathscr{V} be the closure of the set of all vectors of the form

$$\sum_{i=1}^{N} \lambda_i f(t_i) + \sum_{j=1}^{N} \lambda'_j g(t_j)$$

where $N < \infty, \lambda_i, \lambda_i' \in \Lambda$, and $t_i, t_i' \in T$. It is clear that \mathscr{V} is a separable Hilbert space: containing Ran $f \cup \text{Ran } g$.

This reduces the problem to the case where \mathcal{H} is separable and here the result is well known.

We now begin the proof of Theorems 2.1 and 2.2. By adding a constant to-A we can assume that $\|\exp(-tA)\| \le K$ for all $t \ge 0$. Given $z \in \mathbb{C}$ let

(2.4)
$$a_n(z) = \int_0^1 \exp(-t(A-z)) \exp(2\pi i nt) dt$$

(2.5)
$$B(z) = 1 - \exp(-(A - z)).$$

An elementary integration shows that

(2.6)
$$B(z) = (A - z - 2\pi i n)a_n(z).$$

Suppose $\exp(-z_0) \in \rho(\exp(-A))$. Then $B(z_0)$ is invertible so that (2.6) implies: $z_0 + 2\pi i n \in \rho(A)$ for all n and writing

$$R_n(z_0) = (A - z_0 - 2\pi i n)^{-1}$$

we have

$$||R_n(z_0)|| = ||B(z_0)^{-1}|| K\left(\int_0^1 \exp(t \operatorname{Re} z_0) dt\right).$$

90 I. HERBST

Hence $\sup_{n}^{n}(A-z_0-2\pi in)^{-1}$ < ∞ . (This elementary argument is Gearhart's [2]. We have included it to keep the proof self-contained.)

To prove the converse consider the function

(2.7)
$$q_x(x) = \alpha^2 \int_{t}^{1} [|\exp(-t(A-z_0))x|]^2 dt + [|x|]^2 - [|\exp(-(A-z_0))x|]^2.$$

We will first bound q_x from below. Since for $t \in [0,1]$

$$\|\exp(-(A-z_0))x\| = \|\exp(-(1-t)(A-z_0))\exp(-t(A-z_0))x\| \le$$

$$\leq K\exp((1-t)\operatorname{Re} z_0)\|\exp(-t(A-z_0))x\|$$

we have

$$\int_{0}^{1} \left| \exp(-t(A-z_{0}))x \right|^{2} dt \geqslant$$

(2.8)
$$\geq K^{-2} \int_{0}^{1} \exp(-2(1-t) \operatorname{Re} z_{0}) dt \left[\exp(-(A-z_{0}))x \right]^{2} =$$

$$= K^{-2} \left[(1-\exp(-2\operatorname{Re} z_{0}))/2\operatorname{Re} z_{0} \right] \left[\exp(-(A-z_{0}))x \right]^{2} .$$

Here and in the following we assume $\text{Re } z_0 \ge 0$ because since the spectral radius of $\exp(-A)$ is at most 1, $\exp(-z_0) \in \rho(\exp(-A))$ if $\text{Re } z_0 < 0$. From (2.8) it follows that the choice

(2.9)
$$\alpha = \begin{cases} K(2\operatorname{Re} z_0(1 - \exp(-2\operatorname{Re} z_0))^{-1})^{1/2}; & \operatorname{Re} z_0 > 0 \\ K; & \operatorname{Re} z_0 = 0 \end{cases}$$

gives the lower bound

$$q_{\alpha}(x) \geqslant \|x\|^2$$

We now bound q_x from above assuming that $\sup_n ||R_n(z_0)|| = M(z_0) < \infty$. Let $f(t) = g(t) = \exp(-t(A - z_0))x$ in (2.3). From (2.4) and (2.6) we have

(2.10)
$$\int_{0}^{1} ||\exp(-t(A-z_{0}))x||^{2} dt = \sum_{n=-\infty}^{\infty} ||R_{n}(z_{0})B(z_{0})x||^{2}.$$

Let $w_0 = -\lambda + i \operatorname{Im} z_0$ where $\lambda > 0$. Then by the resolvent equation

$$R_n(z_0) = C_n R_n(w_0)$$

with $C_n = 1 + (z_0 - w_0)R_n(z_0)$. Note that $||C_n|| \le 1 + (\operatorname{Re} z_0 + \lambda)M(z_0)$ so that $||R_n(z_0)B(z_0)x|| \le (1 + (\operatorname{Re} z_0 + \lambda)M(z_0))||R_n(w_0)B(z_0)x|| \le$ $\le (1 + (\operatorname{Re} z_0 + \lambda)M(z_0))||B(w_0)^{-1}|| ||R_n(w_0)B(w_0)B(z_0)x||.$

Since $\text{Re } w_0 < 0$, $B(w_0)$ is certainly invertible. Define

$$\gamma = (1 + (\text{Re}\,z_0 + \lambda)M(z_0))||B(w_0)^{-1}||.$$

Inserting the last estimate in (2.10) we have

$$\int_{0}^{1} \|\exp(-t(A-z_{0}))x\|^{2} dt \leq \gamma^{2} \sum_{n=-\infty}^{\infty} \|R_{n}(w_{0})B(w_{0})B(z_{0})x\|^{2}.$$

If we replace z_0 and x by w_0 and $B(z_0)x$ in (2.10) we have the identity

$$\int_{0}^{1} \|\exp(-t(A-w_{0}))B(z_{0})x\|^{2} dt = \sum_{n=-\infty}^{\infty} \|R_{n}(w_{0})B(w_{0})B(z_{0})x\|^{2}$$

so that

$$\int_{0}^{1} \|\exp(-t(A-z_{0}))x\|^{2} dt \leq \gamma^{2} \int_{0}^{1} \|\exp(-t(A-w_{0}))B(z_{0})x\|^{2} dt \leq$$

$$\leq (\gamma^{2}K^{2} \int_{0}^{1} \exp(-2t\lambda) dt) \|B(z_{0})x\|^{2} =$$

$$= \gamma^{2} K^{2} (1 - \exp(-2\lambda)) (2\lambda)^{-1} \|B(z_{0})x\|^{2}.$$

Now consider the remaining two terms in (2.7). We have

$$||x||^{2} - ||\exp(-(A - z_{0}))x||^{2} = ||x||^{2} - ||(B(z_{0}) - 1)x||^{2} =$$

$$= 2\operatorname{Re}(x, B(z_{0})x) - ||B(z_{0})x||^{2} \leq$$

$$\leq 2||x|| ||B(z_{0})x|| - ||B(z_{0})x||^{2}.$$

Setting $\beta = \alpha \gamma K[(1 - \exp(-2\lambda))/2\lambda]^{1/2}$ and combining (2.11) and (2.12) we find

I. HERBST

the upper bound

$$(2.13) q_{\alpha}(x) \leq (\beta^2 - 1) ||B(z_0)x||^2 + 2||x|| ||B(z_0)x||.$$

Set ||x|| = 1 and let $u = ||B(z_0)x||$. If α is chosen as in (2.9) then (2.13) combined with the lower bound $q_n(x) \ge 1$ gives

$$(2.14) \ 0 \leq (\beta^2 - 1)u^2 + 2u - 1 = (\beta^2 - 1)(u - (1 - \beta)^{-1})(u - (1 + \beta)^{-1})$$

where of course the equality in (2.14) holds only if $\beta \neq 1$. In any case (2.14) implies that $u \geqslant (1 + \beta)^{-1}$ which means

$$(2.15) ||B(z_0)x|| \ge (1 + \beta)^{-1}|x||$$

for all $x \in \mathcal{H}$. Using the fact that $(\exp(-tA))^{\phi} = \exp(-tA^*)$, a similar argument implies

$$(2.16) ||B(z_0)^*x|| \ge (1+\beta)^{-1}||x||.$$

Thus $B(z_0)$ is invertible and

$$||B(z_0)^{-1}|| \leq 1 + \beta.$$

This proves the first part of Theorem 2.1.

Now suppose that $0 \in \rho(\exp(-A))$. Then there is an $\omega_0 > 0$ so that if $\operatorname{Re} z > \omega_0$, $\exp(-z) \in \rho(\exp(-A))$ and

$$||(\exp(-z) - \exp(-A))^{-1}|| \le c.$$

Since $B(z)^{-1} = \exp(-z)(\exp(-z) - \exp(-A))^{-1}$ we thus have

$$||B(z)^{-1}|| \leq c \exp(-\operatorname{Re} z).$$

From (2.6) it thus follows that for Re $z > \omega_0$

$$||(A-z)^{-1}|| \le c \ K \exp(-\operatorname{Re} z) \int_{0}^{1} \exp(t \operatorname{Re} z) dt \le c_{0} (\operatorname{Re} z)^{-1}.$$

The remainder of Theorem 2.1 is a consequence of Theorem 2.2. We thus assume that (2.1) holds for all z with Re z sufficiently large. We set $\lambda = \text{Re } z$ in the explicit bound (2.17) and find that for Re z sufficiently large

$$||B(z)^{-1}|| \le 3c_1K^2 (\operatorname{Re} z) \exp(c_2\operatorname{Re} z).$$

Thus

$$||(\exp(-z) - \exp(-A))^{-1}|| \leq 3c_1K^2(\operatorname{Re} z) \exp((1+c_2)\operatorname{Re} z) \leq c \exp(N\operatorname{Re} z)$$

for some integer N > 0, or writing $w = \exp(-z)$

$$||(w - \exp(-A))^{-1}|| \le c |w|^{-N}$$

for sufficiently small |w|. We conclude from (2.18) that the function $f(w) = (w - \exp(-A))^{-1}$ has at most a pole of order N at w = 0.

Conversely, if z = 0 is at most a pole of the resolvent $(z - \exp(-A))^{-1}$, then (2.18) holds for some $N \ge 0$. Thus from (2.6)

$$||(A-z)^{-1}|| \le ||B(z)^{-1}|| K \exp(\operatorname{Re} z) \le c K \exp(N\operatorname{Re} z).$$

Suppose now that given $\varepsilon > 0$, (2.2) holds for all large Re z. Then from what we have just shown, $(z - \exp(-A))^{-1}$ has at most a pole at z = 0. If this pole is of order $N \ge 1$, then $\exp(-A)$ has a non-zero kernel. Suppose $\exp(-A)x = 0$. We will show that x = 0 and thus complete the proof.

From (2.11) we have (since B(z)x = x)

$$\int_{0}^{1} ||\exp(-t(A-z))x||^{2} dt \leq ||x||^{2} \gamma^{2} K^{2} (1 - \exp(-2\lambda))/2\lambda$$

for Re z large, where $\gamma = (1 + (\text{Re } z + \lambda)M(z))||B(w_0)^{-1}||$. We choose $\lambda = \text{Re } z$ and ε in (0,1/2) so that (2.2) holds for all z with Re z large. Then

$$\left(\int_{0}^{1}\|\exp(-tA)x\|^{2}\exp(2t\operatorname{Re}z)\,\mathrm{d}t\right)^{1/2}\leqslant d_{\varepsilon}(\operatorname{Re}z)^{1/2}\exp(\varepsilon\operatorname{Re}z)\|x\|.$$

Since

$$\int_{0}^{1} \|\exp(-tA)x\|^{2} \exp(2t\operatorname{Re}z) dt \ge \exp(4\varepsilon\operatorname{Re}z) \int_{2\varepsilon}^{1} \|\exp(-tA)x\|^{2} dt$$

we have

$$\left(\int_{2\varepsilon}^{1} \|\exp(-tA)x\|^{2} dt\right)^{1/2} \leq d_{\varepsilon}(\operatorname{Re} z)^{1/2} \exp(-\varepsilon \operatorname{Re} z) \|x\|$$

so that taking the limit $\operatorname{Re} z \to \infty$ we find $\exp(-tA)x = 0$ for $t \ge 2\varepsilon$. Thus $\exp(-tA)x = 0$ for all t > 0 and by continuity x = 0.

Note: In a recent preprint [6], J. Howland has given an alternative proof of the first part of Theorem 2.1 using very different methods.

Partially supported by NSF grant MCS - 81 - 01665.

94 I. MERBST

REFERENCES

- 1. FILLMORE, P., Votes on operator theory, Van Nostrand, New York, 1970.
- GEARHART, L., Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236(1978), 385-394.
- 3. Herbst, 1., Contraction semigroups and the spectrum of $A_1 \otimes I I \otimes A_2$, J. Operator Theory, 7(1982), 61 78.
- Herbst, I.; Simon, B., Dilation analyticity in constant electric field. II, Comm. Math. Phys., 80(1981), 181-216.
- Hille, E.; Phillips, R., Functional analysis and semi-groups, Amer. Math. Soc., Providence, 1955.
- 6. Howland, J. S., On a theorem of Gearhart, preprint.

I. HERBST

Department of Mathematics,
University of Virginia,
Charlottesville, Virginia 22903,
U.S.A.

Current address:

Institut Mittag-Leffler, Auravägen 17, S-182 62 Djursholm, Sweden.

Received April 7, 1982; revised May 13, 1982.