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NEST-SUBALGEBRAS OF VON NEUMANN ALGEBRAS:
COMMUTANTS MODULO THE JACOBSON RADICAL

FRANK GILFEATHER and DAVID R. LARSON

This paper is a sequel to [10] and [11] in which properties of the class of nest
subalgebras of von Neumann algebras have been systematically explored. A nest
subalgebra of a von Neumann algebra (nsva) is an operator algebra of the form
2 n alg A where & is a von Neumann algebra and 4 is a nest of projections in 4.
These algebras, which are natural generalizations of Ringrose’s nest algebras [25],
are closely related to other classes of nonselfadjoint algebras which have been exten-
sively studied: most notably the triangular algebras [16}, the subdiagonal algebras
[1], and the algebras of analytic operators [20]. In [10] some basic properties of an
nsva were given. The main structure results given there include a central decompo-
sition into a direct integral of nest subalgebras of factor von Neumann algebras and
a characterization of the Jacobson radical of an nsva which is the natural genera-
lization of the characterization of the radical of a nest algsbra given by Ringrose
[25]). Subsequently in [11] the essential commutant (commutant modulo the com-
pact operators) of an nsva was determined extending the result for von Neumann
algebras due to Johnson and Parrot {15] and a result for nest algebras due to Chris-
tensen and Peligrad [4]. In addition some results concerning the Arveson distance
estimate for a nsva (and other algebras) were obtained in [11]. The structure of the
invariant subspace lattice of a nsva was studied in [10].

In this paper we consider structural properties related to the radical. We use
the term %-commutant of the core to denote the set of operators in an nsva & which
commute with the core modulo the radical, and the term #-center will denote the
set of operators in &/ that commute modulo the radical with every element of .
Here core denotes the von Neumann algebra generated by the nest and the central
projections of the von Neumann algebra #. While if 2 is not a factor different nests
in 4 can give rise to the same nsva, the core remains the same. Moreover, since
W#() = 9 the core is an internal aspect of . In [19] the #-commutant of the
core was characterized for an arbitrary nest algebra as the sum of the diagonal of
the nest algebra and the radical. Also, the Z-center was characterized for nest
algebras with continuous nests of multiplicity one (in particular for the Volterra
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nest algebra) in terms of a class of essentially continuous functions. This implied in
particular that the Z-center was the sum of the radical and the C*-algebra generated
by the projectionsin the nest. It was pointed out later by J. Erdos that this #-center
decomposition can also be deduced from a resuit of E.C. Lance ([18], Theorem
6.2) in which he showed that the diagonal algebras related to a nest algebra have
trivial center, and this decomposition is valid for arbitrary nest algebras.

In Section 2 of this paper we characterize the Z-commutant of the core for an
arbitrary nsva as the sum of the diagonal and the radical of the nsva. In Section 3
we extend the notion of an essentially continuous function to that of essentially con-
tinuous operator with respect to a nest. We then show that the C#-algebra gene-
rated by the nest has a representation as the essentially continuous operators with
respect to that nest. We use this result and those of Section 2 to extend the charac-
terization of the #-center to nsva of factors for which the core is a normal sub-
algebra. In Section 4 we remove the normality condition and generalize the charac-
terization of the #-center to arbitrary nsva. Thus the Z-center is the sum of the
C#-algebra generated by the nest.4” and the projections from the center of the von
Neumann algebra plus the radical of the nsva. In Section 5 we give an application
to the theory of spectral operators. We show that a spectral operator T is the sum of
a normal operator N and an operator Q where @ is in the Jacobson radical of
the weakly closed algebra generated by N, Q and L

We note that the Z-center of an abstract Banach algebra and related structural
questions have been studied by several authors ([22], [28]). In particular, Vlastimil
Ptik has given nine equivalent conditions which determine the #-center of a Banach
algebra [21]. These all involve spectral conditions on the elements of the algebra and
ire not the type of determination of the #-center we undertake here for our specific
Banach algebras.

The techniques utilized here and in the attainment of the Ringrose criterion for
¢n nsva [L0] involve the direct integral decomposition of a norm closed object (the
Jacobson radical) along the center of a von Neumann algebra. Such techniques are
usually reserved for strongly closed sets and the difficulties that have to be overcome
stem in part from the fact that a direct integral (or sum) of quasinilpotent operators
need not be quasinilpotent. The kinds of problems involved here and in [10] gene-
rally involves proving a result for the general factor case and then extending via the
reduction theory. On the other hand the principal difficulty encountered in [11] was
quite different in that the central problem there was establishing a particular result
for <he type I and I factor cases.

1. PRELIMINARIES

Throughout this paper, all Hilbert spaces will be separable, all operators bound-
ed. ull subspaces closed and all projections will be selfadjoint. Let H be a Hilbert
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space. Then £(H), ¢(H) and #(H) will denote respectively all operators on H,
the contraction operators and'all projections on H. The spaces ¥(H) and #(H) are
to be regarded as equipped with the strong operator topology and the Borel struc-
ture subordinate to it; this makes ¥(H) and 2(H) into complete metric spaces.

For convenience we shall disregard the distinction between a subspace of H
and the orthogonal projection onto it. Let 4" be a complete nest of projections. We
use ““ <’ to denoteinclusion, ““ <”’ being reserved for proper inclusion. If Ne A", N #0,
write N_ = v{MeA : M < N}, and set N_ =0 for N=0. If N_ # N we term
N_ the immediate predecessor of N in A". Also, if N # I write N, = A{Me#":
M > N}, and set N, =1 for N= 11 If N, # N we term N, the immediate suc.
cessor of N. If & is a nest we use the notation &7 to denote the nest algebra Alg &
The core of a commutative subspace lattice .# is the von Neumann algebra gene:
rated by % and is denoted by % or €.

The Jacobson radical of an arbitrary algebra is defined to be the intersection
of the kernels of all strictly transitive representations of the algebra [24]. A right
or left ideal in a Banach algebra « is topologically nil if each of its elements is quasi-
nilpotent. The radical # of a Banach algebra 7 is a closed 2-sided topologically
nil ideal which contains every topologically nil left or right ideal in & (cf. [24],
p. 57). If & is a Banach algebra with identity then

R = {Be sf: AB is quasinilpotent, 4 € o/} =
= {Be «: BAis quasinilpotent, 4 € &}.

Also, if a(A) denotes the spectrum of A4 in &/ then B¢ £ if and only if 6(4 + B) =
= o(A4) for all 4e . For ten additional spectral conditions equivalent to Be %
see the paper of V. Ptak [21].

If 4" is a nest of projections then a projection E is an A -interval if E is of the
form E =M — N where M, Ne &', M > N. The projections M, N are called the
upper and lower endpoints of E, respectively. The endpoints of a nonzero /4 -in-
terval are well defined, for suppose E = M;— N;, i= 1,2, and E # 0. Then
M, > E and N, E implies M; > N,, hence M, > M,. Similarly M, > M,. Thus
M, = M,, so also N; = N,. For two core projections E and F we denote E<€ F
when E¥(H)F < & and say that E and F are strictly ordered. An operator is
A -simple if it is a linear combination of a finite number of mutually orthogonal
A -intervals. We can make the analogous definitions as above for any subspace
lattice, however the uniqueness of the endpoints of an interval no longer need hold.

In his original paper on nest algebras [25] Ringrose presented an operator-the-
oretic characterization of the Jacobson radical of an arbitrary nest algebra (the
Ringrose criterion). Ringrose actually presented two such criteria equivalent for
nest algebras. Let 2 denote the radical of &7 .

THEOREM. (Ringrose). If A € o v, then A € & if and only if both of the following
are satisfied:

7 — 1105
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(i) Given NeA with N # 0 and given ¢ > 0 there exists L&A such that
L < N and (N -- LYAWN — L)} < &;

(ii) Given NeA with N # I and given ¢ > O there exists M ¢ A such that
N < Mand {(M — N)AM -- N} <e.

THEOREM. (The Ringrose criterion). If' A € &7 ¢, then A€ A if and only if for
each ¢ > 0 there exists a finite set {E;} of wmutually orthogonal A -inteivals with
YE, .1 such that {EAE;| <¢, all i.

For a nest A" in a von Neumann algebra & let .« be the nsva & -~ 4. Let ¥,
be the projections in the center of # and & be commutative subspace lattice .#, v .4".
The main result in [10] concerns the extension of the Ringrose criterton to the radical
# of «7. This is also analogous to the characterization of the radical obtained for

certain CSL algebras [14].

THEOREM 5.1. ([10]). If A€ & then A< 2 if and only if for each & > 0 there
exists a finite set {E;} of mutually orthogonal P-intervals with N\ E;: : I such that
WEAES| < ¢ for all i

For a nsva & we define the core of &7 to be the von Neumann algebra ¢ gene-
rated by A4 and the center of %Z. In [16] R.V.Kadison and i.M. Singer defined
the core of a triangular algebra o in a factor # as the von Neumann algebra gene-
rated by the hulls, that is the invariant projections for ¢ which lie in 4. The fol-
lowing lemma shows that for an nsva &7 the nest .4 is in fact the invariant projections
of «7 in % when Z is a factor. Hence for arbitrary von Neumann algebras .+ it
follows by the results in [10] and [12] that the invariant projections for &7 in 4 arc just
those in A" Vv .#, where .#, are the central projections for Z. We call a lattice rela-
tively reflexive in 4 if & :=Lat(#nAlg¥) n 4. In [17] Jon Kraus calls such
a lattice Y-reflexive.

LeEMMA 1.1, A complete nest A in a factor ven Neumann algebra 7 is relatively
reflexive in 4.

Proof. Let o7 be the nsva for A7 in 4 and let P& .2 nLatsZ. Since the set
N.YN*+ < o it follows that the subspace spanned by this set applied to vectors in PH
tdenoted [N . ZNL PH]) is contained in PH. However [N, #N+PH] - N_[#ANLPH]
and since % isa factor [#HLPH]=:I or 0 with [#N+PH] = 0ifand only if N* P 0,
je., PN Thus P> N [BNLPH}:- N, whenever N+P # 0. Let &,

sup{N: NLtP # 0}. If N > Nythen N1P =: 0 or P < N. Therefore Ny, < P < N
for any N > N, and so Ny =:PeA. 4 77

We shall denote by #-com% all Te ¥ (H) for which T4 -- AT e for all

A ¢ %. The following shows that %-com % is contained in &7 ;-

LeMMA 1.2, 2-com € < Ay and so # 0 R-com¥b < .

Proof. Let T e Z3-com %. 1t suffices to show N-TN == 0 for all Ne.4". Since
IN- -NTe % and % isanideal in o/ then N*TN € 20 < o/ ,. However NP (H)NL < s/
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so that NiTNe 9@, as well. Whence NiTNes/yn sy = %', and so
0 == N(NLTN) == (NLTN)N = N+TN.

We remark that Z-com % and likewise Z-com &7 need not be in 7 and in fact
both contain #4’. For a nest algebra 74 and an ideal .4 in &7 4 the set £-com ¥ has
becn subsequently investigated (cf. [8]).

2. 24 COMMUTANT OF THE CORE

For a nest algebra &« 4, T commutes with the core modulo the radical precisely
when T decomposes into the sum of a diagonal operator plus a radical operator:
thatis #-com(%y) =: D, + &, [19]. In this section we shall extend this result to
nest subalgebras of von Neumann algebras. First we shall consider the case when &/
is anngva of a factor and then using measure theoretic techniques “lift” the result to
the general nsva.

Our notation here will generally follow that in [10]. Let .o be a nest subalgebra
of & with respect to a nest A" and let &y = A" v .%, where ./, is the set of projec-
tions in the center of . We shall fix i, to be an expectation onto the algebra €' (¢ =
== W*(¥,)) obtained via an invariant mean on the group of symmetries determined
by the simple projections generated by &, (cf. Section 4 of [11]). We shall call y,
the diagonal projection since Yy: B— €' N A = 9. As an immediate corollary of
Lemma 4.1 in [11] we obtain the following useful lemma.

Lemma 2.1, Let Te Z(H) such that Yo(T) = 0. Then there exists a simple
1
projection E so'that |\TE—ET|| = 2 .

In the subsequent arguments we use the concept of paving number for an oper-
ator T. If E,, ..., E, is a partition of the identity by intervals of & and E;<E;,,
we call the set {£;} an A paving, or if there is no ambiguity simply a paving. If T
compressed to each interval E; has norm less than or equal to ¢, then {£;}} is said
to e-pave T. If T has a finite e-paving, then the minimum cardinality among all sets
which g¢-pave T is the s-paving number for T and is denoted p(T). We write
po(T)=: oo if T fails to have a finite e-paving. The Ringrose criterion states that if
Te o, then Te R, iff T has a finite e-paving number for all ¢ > 0.

LemMMA 2.2. Let p(T) =k, < co and n < kof2. Then there exists a paving
by n intervals E,, ..., E, with \|E,TE;|| > ¢ for each i.

Proof. Let Fy, ..., Fi be an e-paving for T. Let E,= F,,_; + F, for
i=: 1,2, ... (with Fp included in El(k )if/\'o is odd). Thus the partition of I with
2

[
{Fi, ..., Fi,} minus {Fzi -1, Fy; } and with E; is a paving with fewer than k,
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members; moreover, since each ~ F;TF;” < & it follows that ]:E;OTE;‘.?; > o This is

. 1 . . .
the case for each E; so that £, ..., I:,go where g 1S ’)-ko if k, 15 even or otherwise

] (ky - - 1) is a paving satisfying the lemma. %

The following two results are in essence the extension to an nsva of a factor
the characterization of the # commutant of the core for a nest algebra. We use
dp(A) to denote TA -- AT.

Lrmma 2.3, Let o/ be an nsva of a factor 4 and vy the diagonal projection of

1
LHYonto 6. If Te g withyo(T) += 0 and p{T) 2 k, then for n< B k there exists

contraction operators A, Bin o and Ce @ so that {{(A6,(C))"~1, = (&/3)°1 and
H(SH(C)BY "= (¢f3)" N

Proof. Using Lemma 2.2 fix a paving E,, ..., E, for which {E,TE, > &
Since Yo(AT) = AY(T) == Yo(T)A whenever A is in the core, the assumption that
yo(T) = : 0 implies that Yo(E;TE;) = 0 for 1 € i < n. Thus by Lemma 2.1 there are
simple projections F; < E; with || E,TE,F; — F,E;TE,' > ¢/2. Let R;A; be the polar
decomposition of E;(TF;, — F;T)E; and G; the projection on {x€ E, | A;x*>
2 €/3]x)12}. Since G, is a spectral projection for A;, 4,G; = G;A; and it follows
that G; and the range projection of R,G; are in &4 and both are contained in
£;. Using the comparison theorem for factor von Neumann algebras we can find
nonzero partial isometries S; in & with support in the range of R;4;S;,, and range
in G;_,if j=2,...,n— 1 and S, a partial isometry with support in R,4,G, and
range in G,_,. Recall that E;,_, < E; and since by definition S; has support in E;
and range in E;_, < 0 it follows that S; is in the nest algebra &/ + and hence in 7.

Let S=:S;+ ... +S,and let F=F, +~ ... + F,, then Fec ¥ and Sc .
A straightforward calculation shows that if x * G, then

[S(TF — FT)}""x =0
while if x € G, then

[S(TF—FT))""x := S(TFy — F,T)S; ... Sy_((TF,_,—F,_,T)S(TF, — F,T)x.

Now by the definition of the partial isometries S,, ..., S, it follows that
I[S(TF — FT)I""*|| > (&/3)"~~. 7}
With the added hypothesis that the e-paving number for 7T is infinite we get

the following lemma.

LeMMma 2.4, If p(T) == oo for some Te s/, and yo(T) =0 then T is not
in R-com(¥).
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Proof. Using a Bolzano-Weierstrass type argument and Lemma 2.2 we can
construct a nested sequence of intervals E; > E, o ... with two properties. First
each compression E;TE; has infinite e-paving number and secondly, if J; and X;
are the two intervals whose union is E;_, — E;, the e-paving number of T com-
pressed to J; or K; is at least 2i + 1. Now by Lemma 2.3 there is a core operator B;
and an operator 4; in & both reduced by E;_; — E; and such that if T} is T compress-
ed to E,_, — E; then ||[(T:B; — B,T)A)||> (¢/3)". Let A=Y A;and B = Y. B.
Since the compression to an interval is a homomorphism on &/

|[(TB — BT)AY|| > \[(T:B; — B,T)AY| = (¢/3)" for all i.

Thus (TB -— BT)A is not quasinilpotent and hence 7B — BT cannot be in the
radical of . %

We use @, @ and # to indicate respectively the core, diagonal and radical of
an nsva . When 4 is a factor then Theorem 5.2 in [10] shows that # = £, n %,
moreover it is clear that in a factor € == €4 and 9 = D4, N B.

THEOREM 2.5. Let s/ be an nsva of a factor B. If Te % n A-com% then
T:= D - R where De % and Re .

Proof. Let , be a diagonal projection and set D = yo(T) and R==T — D
Since Yo B—> # we have De D and Re R-com¥ while Yo(R) == 0. The pre-
vious result shows that p,(R) < co for all ¢ > 0 and thus by Theorem 5.7 in [10]
R is in the radical of «7.

Next we “l1ift’” this result to the general nsva case. Let & be a nest subalgebra
of the von Neumann algebra # with respect to the nest & in #B. Let # =

:-.Seﬂ().)u(dll) be the central decomposition of £ on H == Se n(A)u(d?). We assume
A A

that u is a complete regular Borel measure on a separable metric space 4. We shall

supress the symbol A in the notation unless it is needed for clarity. In our proofs

we shall sometimes make the assumption that the spaces /(1) are all equal to a

single . When this is done an obvious modification adapts to the more general situa-

tion (cf. §3 in [10]). By [10] we have o/ and .4 decompose along the center of # as

® ®
K4 :::S L (Mpu(dd) and A ~S H(A)p(di), where A°(1) is a nest in #(A) and

H(2) == BA)n A 4z p-ae. . For notational simplicity we shall write €(1), 2(4)
and (1) for the core, diagonal and radical respectively of &/(1). The map 1 — A()
is then a measurable multifunction of A into %(#). By results in [3] the maps
A— N(AY' n B(A) = 2(2) and consequently A—- ¥(1) are measurable and thus
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attainable. It follows that

r

(] Cl
AN T QS QA)p(di) = %' 1A and W*(yo)::s %A dA)

where &, = A" v 4, and .4/, are the projections in the center of # [10].

LemMMA 2.6. Let T % 0 Z-com(¥) where &/ is a nest subalgebra of the von

r

®
Neumann algebra 4. Then T = D -~ R where De 2 and R :7-45 R(2)u{diy where
R(Z) € 9(4) p-ae. .
®
Proof. Fix a Borel representative T - :S TiAwuwdi) of T and consider the
subset of A X €(h):
o=+ [(4 Rye A X G(h) : T(2) — Re @(2)}.

Since ¥: (4, R)— (4, T(%) — R) is a Borel map on A X %(h) then o -=: ¢~ (Gr(%),
where @ A— @(74) is the diagonal map, is a Boref set in A X %(#). Our object is
to show that R can be taken to be in (/) and then using measurable selection find
a measurable map A — T(4) — R(L) € Z(4).

Recall that .#(2) is the strongly closed set of intervals formed from the nest
47 (4) and 5 is the set of intervals formed from A7v %, == &, . 1tis precisely these
intervals £(4) and & which determine the radical of «7(/) and 7 respectively [10],
By £(1)" we mean the n-fold product of the set £(2) in Z(/)" Let ¥(h) be the
projections in %(/) then define

0w UR, A Ey, ..., E): |ERE| <k, Ee@y, 1::-E i ... E):&

0 G(h) X Gr{F (A",
®

Lemma 5.5 in [10] shows that A — #(4) is measurable and & : S Fapéry so

7, is measurable in X == €(h) X AX P(h)"; moreover by modifying 1--> S(4) on
a set of measure zero if necessary we may assume that o, is a Borel set in the pro-

duct Borel structure on X. Thus the set (4, R) where (R, 2)e I (o) and denoted
GihyxA

by I (o) is analyticin A X %(/4). In particuiar the Ringrose Criterion is pre-
AXG{R)
cisely the condition that
§:={(LA):ReRHD} =M U II o)
I 0 AXE(R
tnd thus & is an analytic subset of A X % (/). Finally since 4 is an analytic and ¢
is a Borel set their intersection is an analytic set.
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@
Let the operators A, =S A,(AHu(d2) be a dense set of Borel selectors for

®
& = S (Au(dA), that is {4,} is dense in o/ n ¥(H)} while {4,(1)} is dense in

A
() n €(h) u-a.e. and L — A,(2) are Borel maps of A to ¥(h). Since 6p(4,) X

for all n it follows that p-a.e. drn(4,(4) € Z(1) for all » (Lemma 5.3 in [10]).

Moreover, Z(%) is an nsva of a factor #(1) so by (2.5) T(1) e 2()) + %(4)

u-a.e.. That is JI (o n &) is of full measure in A. Now using measurable selection
A

there exists a Borel function A— R(4) so that (4, R(4))e o n &, that is R(1) € Z(2)
and T(1) — R(A) e @(1) p-ae. (cf. 1, §4in [27]). Let us denote by R = Se R(A)u(dr)
and by D=T— R,
The following technical lemma is needed and should be compared to a similar
result concerning the direct integral of quasinilpotent operators.
LEmMMA 2.7. If R= 89 R(Du(dL) where R(2)e R() y-ae., then there exist
central projections E, — 1 strongly so that RE, € A.

Proof. Since R(A) € #(2), for each £ > 0, p(R(2)) < co. Let & > 0 be fixed,
then there exist Borel sets A, with p{4,;) < 6/2"and so that p,,,(R(2)) is uniformly

bounded p-a.e. for 1 ¢ A,,. Let A, ={JA4, and £, = SI(A)y(dzi), then u(E,) <9
k

A

so E, — I strongly and it follows from the proof of (5.7) in [10] that RE, € £.
REMARK 2.8. The reference in the above proof to the proof of Theorem

e
5.7 in [10] will also be used below. For any operator R= S R(AHu(dL) in o one

defines the #-e-paving number for R where ¥, =/ v .#,. Then the & -pav-
ing number of R is precisely ||p.( - )|l as a measurable function on (4, u). This
follows from the proof of Theorem 5.6 in [10] and thus we could restate (5.6) in [10]
to the effect that Re £ if and only if {|p,{lc < oo for all & > 0.

D
COROLLARY 2.9. Let T=D+4+ R where De9, R= S R(Du(dl) and
R(A) e Z(A) p-ae. . If Yo(T) = 0 then D = 0.

Proof. Let E, — I strongly be central projections so that RE,€ %. Then
0 == ¥o(T)E, = Yo(TE,) = Yo(D)E, + ¥o(RE,) = DE,~> D strongly.

THEOREM 2.10. 4 n R-com¥ = D + A.
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Proof. That @ -+ # < Z-com¥ is clear. If Te #-com% and T4 then by
remarks in the preliminaries T e «7 and set S =: T -~ ,(T) where ¥, is the diagonal
projection on & : o n &Z%. Clearly i,(S) = 0 and S e #-com %, thus by Lemma

e
2.6 and Corollary 2.8, S :::S S(4) {di) where S(i)e &(1) p-ae. .

If Iip, "0 < o0 for all g, then by (2.8) S ¢ & and we are done. If not, for some
£ > 0 we can construct using measurable selection and Lemma 2.3 a sequence of
contraction operators {4,} in &, core contractions {C,} and mutually orthogonal
central projections {F,} so that A, and C, are supported on F, and such that
2 (4,07(C))" > &" Letting 4 = - ¥, 4,, C =+ ¥, C, we can conclude that 49,(C) is not
in # and hence §,(C) is not in # which contradicts the fact that T€ #-com%. 7

3. ESSENTIALLY CONTINUOUS OPERATORS

In this section we generalize the notion of an essentially continuous function
on {0,1] to that of an essentially continuous operator with respect to a nest. The
C*-algebra generated by the nest has a representation as the algebra &4.%. of essen-
tially continuous operators with respect to the nest. With this we show that ¢ n
N Z-center &7 for an nsva of a factor von Neumann algebra is &.%.

Let 4" be a complete nest. For P, Q €4 we define the open interval (P, Q) :
= {NeW# | P<N< @} and the projection E((P, Q)) = Q_ — P for P < Q.
Following standard measure theoretic usage we shall define the notion of null subset
of A. We shall call a countable family {(P,, Q,)} of intervals a cover of a set in A"
if $ < u(P;, Q)). For convenience we drop the outer (,) in the notation E((P, Q)).

DeriNiTION 3.1. A Borel set S in 4 is a null subset of A" if for every strong
neighborhood U of zero in #(H) there exists a cover {(P;, 0)} of S with
N EP;, Q)eU.

Using Theorem 3.2 in [7] we can define a spectral measure E( - ) on the space
of Borel subsets of 4 in such a way that E[P, Q] =~ Q — P_; E(P,Q]-: Q- -Pand
E[P,Q) - Q- — P_. This spectral measure has the property that for a Borel

set 8 of A, E(D) =: SQ“,;(N)dE(N) when this is interpreted as {E(8)x, x) -

: &;Z“,;(N)d(E(N)x, x) for all xe H. We shall use the notation u.( -) for the

Borel measure (E(S)x, x).
The following lemma and theorem are essentially consequences of the results
o7 Erdos [7].

LEMMA 3.2. E(0) —= O if and only if § is a null set as defined above.
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Proof. Let 0 be a null set as defined in (3.1) and let x and ¢ be given. Let
U == N(0, x, €) be a s.o.t. neighborhood of zero in #(H). There exist intervals
{(P;, Q)} with 6 = U (P;, Q) and Y, E(P;, Q;)e U. Thus || Y E(P;, Q)x|| < e so
|lE(8)x|| < ¢ and consequently E(J) = 0. The converse uses the regularity of the
measures g -) = [[E( - x| Y

With the above definition of null subsets of A one can define L®(A") as equi-
valence classes of bounded complex valued Borel functions on 4" with the quotient
supremum norm. There is a natural homomorphism ¢ of L*(A") into € 4 given by

o(f) == Sf(N)dE(N) where this is defined via (@(f)x, x) = Sf('N)dux(N). Lemma

& N2
3.2 above and Theorems 3.2 and 3.7 in [7] show ¢ is a well defined *-isomorphism.

THEOREM 3.3. L°(A) is isometrically isomorphic to € 4.

Proof. We need to show ¢ is an isometry and is onto. For the latter we need
only show the range of ¢ is closed in the strong operator topology.

Since {o(f)x, x) = Sf(N)de(N) it follows immediately that ||o(f) | < ||flle -

N
Conversely, if « < ||fllo then the Borel set § == {N :{f(N)| > «} is not a null set
so E(8) # 0, and if x = E(d)(x) then

e f)x|l S | S(N)PACE(N)x, xy = S%(N) JUNYE ACEN)x, X2 2
> o2 S Z(N)dE(N)x, x> =

= o2 S d{E(N)x, x) == a|x]j.

Clearly @(L*(4")) contains & and by the above paragraph is isometrically iso-
morphic to L®(4"). It remains to show that @(L®(A")) is strongly closed. To see
this let ¢(f,) — A € €.+ strongly. Then ||@(f,)|| € M by the Principle of Uniform Bound-
edness and hence ||f,llo < M. Now for xo€ H, {f,} converges in L34, ”*’o)’ and

thus there is a Borel function f and a subsequence f,,k such that f, - f Jae. -
If x, is a separating vector for ¢ then f,,k — fu,-a.e. forall xe H. Since o(f,) = A

strongly then Sﬁ,(N)d(E(N)x, x> = {Ax, xy for all x and the Dominated Con-

vergence. Theorem implies that S JS(N)AE(N) = A. @
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REMARK 3.4. Tf A c % 4, then A is @(f) for an element in L*(A4") and has a spec-
tral representation A - :Sf(’N)dE( N) via the above theorem. We shall identify A and f

in our arguments and whenever there is no confusion we shall denote by a single
Borel function an element in Le(A7).

For a function fin L*={.4") and afixed N, in 4" we define the set of left essential
ralues of f at N, and denote them by L(f, N,). A scalar « is a left essential value of
Jat Ny if for all &; < N, and ¢ > 0 the Borel set {Ne(N,, Ny)! fIN) —« <&}
is not a null set in.4". Right essential values are defined in the analogous fashion.
We say L(f,N) - - G if Ny # N, and note that L(f, N,) # O otherwise.

LeMma 3.50 If Ny - - Voo then LS, No) % (3 and if f== g a.e. then L{f, N;) :
wa L{g, NV If Nyso - Ny then Ri 1L N) 52 O and if f == g a.e. then R(f, Ny) - Rig, Ny).

Proof. If L(f, Ny) =« O, then for ali % in the closed ball B about the origin of
radius I fTe there is an ¢,>0 and an N, <N so that {N' e (N,, N) .| fIN")--x <&,} is
a nuil set. The sets centered at « with radius ¢, for all  in B form an open cover of B
and by compactness there are a finite number centered at a, ..., 2, which cover
B. Let N, - :max{N,1 ey N"n} and since each N,,i < N, so 1s N;. Moreover

b {INe(N,.Ny) 'fIN) — %, < C’i} is a null set and is just (N, Ny) which is a
LR
contradiction. It is clear that if /:= g a.e. then L(f, N}) =: L(g, N,). %
LeMMA 3.6. Let K be a compact subset of the plane such that K L(f, Ny): : ().
Then there exists Ny < N, such that {Ne€ (N, No)'fAN)e K} is a mull set fie.,
oss range of f on (Ny, Ny) does not intersect K).
Proof. For each x € K since o € L(N,, f) there is a ball sz(oz) and an N, < N,
»0 that {N G (N,,N,) fiN)e ch(x)} is a null set. Since K is compact we can
cover A by a finite number of such balls and let N, be the max of the correspond-
ing N,'s. Clearly {Ne(N,, Ny AN)e K} is a null set. %

REMARK. This lemma can be reworded to the effect that if {Ne (N, N,);
LAY K] is not null for all Ny < Ny, then L(f,N,)n K # 0.

LeMMA 3.7. Let a < L(f, Ny), ¢ > 0 and Ny < N, be given. There is an interval
(Voo Ny) with Ny < N, < Ny < N, so that the essential range of fIN) for
N e (N Ny intersects Bg(a) - {o ‘o —a <g).

Proof. Since L(f, Ny)j# €5 we have N,_ =: N,. Let { N} ¢ (V;, Np) and N, —> N,
then it {N Nc(N, V), fIN)e Ba)} is a null set for all &, then {N Ne¢
GiN, Ny), fIN) € B(a)} is a null set contradicting the fact that a is in L(f, N,). %}

It is clear that L(f, Ny) as well as R(f, N,) are compact subsets contained in
the vall about the origin of radius ljf",,. Recall that the Hausdorff metric on closed
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subsests of a metric space X is defined by

d(F, G) = max{supdist(X, G), supdist(F, y)}.
xerl yeG

LEMMA 3.8. If [If — glle < € for f, g€ L®(AN") and Nye N with Ny_ = N, then
d(L(f, Ny), L(g, NpY) < 2¢ where d(-, ) is the Hausdorff metric.

Proof. L(f, N,) and L(g, N,) are nonempty compact subsets of the plane.
Let ae L(f, Np) then for ali N; < N, the set {Ne(Ny, N)| f(N)e B,(2)} is not
empty, thus {N e (N,, Ny) | g(N) € By(a)} is not null for all N, < N. By the remark

following (3.6) L{g, Ny) 0 Ba(e) # . Since the argument is symmetric in f and g
we are done. %

ProposiTION 3.9. If f, = f in L2(N) and NyeN such that Ny_ # N, then
JANG) = fINg). If Ny_ == Ny, then L(f,, No) = L(f, Ny) in the Hausdorff metric. Si-
milarly, R(f,,Ny) — R(f,N,) in the Hausdorff metric if Ny, = N,.

Proof. If Ny_. # Ny then E[N,, Ny] = N, — N,_ is not a null set so f,(N,) —
— f(N,). Tke balance of the results follows from the preceding lemmas. In case
Ny # Ny then R(f,, Ny) = R(f, Ny) = @ however the behaviour at N, is deter-
mined solely by Ny and N,_ .

COROLLARY 3.10. If f,, = f in L=(AN") so that Ny == N,_ and L(f,,Ny) is a sin-
gleton for all n then L(f, Ny) is also a singleton and L(f,, N;) — L(f, N,). Similarly
R(f,, No)— R(f, Ny) if R(f,, N,) are all one point sets.

We say a function fe L®(A") is essentially continuous if L(f, N,) and R(f, Ny)
are either empty or singleton sets for all Ny e.4". The set of essentially continuous
functions in L®(A") as well as the corresponding algebra of operators in ¢ will be
denoted by £.4.. An operator A in ¥ will be called essentially continuous with

~

respect to A/ if A = Sf(N) dE(N) where fe L*(A") is essentially continuous. From

the spectral theory it follows that A is an essentially continuous operator with res-
pect to a nest A" precisely when the following continuity condition holds for 4 at
all Nye .

There exist scalars @ and & depending on N, so that

lim (4 — a)(N — N) =0
N?N!l
and

lim (A — bI) (N — Ny) = 0
NJ,NO

where the limits are in norm.



108 FRANK GILFFATHER srd DAVID R, TARSON

A real valued function fon [0,1] is said to be regulated if lim f(¢) and lim f{r)
& ox .

t->x

both exist for all x [6]. The essentially continucus functions in L°([0,1], y) where g
is a Lebesgue measure were used to describe the #-center of a nest algebra with a
continuous multiplicity one nest [19]. From the characterization given in [19] and
[6] one can see that fe L([0,1], p) is essentiaily continuous if and only if therc is a
regulated function in the equivalence class of /. Similarly one can define regulated
Tunctions on a nest.4” and using the result below obtain an analogous result for .4,
Thus it is also appropriate to call an essentially continuous operator A a regulated
operator with respect to the nest 4.

We have defined a function f as simiple if there is a partition of the identity
Q- Py< P < ... <P, -Iin4 andscalars 2,....,2,_,50 that [ L PPy
I LTIV R Ay S The core operator 4 represented by f is just
M o,E; where £, P, and E; P;- - P,_, for i=2,...,n Clearly any simple
function is essentially continuous and we show they are dense in &. €. . The follow-
ing theorem gives the representation of the C*-algebra generated by the nest as
the C#-algebra ¢.%. .

THEOREM 3.11. Let A" be a nest in L(H) and 6.%. the essentially continuous
operators with rvespect to A. The C*-algebra generated by A is the algebra &. %..

Proof. That &. €. is closed in L®(.") follows from the preceding results. Let
fed. %, and ¢ > 0 be given. We shall find a simple function g so that “f - g, <e.
Let N, be in.4” with N,_ - N, then by Lemma 3.5 thereis an N, < N, so that the
essential range of fon (N, Ny) is in the ball B,(L(f, N,)). That is fiN)—-L(f, Ny) <¢
for almost all N in (N, N,). Similarly if N,, : - N, then there is an N; so that
f(N) - R(f, N)) < ¢ for almost all Nin (N,,N,). Let @, be the set of all such
intervals (N, Ny) and (V. A)) over each Ny e.4". Let @, be the union of the inter-
vals in Q.

While 551 need not equal 4" the difference A4~ — 521 must be finite, For if 4™ - - fz‘
were infinite by compactness of A" there would be a limit point N, of A" —- !51 and
a sequence M, in 4" — :521 converging from above or below to N,. But in either
case the corresponding interval (N;, N,) or (N,, Np)isin Q and thus containing ali
bat a finitc number of the i/,

Now if 47--Q,~ {M,.....M} and M,_:~ M,=M,, then replace
(M, M;) and (M, M;,) with (M ;. M;,) and note that the singleton set {A7;} is a
null set. If M,. M, # M, replace (M,,, M,) with (M,,M;,) and again notc
that the singleton set {A1,} is a null set. 1f M,_ # M, - M, replace (M, M) with
(... M;,)but now {M,} = (M, .M,]is not a null set however, (M,_,M,,):
(M., M)y U(M;,M,). Finally, if M, # M, # M,, add to Q the interval
(A, M) == {M,;}. With these modifications Q is now an open cover of .4~ and
as such has a finite subcover.
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We next order the left end points of the resultant finite subcover of A4 and
divide the set (M;_, M;,)incase it is in the cover and M;_ # M; = M,, as noted
above or in case M;_ # M; # M, as noted above. Finally, if (N, Ny) or (N, Ny)
are in the cover then on (N, N,) or (N, , Ny) the essential range of f is within & of
L(Ny, f) or respectively R(NVg, f). In the standard fashion we can construct the pro-
jections Py < P, < ... < P,=1Iin A and scalars o; so that f is within ¢ of
%xp, Pyt X, Pyt - GyoaXp, 1y i LP(A).

n-1'

REMARK. It would be interesting to know which C*-algebras can be represented
as an algebra of essentially continuous operators with respect to a nest. Related ques-
tions arise if a nest is replaced by a commutative subspace lattice.

ProrosiTiON 3.12. Let B be a factor and assume that A is not in §.€. with
respect to a nest N < B. Then A is not in the R-center of of 4 N B. That is (R-center) n
n (6)_// c §.9.

Proof. Let A correspond to the function fe L°(A"). Thereisan Nye A so
that either Ny_ = N, and L(f, Ny) is not a singleton set or Ny, = N, and R(f, Ny)
is not a singleton set. Assume the former is true let a # b be in L(f, N,). By sub-

. o 1 . .
tracting b and multiplying by »*—Z; we may without loss of generality assume that

a =1 and b = 0. Now by induction apply (3.7) first to 1 to get an interval (N;, N,)
with {Ne(N,, Ny) | f(N) e B,;5(1)} is not a null set with N, < N, and then to 0
to get an interval (Ny, Ny) with {N e (N., Ny) | f(N) € By5(0)} is not a null set. Let
these sets be F, and G, respectively. By induction we get an increasing sequence
N;—> N, so that there are non null Borel subsets F; and G; of adiacent intervals
determined by the {N;} so that f on F;is within 1/3 of 1 and on G, within 1/3 of 0.
These Borel subsets correspond to nontrivial core projections F; and G, with
F, <G € F, < ...and ||A|F, — I|F|| < 1/3 while ||4iG; — 0|G,|} < 1/3.

Let S* be a partial isometry which is defined by induction so that S*F,cG,»
S*(S*F,) < F,, S*(§*?F,) < G, and so forth. That is $* maps part of F, into G,
and G, into F;,, in such a way that S*” is a partial isometry. Moreover, since € is
contained in a factor von Neumann algebra 4 then S* is obtained using comparison
theorem so as to lie in 4. Finally, S'is in &/ since F, € G; € F, < ... and hence
in &40%.

Now consider SA — A4S where A is our core operator represented by fe L.
On G, we have S: G;— F; 50 A4 on SG; is close to 1|SG; while 4 on G; is close to
zero. Thus

[(S4 — AS){Gill > 1/3

and in particular

(F: + Gi) (S4 — AS)(F; + Gyl > 1/3.
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However, Sis zero off F; +- G;and A is invariant under F; - - G, so we have

(Warer = Naga) (SA - - AS) (Nigay = Ne_a)li 2 173

for /= 1,2, .... Using the Ringrose Criterion {or inclusion in the radical we see
that 4 is not in the Z-center of &7 n 4. 7

Now it is just a formality to state the following theorem.

THaeorREM 3.13. If B is a factor, then the intersection of the .Z-center of
o 4 0 B with the core G is the C*-algebra generated by A~

Proof. Since the Z-center is a norm closed subalgebra of <7 containing the
simple operators (correspoding to simple functions), it contains the C“-algebra
they generated. By Proposition 3.12 this C*-algebra contains the intersection of the
#A-center with the core. )

Recall that a subalgebra ¢ of a von Neumann algebra 4 is called normal
if its relative double commutant is €. When 7 is an nsva of a factor # and the core
% is a normal subalgebra of 4, then Theorem 3.13 and Section 2 can be used to cha-
racterize the #-center of .

ProposITION 3.14. If o/ is an nsva of a factor % and € is a normal subalgebra
of % then ZR-center (&) is the C¥-algebra generated by A" plus the radical A of o7 .

Proof. Let Te Z-centers?, then T is in #-com% so T::D - R where
De%: €' nZand Re . Now D e Z-com.&/ soif o7 € @ then DA--AD e (<)
NG« ML) but A(Z) = {0} so DA = AD. Thus D e % and Theorem 3.13 finish-

)
Ve

es the argument.

REMARK. In particular if A is a nest in (i), then the Z-center of &7 4 is
tae C*-algebra gencrated by 47 plus the radical # of <7 Proposition 4.2 in the next
section shows that if De @ and D e Z-center & then D e 4. Thus the normality
assumption in (3.14) is not necded.

4. @-CENTER OF AN NSVA

In the preceeding section we described the Z-center of a nest algebra or more
generally of an nsva of a factor & when % is a normal subalgebra of .#. In this section
we shall present the reduction machinery necessary to remove the normality condi-
tion on 4 and subsequently lift our result to the general case. The reduction technique
employed here utilizes the multiplicity theory for nest algebras as developed by
§. A. Erdos in [7]. Specifically, we shall generalize Theorem 3.3 by representing the
core ¢4 as the diagonal algebra with respect to a direct integral decomposition and
thus representing & as the set of decomposable operators. This decompcsition will
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prove useful in that many operators in 274 which are notin @ can still be described
in terms of the decomposition. An unfortunate semantics problem arises since the
algebra 2.y is called the diagonal algebra with respect to the nest while %, is the dia-
gonal algebra with respect to the decomposition we will use. Our usage will be
clear from context.

The poof of the following theorem essentially consists of pulling together re-
sults and segments of proofs given by J. A. Erdos in [7] and using direct integral
definitions.

THEOREM 4.1. Let A" be a complete nest in X (H). There exists a direct integral

®
decomposition H »—>-S MN)u(dN) where A=A so that:
A
1) @4 consists of the diagonal algebra with respect to this decomposition and
such that

®
il) Noe A" is represented by N, ———S xo.N)(N)u(dN) and

iil) the algebra @4 is the algebra of decomposable operators with respect to
this decomposition.

Proof. Given a nest & on H, Lemma 4.3 in [7] proves the existence of a family
of measures [1] and a multiplicity function m( - ) defined on the Borel sets of A"
which are shown to be a set of unitary equivalences for the nest. Using Lemma 6.2
in [7] we let e, be the Borel set of A4 so that the nest 4 restricted to e, has uniform
multiplicity » and as an immediate corollary of Lemma 6.2 in [7] the sets {e,} are
a Borel partition of #". Let H, = E(e,)H where E(e,) is given by (3.3) and for each
Ned let N, = E([0,N]ne,). Then /', = {N, : NeA#'} is a complete nest on H,
of uniform multiplicity » and using (3.3) one sees that H= Y ® H,and N=— Y} ® N,
for cach Ne A"

The projection N, = NE(e,) in A, has a representation as multiplication by
Zo.n @ I, on Lo( A, 1) ® I, where u, is a regular Borel measure on A" with
(A \e,)=0and u,(N,, M,) # 0if N,> M, (cf. Theorem 5.2 and proof of Lemma 6.3
in[7]). That is H,, is unitarily equivalent to Ly(.#",, 1t,) ® I, via the map U, and U,NU}¥
is multiplication by 0, &y ® I,. As in (3.3) it follows that €., = €4 | E(e,) is spa-
tially isomorphic under the unitary transformation to multiplication by L* func-
tions tensor [, on Ly(A ', u,) ® I,.

Letting p== Y, u,, then y is a regular Borel measure on A" so that A" is the
l€<ngoo

disjoint union of Borel sets e, and u,(B) = u(Bn e,) for any Borel set B on .A". The
®
direct integral of Hilbert spaces H’ =S H(N)(dN) where h(H)=h, for Neeg,

is spatially isomorphic to 3} ® Ly, 1) ® I, so that M,, . ®I, on
g * Yo
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®
Lo(A ', 1) ® I, is unitarily equivalent to the diagonal operatorg 2o, N (N)u(dN)

€
n

on /’. Composing these spatial isomorphisms we can conclude that the projec-

e
tion &, on H is equivalent to the diagonal operatorS ¥io, v (N)u(dN) on H’ (cf.

1.5.11 in [27]). Consequently the core %, spatially corresponds to the diagonal

operators on H' and £, spatially corresponds to the decomposable operators

on H'. 7
®

REMARK. Any operator on H::S h(N)u(dN) which is supported on [N, N

and has range in [N, N,] where N, < N, is in 27, and of course is in #.+. Heuris-
tically, A€/ 4 if A is a diagonal or a “left translation”, that is 4 can be viewed as

®
mapping A(N,) into A(N)u(dN). This is the continuous analogue of the
0, N:
matrix representation for a nest algebra of a finite nest.

Let 7 be an nsva of a factor # and T e Z-center <7, it follows from Section 2
that T= D -- R where D€ @ and R e £ and moreover D € Z-center «Z. However,
€2 is a von Neumann subalgebra of o7 and thus D isin Z&-center & which is just the
center of &. The key result of this section shows that indeed D¢ ¢ so that (3.13)
can be applied.

PropPOSITION 4.2. If De 2 n D' is in the &-center of where &/ is an nsta of a
factor B, then De &.

®
Proof. 1et H == S h(N) d(uN) be the decomposition of H yielding the repre-

®
sentation of ¥4 and 2 given in (4.1). Thus D :S D(N)u(dN) and we may

assume that N — D(N) is a Borel representative for D. Since D and consequently
D(N) (u-a.e.) are normal operators, to show D € ¥ we need only show a(D(N)) is a
singleton p-a.e. .

It follows from [2] that the set § = 4 on which a(D(N)) is not a singleton is a
Borel set. If u(d) == 0 we are done and thus we assume that p(8) > 0. First we con-
sider the case where N, € § and N, is a point mass for the measure g, that is, E(Ny) ==

: E({N,}) # 0. Since D(N,) = DE(N,) thus D(N,) € 2 and applying the spectral
theorem for D(X,) we can obtain a nontrivial decomposition of D(N,). That is
D(N,) == Dy -+ Dy + D3 where D, D, and D, are D(N,) times respectively ortho-
gonal nonzero spectral projections so that (D; may be zero) the distance between
() and a(D,) is positive. Now the comparison theorem for factors implies that
there is a partial isometry S(&,) in & with support in the support of D, and range
in the support of D,. Since N, is a point mass of y it follows from (4.1) that S(Ny)
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is also in 2 yet
DS(N,y) — S(No)D = D(Ny)S(Ny) — S(No)D(No) =
= Dzs(No) - S(NO)DI # 0

since ¢(D,) N 6(Dy) == @. This contradicts the fact that De 2 n 2’ and thus we
may assume that § contains no point masses.

We are assuming that u(8) > 0 so there is an ¢ > 0 so that 6, = {N|dia-
meter o(D(N)) > 5¢} has positive measure [2]. Now we may partition J,into a coun-
table number of disjoint sets §; each of positive measure so that §; = (N;.,, N;) for
a decreasing sequence of points N; > N, > Ny > ... in./". For each i there exist
complex numbers «; and B; for which | &; — B;| > 4e and if F(.)is the spectral
measure for D, then both F(B,(x))no(D|ES)H)# @ and F(B(B))N
Ua(D | E(5,)H)=9. Now as in the previous sections we are in a position to con-
struct an operator A € o so that 6p(A4) ¢ £.

Also as in previous arguments the operator A is defined by a straightforward
induction argument which we only indicate. Given a; either |o; — ;44| O |o; —
— Bi41] > 2¢ and for B, the similar inequality holds. Thus B,(«;) and B,(f;) each
respectively do not intersect one of the balls B,(f;.,), B.(2;,). Choose by induction
a sequence Yy, Yz, ..., Where v, =o; N f; and By(y;) N By(y;+1) = @. Now con-
sider the operators D; = SQD(N)F(B,;(y,.))(N),u(dN) which are just DF(B/y;)) and

7
are in 9. Using the comparison theorem for factors and induction in the manner we
have done in previous arguments we construct partial isometries S; in £ whose
initial domain are in F(B,(y;)) and final domains in F(B,(7,,,)). These isometries
have the property that ||6,(S;)|| > ¢ and moreover each S; is also in &/ (remark
following (4.1)). Let S = i S,; we may conclude using the Ringrose Criterion
i
((5.1) and (5.2) in [10]) that §,(S) ¢ %. This contradicts our assumption so therefore
o(D(N)) must be a singleton for p-almost all N and thus De & by (4.1). %

Before proving the main theorem we need two technical lemmas concerning
the central reduction of annsva & in an arbitrary von Neumann algebra #. Let

® ®
N4 ::S & (2)u(di) be the central decomposition of &/ on H =S R(A)pu(dA)

4

(§4 in [10)).
®
LEMMA 4.3. Let T =S T(A)(dl) be in the R-center of an nsva . Then
T(2) € 7-center Z(1) p-a.c..

8 — 1105
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Proof. Since the map 2 — p.(A(A)) is measurable whenever 4 .7, (2.8),
the map (2, A) — p.(dr¢»(4)) is a measurable map on A X ¢(h). Let

= {2 A) € A X G(h) : PdSr(A)) = 1} 12 Gr().

For ¢ fixed let 4, be the projection on A of ¢, and using measurable selection
there is an 4 € .7 so that (2, A(A)) €0, if A€ 4, and A(4) =: 0 if A ¢ A,. However,
P07(A)) = 'p(5101y(A(4))} o and if the decreasing sets A, have positive measure
for all 7 then T cannot be in %-center &7. Consequently for ¢ = 1/k there exists an
n;, so that An is a set of full measure. Letting A, := U A,, then A, 1s a set of full mea-
sure and for iedy and Ae ()N CH), T(AA - AT(/) has a finite ¢-paving
number for all ¢ > 0. Thus T() € #-center &#(1) p-a.e. 7

For the following lemma we recall that an operator C is an A -siinple operator

if C = Y, o,E, where {E;} is a finite 4 -paving. By (3.11) and (3.13) these opera-
1

tors are dense in the C*-algebra generated by /. A #-simple operator is similarly
defined for any commutative subspace lattice #.

LEMMA 4.4. Let C be a core operator in the R-center for an nsva s7 of a factor
A. Suppose C cannot be approximated within ¢ by an A -simple operator with 2n in-
tervals, then there is an A € s/ so that 16c (A)*| > &".

Proof. We first decompose C accordingto(4.1) then there is an L (4") function

®
g(N) so that C :-——S g(NYI(N)u(dN). Let k > 2n be the smallest integer so that C

k
can be approximated by an 4/-simple operator ¥, o,E;. Such a k exists by Theo-
i=1

rems 3.11 and 3.13. Combining pairs of E; much in the same fashion as in the proof
of (2.2) we see that the essential diameter of the range of g(N) on E,;_, U Ey; for
each i = 1,2, ..., n is greater than ¢ as is the diameter of the essential range of
g(N) on Ey; U Es;,, for each i < n. %

By induction and the comparison theorem for factors we can find subinter-
vals F;, j=-1, ..., n of atleast every other E; and partial isometries S; from F;
to F;.., with the following properties. The product S;S, ... S, is also a nonzero
partial isometry and the Euclidean distance between o(C | F;H) and o(G F;_,H)
is at least &. Thus |CS; — S;C!| > ¢ while each §; as well as S = §; -+~ ... = S,
‘s in &Z. By our construction we now have 11 (S)"" = &

LEMMA 4.5. Let C be a core operator for an nsva £ of an von Neumann algebia
9. Suppose C cannot be approximated within € by an & -simple operator with 2ng steps

7 . . n, .. n
tien there is a contraction A € o/ so that \5c(A) °i > &,
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@
Proof. Let &7 ::S &(Mu(dl) be the central decomposition of &7 and C ==

®
e S C(A)u(d2) be a Borel representative for C. The hypothesis implies that on a set 4,
of positive measure C(1) cannot be approximated by an 4(A)-simple operator corres-
ponding to a paving of length 2n,. By (4.4) for each A € A, there is a contraction ope-
rator S (1) so that [[5c(S) 7]l > €. Since (1,4) = Scu(A) = 1Beu(A) I

is a measurable mapping on A X %(I) we can use measurable selection to find a

@ n n
contraction A =S A(ANpu(d?) in o with ||(c)(ACN)°Nl = ¢° for Aed, and

consequently || 5C(A)"° = 7

Now we come to the main theorem of this section in which we “lift”” the cha-
racterization of %-center o/ from the factor to the general nsva case.

THEOREM 4.6. Let o be an nsva of an von Neumann algebra 3 with respect to a
nest & in #. Then R-center o is the sum of the radical of & and the C*-algebra
generated by £ == NV iy, where My is the set of central projections of .

®
Proof. Let H :S h(2)u(d2) be the decomposition of H so that £ =
® ] ®
_S B(A)p(d2) is the central decomposition of # and </ =S A(Au(dr) and

@
N~ S - N (Ap(dA) the corresponding decompositions of &7 and 4. If T € %-cen-

ter o/ then T is in the #-com¥, where € is the core of 7. By Theorem 2.10,
T-=D-+ R where De? and Ref and De ZR-center/. By Lemma 4.3
D()) € R-center (1) p-a.e. so that D(1) € ¥(2) and in fact D(A) is in the C*-algebra
gencrated by A'().

Let e > 0 be fixed and consider the subset of A X €(h)"x C":

o, {4 E, . . E, %, . .., 0): |DA) -~ ¥ E] < e} n Gr(#) x C"
i=:1
where Gr(.#") is the graph of the n-fold product of the map 2 — #(J) (cf. Lemma
5.5 in [10]). The set Gr(.#”) can be taken to be a Borel subset of 4 X %(h)” and since
A — D(4) and |!-|| are Borel maps we conclude that o, is a Borel subset of
A X G(h)" % C". For each n let A, be the projection of ¢, into A. Clearly A, < 4,,,,

=) k
and |_J 4, = A by (3.11). Next we will show that A — {_J 4, is a null set for some k.

ne=l n=1
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k
If A — | 4, is not a null set for all k then as expected we wiil construct an
ncxl

operator A€ o/ so that DA -- AD ¢ . Thus there exists a sequence », and non
null sets A,,i L A,,i ;«1\/1,,‘, so that for 2 e?l,zi, D(Z) cannot be approximated by an
A(%)-simple operator corresponding to a paving of length #,. By Lemma 4.5 there

. . @ -
Is a contraction A,, € .« supported onS X (AM(A)pu(dz) so that p(dp(4;)) =3,

g

Clearly if A - :ZA,,i then A€ s/ and p(5,(4)): - co which contradicts the fact

k
that D is in “Z-center.s/. Thus there is a k so that A — U 4, is a p-null set.
ne 1
Now using measurable selection we can find an operator which using intervals

from &, is of the formi Saaz,.(/".)E,-(},)y(d/‘.) where (1) are Borel functions
essentially bounded by a clonstant K. Now each map «,(4) can be approximated
within ¢ by 2'_,1 C xAﬁU.) where r depends on K and ¢ and {Aﬁ};’: .1 are mutually dis-
joint Borel iets whose union is A. Thus D can be approximated to within 2¢ in norm

k r ®
by the #y-simple operator 7 Y} S Ciit g (DE(A)p(di). 3]
Fil

i1 gl

5. SPECTRAL OPERATORS

We noted in Section 1 the spectral relationship between an element R of the
radical # of an algebra &/ and a member T ¢ &/, This relationship bears a resem-
blance to that of a spectral operator and its quasinilpotent part. Let T'== 5 ; Q
be the representation given by N. Dunford for a spectral operator 7. That is, S is a
scalar type operator, Q is quasinilpotent and SQ = @S. Furthermore, there is a
normal operator N and an invertible operator C so that S =: C-INC. It follows then
that 6(T) : (S = Q) := 6(S) =: 6(N) and also the same is true for any polynomial
P, i.e., a(p(T)) - : 6(p(S)). The same spectral type relationship would hold relative
to the algebra o/ generated by T and S if @ was a member of the radical of
</ (S and Q need not commute).

As an application of the characterization of the %-center of a nest algebra
we can show that any spectral operator 7 =: § — @ has a second representation
as Ny + R where Ny is a normal operator and R is (a quasinilpotent) in the radical
of the algebra generated by T and N,. We lose the commutivity that S and Q en-
joyed but N, is always a normal operator while S is a scalar type operator. Finaily
a recent result of the second author can be used to show that the spectrai multipli-
city of Ny and N where S —= C~*NC need not be the same.
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THEOREM 5.1. Let T be a spectral operator. Then T = Ny + R where N, is

a normal operator and R is in the radical of the weakly closed algebra generated by
T and N,.

Proof. Let T = S + Q be the cannonical decomposition of T into scalar and
quasinilpotent parts and let N be the normal operator similar to the scalar part,
S = C-INC. A theorem of P. R. Halmos [13] states that N = f(4,) for a selfad-
joint operator A, and a continuous function . We let A& be the nest consisting of
E(6) where E(-) is the spectral measure of 4, and d is of the form (—oo0, a) or
(—o0, a]. Let & be the nest algebra Alg 4. Since N = f(A4,) is in the C*-algebra
generated by .‘/V we have N € Z-center .

We let A" be the nest {CN : N e 4"} where CN is the orthogonal projection, on
the subspace CN if N is considered as a subspace. The nest algebra M}} = {C-1AC

where 4 € o 4}. Hence C-INC = S is in the Z#-center of o  as the radical of o »

is just {C-1BC: Berad A4}. Hence S = N, + Q, where N, is a normal operator
and Q, € rad "”;,}' Now T = N, + O, + Q and next we show that Qe "‘7[;,- Since

0S5 = SQ it follows that CQC-1CSC-* = CSC-CQC~! so CQC~N = NCQC-!.
Thus CQC-'e ¥, =9, so CQC-'e s/, and Qed}. Let o/ be the algebra

generated by {N,, Q, Q,, I}. Clearly & < .sz/ﬁ and we want to show Q+Q,=
= Rerad . Let n be the cannonical map of & — &/ /rad 7. Since Qleraddﬁ

we have n(Q,) = 0. Thus n(sf) is generated by n(N,), n(Q,) and =n(I). However,
N, +0, and Q commute so n(N,) and n(Q) commute. Moreover 7(Q) is quasinil-
potent and hence in rad(s//rad /) = (. Thus n(Q + Q) =0 or O 4 Q,erad #.
The algebra o/, generated by T, N, and I is contained in &. Since @ 4 Oy € %, N
nrad.<f we have Q 4+ Q, e rad o/,,. %
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