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THE SPECTRUM OF HILBERT SPACE SEMIGROUPS

I. HERBST

1. INTRODUCTION

Suppose {P(#):¢t > 0} is a strongly continuous semigroup of operators on a
Hilbert space #. We introduce the generator, 4, of the semigroup by writing P{¢)=
=: exp(— tA) and consider the problem of determining the spectrum, ¢(P(1)), given
some knowledge of the operator 4.

The inclusion

(L. a(exp(— tA)) > exp(—o(t4))

is known to hold for all such semigroups [S] but there are cases where the reverse
inclusion fails [S]. (Here exp(— a(t4)) is the closure of the set {e¢~%:z € g(t4)}.) In
fact, as is demonstrated in [5), it is possible to have o(4) = @ while exp(— t4)
has circles in its spectrum. There are of course examples where o(4) = & while
a(exp(— tA4)) = {0} for ¢ > 0 so that in general, o(exp(— t4)) is not determined
by o(A) alone.
It follows from the assumed strong continuity of P(¢) that the bound

1.2) [P(t)[[<Kexp(tw); 120

is valid for some K > 1 and w € R [5). If K can be set equal to one then P(t)exp(—tw)=
= exp(— #(4 + w)) is a strongly continuous semigroup of contractions. In Hilbert
space such semigroups are well studied and structure theorems comparable to the
spectral theorem for normal operators are known [1].

Using this additional structure, L. Gearhart [2] showed that if X =1 in (1.2)
and 22 is separable then o(P(t)) can be determined from a knowledge of o(4) and
the behavior of ||(z — A)~Y|| for z near infinity. Specifically, Gearhart proved the
following result [2). (In stating the result we use the notation p(B) for the resolvent
set of an operator B.)

THEOREM 1.1. ([2]). Suppose {exp(— tA): >0} is a strongly continuous semi-
roup of operators on a separable Hilbert space with |exp(— t4)|| < exp(tw) for
some weR. Then
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(1) exp(— zy) € p(exp(— A)) if and only if z, + 2rnine€ p(A) for all integers n
and
sup j[(z + 2nin — A)~Y| < o0,
neZ

(2) O p(exp(— A)) if and only if there are numbers ¢, and w, > Q0 so that
{z:Rez > w,} = p(A) and for Rez > w,

iz — A~ < c(Rez)~2

Gearhart’s proof of this theorem is not elementary. It is the purpose of this
note to give a generalization of Theorem 1.1 with an elementary proof. This we
do in Section 2.

In [4) Gearhart’s theorem was applied to determine the essential spectrum of
certain non-self adjoint partial differential operators related to the Stark-effect. In
[3] Gearhart’s theorem was used to generalize a theorem of Ichinose on the spec-
trum of 4; ® I -+ I ® A,. Given Theorem 2.1 of this paper, many of the results of
{3] can be generalized further in an obvious way.

It is a pleasure to thank L. Carleson for the hospitality of the Mittag-Leffler
fnstitute and for useful discussions. In addition, I would like to thank J. Rovnyak
for showing me another proof of part (2) of Theorem 1.1.

2. A GENERALIZATION OF GEARHART'S THEOREM

In this section we will prove the following two results.

THEOREM 2.1. Suppose {exp(—td):t > 0} is a strongly continuous semi-
group of operators on a Hilbert space. Then conclusions (1) and (2) of Theorem 1.1
are valid.

THEOREM 2.2. Under the same hypotheses as in Theorem 2.1, the resolvent
(z — exp(—A))~* has at most a pole at z = 0 if and only if there are numbers ¢; > 0
such that for all z with Re z sufficiently large

(2.1) li(z — A)~1i < ¢, exp(c Re2).
If given any ¢ > 0 there is a c, such that
(2.2) Iz — A)~] < c.exp(eRez)

Jor Rez large, then 0 € p(exp(—A)).

The main ingredient in our proof of these results is the Parseval relation for
Fourjer series:



THE SPECTRUM OF HILBERT SPACE SEMIGRQUPS 89

LeMMA 2.3.  Suppose S is a Hilbert space and f and g are continuous functions:
on [0, 1] with values in 3. Define the Fourier coefficients of f as

1
gr= e gy a
0
and similarly for g. Then
! =}
@3 S (f0.e)dt = Y (fon8)
)
where the series on the right converges absolutely.
Proof of Lemma 2.3. Let T < [0,1] and A4 < C be countable sets such that T~

is dense in [0,1] and A is dense in C. Let ¥ be the closure of the set of all vectors of”
the form

N

N
’_; Lf(t) + j§1 Ai8(1;)

where N < o0, 4;,A; €4, and 1;, t] € T. Itisclear that ¥ is a separable Hilbert space:
containing Ranf U Rang.

This reduces the problem to the case where J# is separable and here the result
is well known. A

We now begin the proof of Theorems 2.1 and 2.2. By adding a constant to-
A we can assume that ||exp(— t4)|| < K for all ¢ > 0. Given z € C let
1

(2.4) a,(z) = Sexp(— t(A — z))exp(2mint)dt
0
2.5 B(z) =1 — exp(—(4 — 2)).

An elementary integration shows that
(2.6) B(z) = (A — z — 2rin)a,(2).

Suppose exp(— z,) € p(exp(—A4)). Then B(z,) is invertible so that (2.6) implies:
zy -+ 2min € p(A) for all n and writing

R(zy) = (A — zy — 2min)~*
we have

1
IRzl = | B(z)~H| K (Sexp(rRe zo)dr)-
0
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Hence sup'(A4 — zy--2rin)~!" < oo. (This elementary argument is Gearhart’s
n

{2). We have included it to keep the proof self-contained.)
To prove the converse consider the function

1
27 qux) = dzs lexp(—#(4 — z))x| *dr - x ® — jlexp(-—(4 — z0)}x "

(

We will first bound g, from below. Since for ¢ €[0,1]
iiexp(- (A — zg))xjl = hexp(—(1 — £)(A — z;)) exp(—-#(A — zp))x |} €
< Kexp((1 — #) Rezp)} exp(—#(A — zo))x};

we have
1
StzeXp(— HA — z)xdt >
0

1
(2.8) = K‘BS exp(—- 2(1 -= 1) Re zp)dt Jiexp(--(4 — 2p))xi® ==

0
= K¥{(1 — exp(— 2Rezy))[2Re 2] Lexp(— (4 — z)x2.

Here and in the following we assume Rez, > 0 because since the spectral radius of
exp(- - A) is at most 1, exp(— zy) € p(exp(— A)) if Rez, < 0. From (2.8) it follows

that the choice

(2.9) . {K(?.Rezo(l — exp(— 2Rezp))~)2; Rezy > 0

X; Rez, =0
gives the lower bound
0.(%) = ixi*
We now bound g, from above assuming that sgp!!R,,(zo)il = M(zy) < co.
Let f(t) = g(t) == exp(—#(4 — z))x in (2.3). From (2.4) and (2.6) we have

1
12.10) S;:exp(— (A — z)xdt == % PR (z)B()xIE.

n—00
0
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Let wyg=: — A+ iImz, where 4 > 0. Then by the resolvent equation
R,(z0) = C,R,(wo)
with C, =1 + (z5 — wy)R,(2p). Note that ||C,]| € 1 + (Rezy -+ )M(zy) so that
IR(z0) B(zo)x|| < (1 + (Rezp + )M (zp))|| R,(wo)B(20)x]| <
< (1 + (Rezo + HM(zo))[|B(wo) ~H| 1R (wo) B(wo) B(zo)x |-
Since Rew, < 0, B(w,) is certainly invertible. Define
? = (1 + (Rez, + HM(z))l|B(wo) 1.

Inserting the last estimate in (2.10) we have
1

Snexp<— (A — z)xEdr < v 0 (R ) BOvo)Blan)lf

ne:—oo

0

If we replace z, and x by w, and B(zy)x in (2.10) we have the identity

Snexp(—tm — wNBEEdr = 0 [|Ry(00)B(wg) Bla)?

n=:-—00

b
so that

1

1
Snexp(—ru — )l < vzgnexm—t(A — W) Blzy)xldr <
0

0
1
(2.11) < (y*K? S exp(— 2tA)de) || B(ze)x||* =
0

= 7KL — exp(— 24)) 22) 7 [| B (zo)x 1>
Now consider the remaining two terms in (2.7). We have
lI%[* — llexp(— (4 — z))x[[* = [|x][* — ||(B(zo) — 1)x|[? =
(2.12) = 2Re(x, B(z)x) — || B(zo)x|i? <
< 2l IBzo)x || — (| B(zo)x (1.

Setting f = ayK[(1 — exp(— 24))/24]'/2 and combining (2.11) and (2.12) we find
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the upper bound
(2.13) 9o(X) < (B* — 1)1 B(z9)x® -i- 2 xi ]} B(zg)x[l.

Set 'x}:=1 and let u = B(z,)x|. If « is chosen as in (2.9) then (2.13) combined
with the lower bound ¢,(x) = 1 gives

(2.14) 0 < (B2 — D* 4 2u — 1 == (B2 — D) (u — (1 — B)™) (u — (1 5:f)™Y)

where of course the equality in (2.14) holds only if 8 # 1. In any case (2.14) implies
that # > ([ -;- §)~! which means
(2.15) «Blzo)xii = (1 - B)~H xji

for ail x € #. Using the fact that (exp(— tA4))* = exp(-— tA*), a similar argument
implies

(2.16) 1B(z0)*xii 2 (1 -+ B)~Milx|l.
Thus B(z,) is invertible and
2.17) 1B(z)* < 1+ B.

This proves the first part of Theorem 2.1.
Now suppose that 0 € p(exp(— 4)). Then there is an w, > 0 so thatif Rez>w,,
exp(~- z) € p(exp(— A4)) and

P(exp(—z) — exp(— 4)) i< ¢
Since B(z)~!: - exp({— z)(exp(— z) — exp(— 4))~! we thus have
JB(z)~') < cexp(— Rez).

i‘rom (2.6) it thus follows that for Rez > w,
1

A4 =" lige K exp(—Rez)Sexp(r Rez)dt € ¢y(Rez) 2
0

The remainder of Theorem 2.1 is a consequence of Theorem 2.2. We thus
assume that (2.1) holds for all z with Rez sufficiently large. We set 2:=Rez in the
explicit bound (2.17) and find that for Rez sufficiently large

HB(z)" 1 <3¢, K? (Rez) expic, Rex).
Thus
i(exp(-- 2) — exp(— A)) 7 < 3¢, K*(Rez) exp((l + ¢)Rez) <
< ¢ exp(N Rez)
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for some integer N > 0, or writing w = exp(— z)
(2.18) (W — exp(— )7 < cw|=V

for sufficiently small |w|. We conclude from (2.18) that the function f(w) =
= (w — exp(—A))~* has at most a pole of order N at w = Q.

Conversely, if z =0 is at most a pole of the resolvent (z — exp(— 4))~}, then
(2.18) holds for some N = 0. Thus from (2.6)

(A — 2)~Y} < [|B(z) || Kexp(Rez) € ¢ Kexp(N Rez).

Suppose now that given ¢ > 0, (2.2) holds for all large Rez. Then from what
we have just shown, (z — exp(— A))~! has at most a pole at z = 0. If this pole is of
order N = 1, then exp(— A) has a non-zero kernel. Suppose exp(— A)x = 0. We
will show that x == 0 and thus complete the proof.

From (2.11) we have (since B(z)x = x)

1
Snexp(— {4 — 2)x]* dr< | x]Py*KA(1 — exp(— 20))/2A
0

for Rez large, where y = (1 4 (Rez 4+ D)M(2))||B(wy)~!|l. We choose 4 = Rez
and ¢ in (0,1/2) so that (2.2) holds for all z with Re z large. Then
l i
1/2
(S llexp(— 74)x||2exp(2¢ Re z) dt) < d(Rez)?exp(e Re z)|\x]|.
0

Since
1

t
S llexp(— tA)x||*exp(2t Re z)ds > exp(4eRe z) S |lexp(— tA)x|? dt
0 Ze

we have
1

(S {lexp(— zA)xi|? clt)l/2 < d,(Re z)"2exp(— ¢ Re z)||x||

28

so that taking the limit Rez — oo we find exp(— t4)x = 0 for ¢t > 2¢. Thus
exp(— tA)x == 0 for all + > 0 and by continuity x == 0. %

Note: In a rvecent preprint [6], J. Howland has given an alternative
proof of the first part of Theorem 2.1 using very different methods.

Partially supported by NSF grant MCS — 81 — 01665.
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