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COMPLETELY BOUNDED MAPS OF C*-ALGEBRAS

TADASI HURUYA and JUN TOMIYAMA

1. INTRODUCTION

In recent developments of the theory of operator algebras, it has been recog-
nized ([6], [8], [25]) that appropriate positive maps associated with the (so-called)
matricial order structure of C*-algebras are completely positive maps. It will then
be naturally supposed that the appropriate class of linear maps attached to C*-al-
gebras beyond completely positive maps is the class of maps compatible with ma-
tricial structure, that is, completely bounded maps. A completely positive map is
of course completely bounded and a derivation in a C*-algebra is an example of a
completely bounded map which is not completely positive, whereas in case of an-
other type of derivations (from a C*-algebra acting on a Hilbert space H into L(H))
their property of completely boundedness is known to be equivalent to the asser-
tion that they are inner [6].

This paper originates from the basic study of completely bounded maps of
C*-algebras. One of our results (Theorem 3) then determines the class of C*-alge-
bras where every bounded linear map between them becomes necessarily completely
bounded. The result has been expected in literature for some years (see, for example,
[13]). On the other hand, if every completely bounded map were written as a linear
combination of completely positive maps we could pass over study of completely
bounded maps, and Wittstock [25] has recently shown that this is the case where
the image algebra is injective. We shail show however (Proposition 7 and Example
12) that in principle this can not be expected even in the commutative case as well
as the case of von Neumann algebras. We shall also prove a converse of Wittstock’s
theorem for a separable C*-algebra as an image algebra (Theorem 11), but in a
more restricted form, that is, under the assumption of the decomposability of any
bounded linear map into a linear combination of positive maps. This extends however
a result of Tsui [24] to the case of separable C*-algebras.
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2. PRELIMINARIES

We denote by M, the n X n matrix algebra over the complex number field C.
If D is a C%-algebra, we mean by D ® M, - : M, (D) the C*-algebra of all » X
matrices @ - - {a;;] with entries in D. Let A and B be C*-algebras. For a linear map ¢
of 4 into B, we define the multiplicity map ¢ ® id,,: M,(4) - M, (B) by ¢ ® id [e;;] - -
. - [p(a;;)). The map ¢ is then said to be compietely positive if all maps ¢ & id,’s
are positive and to be completely bounded if sup ¢ ® id,}| < oo [2]. If ¢ is com-

pletely bounded, we put the norm @i = suplo ® id,!. It is known that a com-
s

pletely positive map ¢ is completely bounded and | ¢ji, =i ¢ . Every bounded
linear map of a C*-algebra into a commutative C*-algebra is completely bounded
113, Theorem A]. A linear map ¢ of A into B is said to have a positive (resp. com-
pletely positive) decomposition if therc exist positive (resp. completely positive}
maps @,, ¢, @3 and ¢, of A into B such that ¢ == @; — @y + i(@z — @4).

Let A © B denote the algebraic tensor product of A and B. In general there
exist many distinct C*-norms on 4 © B. If § is a C*-norm on A © B, denote by
A ®;B the completion of 4 © B with respect to the norm . Two such C*-tensor
products are of particular interest: the projective C*-tensor product A ®, . B
[20, Chapter 1V, Definition 4.5] and the injective C*-tensor product 4 ®,,;, B [20,
Chapter IV, Definition 4.8).

For a compact Hausdorff space X, let C(X) be the C*-algebra of all conti-
nuous functions on X. Let ¢ be a continuous map of a compact Hausdorff space .S
into another compact Hausdorff space 7. Let ¢ denote the map ¢%: C(T)— C(S)
defined by % f) (¢) = f(e(1)) for fin C(T)and tin S.

For a Hilbert space H, denote by L(H) the C*-algebra of all bounded linear
operators on H.

3. BOUNDED AND COMPLETELY BOUNDED MAPS

Let 4 and B be C*-algebras. Loebl [i3, Theorem E] has shown that for a fixed
C*-algebra A every bounded linear map of A into an arbitrary C*-algebra B is
completely bounded if and only if 4 is finite-dimensional. Tomiyama [23, Thecorem
1.3] has also proved that for a fixed C*-algebra B cvery bounded linear map of an
arbitrary C+¥-algebra A into B is completely bounded if and only if every irrcducible
representation of B is finite-dimensional with bounded degree.

In this section we clear up the situation where every bounded linear map of
A into B is completely bounded.

The following lemma is derived from Lantord’s example ([14], [24]).

LemMA 1. Let A be a C*-algebra containing a sequeince {a;}¢, of positive
elements with jia;j = | and a;a; == a;a; = 0 (i # j) and let B and C denote the C*-sub-
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algebras generated by {a;}}.., and {a;}3 .1 respectively, where n is a positive integer.
Then for the integer m = 2" there exist an element b,in B ® M, and a linear map &,
of Ainto M, such that ||b,]|<1, |8,[|<1, ®,| C = 0 and ||(®, ® id, )b = (1/2)V2.

Proof. (i) We first assume that 4 ==£*(n) and choose elements ¢y, ..., ¢, of M,,
n n Y2
Y o < (2 Yy |oc,-]2) for any «; in C,1 <i<n

i=1 \ el

(cf. [14, p. 122], [24, Lemma 1.3.2]). We define the map ¢,:(®(n)— M,, by

such that |jc;]| = 1 and {

n

@u(x) =Y, (X(D/2n)P)e;,  x €£%(n),

i=1
where x(i) means the i’th component of x. By the above inequality,

lo0ll < (2 5 |x<i)|2/<2n))”2 < Ixl)

i=1

so that ||¢,l < 1.
Let d, = Y, 6; ® ¢;, where J; is the element of 4 such that §,(k) = 6. Then

i=1

”dn” = Sup||5, ® C‘-“ =1 and

(90 ® id)(dn) = 3, 0400 ® e = (120} ¥, ¢, @ .

i=1 i=1
Here we make use of the unit vector z in C” ® C™ such that (¢; ® c;)(z) = z for
all / constructed in Loebl {14, pp. 123—125}. Hence
l@ulles = I(9, ® id,)(@)| = 1((@s ® id,)(d))z]2)| = (n/2)'?,

as desired.

(ii) Let {g;}7-1 be a family of states on 4 such that g,(q;) = §;;for1 < i< n
and 1 €<j < oco. We define completely positive maps ¢:/°(n) - B and
y: A - (®(n) by

Py a) =Y, 0a, and P(@) = (&(@), .-, £(@).

Both maps have norm one and Y¢ is the identity on /*(r). With ¢, and d,
as in (i), let @, =¥ and b, =(p ®id,)d)eB® M,. Then |b[ <1,
”¢n“ < ”‘PnH[WH <1, ¢nlC =0 and

(n[2)' < [[(@n ® idu) (@) = (e o) ® id,)(dnll =
= (o) ® id,)(@ ® id,)(d)| == (P, ® idm)(Bu)l-

The following is a slight modification of Smith {18, Lemma 2.7].
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LemMa 2. Suppose that a C*-algebra B has an irreducible representation
on a Hilbert space H., with dimH, > n, a positive integer. For a positive number
£ > 0, there exist then completely positive contiractive maps ¢: M, — Band\y: B -» M,
such that W —id'l <e on M,.

Proof. If B is unital, such ¢ and ¢ are given in [18, Lemma 2.7}. Suppose that
B is non-unital, let B denote the C*-algebra adjoined a unit to B. The representation
7 has, by [20, Chapter ITI, Lemma 2.2}, a w*-continuous extension to a representa-
tion 7 : (E)*"‘ — L(H,). Let {¢;}7..; be an orthnormal system in H, and define the
map y: B — M, by Y(x);; = (n(x)¢;:¢;), the (i, j) entry of 7(x) in L(H;) with respect
to the system {¢;}7..,. By the proof of [18, Lemma 2.7] there exists a unital complete-
ly positive map ¢, of M, into B such that W, —idl <egon M,.

Let {u,} be an approximate unit for B. The net {n(u,)} converges strongly to
the identity on H.. For each (i, j), the net of functionals: x — (n(u,xu,)¢;lé;) on B
converges uniformly to the functional: x — (Z(x)&;i¢;). Put @,(xX) = w0 (X)u; in
B for x in M,. From the definition of the map ¢, we see that {{p,} converges to
Y, on M,. We then obtain the desired map ¢ of M, into B.

THEOREM 3. Let A be an infinite-dimensional C*-algebra and let B be a
C*-algebra satisfying sup dim H; == co for the family of its irreducible representations
n: B— [(H,). Then there exists a bounded linear map ® of A into B having two
properties;

(1) @ is not completely bounded.

(2) @ has no positive decompasition.

Proof. Let a be a self-adjoint element of 4 with infinite spectrum [15] and let
C%#(a) be the C*-subalgebra generated by a. By an elementary spectral argument
we can then find a commuting sequence {;;}55., of positive elements in C¥(a)
with norm one and having disjoint supports. Let f and g be functions on N, the
set of positive integers, defined by f{n) = #® and g(n) = 2/®. For each n let 4,
be the C*-subalgebra generated by {a,;}/"). By Lemma 1 there exist an clement
bry in 4, ® M, and also a linear map Py, of 4 into M, with lib,\ < 1,
1Pyt < 1, Bpldy =0 (1 # &) and (B ® idyn) (B > (FO)/2H,

For any k, there exists an irreducible represzsntation of B on a Hilbert space
H with dim H > k. It follows from Lemma 2 that we obtain completely pééitivc
contractive maps ¢,: M,,, — B and ,: B —» M, such that

gn)

Va0 — 1yl < (g (f(0)17/2).
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We have now
“(pnéf(n)lAn“cb 2 “'l/n(Pnéf(n)lAn”cb 2

Z ”(qu(n) ® idg(n))(bf(n))ll - H((idg(n) - lpn(pn)q)f(n) ® idg(n))(bf(n))n =
= (f(m)|2)'7 — g(n)?||idymy — Yu@all =
2 (f(m2)V2 — (f(n))2) = (217 — 1)[2)n*2.

[+2]
Let @ = Y, (1/n)** @,Ps,,. Then @ is a bounded linear map of A into B.

nesl

(1) If @ is completely bounded, we have ||®]|,, > ||@|C*(a)|lc,. We show there-
fore that ¥ = @|C*(q) is not completely bounded. Suppose that ¥ is completely
bounded. By the above result, we have

”’P”cb Z ”¢,An”Cb = ”(]/n)slll(onqu(n)}An”cb P

= (Un)P((212 — 1)[2)n®* = (242 — 1)/2)n"*.
Hence, ¥ is not completely bounded.
(2) Suppose that @ has a positive decomposition ¢ = &, — P, + i(P; — D).
Then ¥ = &,|C*(a) — $,|C*(a) + (P5]C*(a) — P,/C*(@)) and as the alg bra
C#(a) is commutative, all maps &;|C*(a)’s are completely positive (cf. [20,
Chapter 1V, Corollary 3.5]). Hence ¥ is completely bounded. This contradicts
the result mentioned in (1).

Combining (1) of Theorem 3 with [13, Theorem E] and {23, Theorem 1.3], we
can affirmatively answer a question of Loebl [13, Conjecture 2].

COROLLARY 4. Let A and B be C*-algebras. The following assertions are
equivalent :

(1) Every bounded linear map of A into B is completely bounded.

(2) Either A is finite-dimensional or every irreducible representation of B is
finite-dimensional with bounded degree, say n, that is, B is a C*-subalgebra of a matrix
C*-algebra M, (C) for a commutative C*-algebra C.

Theorem 3(1) and Corollary 4 have been also proved in Smith [18, Theorem
2.8] by a different formulation with the same idea.

4. POSITIVE AND COMPLETELY POSITIVE DECOMPOSITIONS

It has been known ([10], {18], [24]) that there exist bounded linear maps be-
tween commutative C*-algebras which have no positive decompositions. On the
other hand, Wittstock [25] has proved that every completely bounded linear map of

10 — 1105
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a unital C*-algebra into an injective C*-algebra has a completely positive decom-
position. Another proof of this result is given by Paulsen [16].

In this section we show first that if LC(H), denotes the C*-algebra gencrated
by all compact linear operators and the identity operator on an infinite-dimensional
Hilbert space H, then there exists a completely bounded linear map of
LC(H), ®,;, LC(H), into LC(H), which has no completely positive decomposition.
This may be regarded as a non-commutative version of Kaplan-Tsui[10, 24]. We also
show general impossibility of positive decompostions in commutative C*-algebras,
Next, for a fixed separable C*#-algebra B we show that every bounded linear map
of any C*-algebra into B has a positive decomposition if and only if B is finite-dimen-
sional. Using De Canniére and Haagerup [4], we finally construct a completely bound-
ed map of a C*-algebra into a von Neumann algebra which has no completely posi-
tive decomposition.

We begin with a slight modification of {24, 1.3.4, Example II].

The authors are indebted to the referee for pointing out an error of our first
definition of the map ¥ in the proof of Lemma 5, replacing with the correct one for
which the rest of the proof remains valid.

LEMMA 5. Let aN denote the one point compactification of the set of natural
numbers. Then there exists a bounded self-adjoint linear map ¥ of C(aN) ® i, C(«N)
into C(aN) which has no positive decomposition.

Proof. Let a(N X N) denote the one point compactification of N X N. Let co
and @ be the points at infinity of xN and «(IN X N) respectively. Then (N XN) is
homeomorphic to «N and C(aN) ®,;, C(aN) is =-isomorphic to C(aN X «N)
[20, Chapter IV, Theorem 4.14]. It then suffices to construct a bounded self-adjoint
linear map of C(aN XaN) into C(a(N X N)) which has no positive decomposition.

Define ¥: C(aN XaN) - C(a(N X N)) by

Y(f)(m,n) ==
=: flmyn) — flm,n - 1)+ fim+ 1,n+ 1) — fim+ 1,n) (m,n) in NXN,
Y(f) () =0

for fin C(aN X aN). We assert that P(f) € C(2(N xN)), that is, it is continuous at
w. In fact, given ¢ > 0, there exists n, such that

'f(m, n) — f(oo, o0)| < ¢/4 forall m,n > n,
ifim,n) — f(m,00); < ¢4 forall 1 < m < ny, n>n
1 flm,n) — f(co, n)| <¢f4 for all m>ny, 1 <n <ny

Hence for all (i, n) outside the finite set {(s2, #) m,n == 1, ..., 1y},
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we have |W(f)(m,n)| < e Tt is easy to check that ¥ is bounded and self-
adjoint.

Suppose that ¥ has a positive decomposition ¥ = P+ — ¥-. Let y = ¥+,
Then we have Y(f) (im, n) = f(m,n)forall f > 0in C(«N X aN) and (m, n) in N X N.
For each m let ¢,, be the characteristic function of the set {(m, x) | x € aN}. Then

lim Y (e, )(m, n) = Y(e,)(®) 2 e,(m, c0) = 1.

k
We have that | > Y} e, for every k, whence

m:—1

H)@) > (3, en)(@) - ¥ Y@ > k.

me==1 m=1

This shows the unboundedness of W+ = .

PROPOSITION 6. For an infinite-dimensional Hilbert space H, let LC(H), denote
the C*#-algebra generated by all compact linear operators and the identity operator
on H. Then there exists a completely bounded map of LC(H); ®,;, LC(H), into
LC(H), which has no positive decomposition.

Proof. Let {p,} be a sequence of pairwise orthogonal minimal projections

in LC(H),. For each n let ¢,(x) = pxp, for x in LC(H),. Put =Y ¢, and

n=1
A = ®(LC(H),). Then & is a completely positive map satisfying d(x) = x for all
x in A and we can identify A4 with C(aN). By [20, Chapter IV, Proposition 4.23
there exists a unique completely positive map ® ® ¢ of LC(H); ®,,;, LC(H), into
A®,inA With¥ as in Lemma §, let ¢, = ¥Y(® ® ¥). Since ¥ is completely
bounded, so is ®; [13, Theorem A].
Suppose that there exist positive maps @7, ®; of LC(H), ®,,;, LC(H), into
LC(H), such that ¢, = ¢} — &7. The equality
(P4 ® A)

min A) = (D(d)-l*“A ®min A) - (b((bl— l A ®min

implies that ¥ has a positive decomposition. This is a contradiction.

Smith [18, Example 2.1} constructed a bounded linear map in the C+-algebra
CI[0, 1] of all continuous functions on the unit interval which has no positive decom-
position. The following proposition illustrates the general situation.

PROPOSITION 7. Let T be an uncountable compact metric space, then there
exists a bounded linear map of C(T) into itself which has no positive decomposition.

Proof. Let K be the Cantor set. Since N X aN X K is a compact totally dis-
connected perfect metric space, by [11, Chapter 2, §6, Theorem 1] it is homeomorphic
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to K. On the other hand, the space 7 contains a homeomorphic image of K
[3. Lemma 5.6]. Hence, there exist homeomorphic imbeddings ¢:aN X aN - T
and §:aN->T. As in Section 2, we define the =-homomorphisms o: C(T) -»
- C(aN X aN) :.: C(aN) ®_;, C(aN) and ¢°: C(T) - C(aN) by
Q%))+ - flo(s)) for f in C(T) and s in N XN
and
Y& (1) == g((1)) for g in C(T) and t in aN.

It follows from [3, Theorem 3.11] that there exist positive maps v, :C(aN)®,,;,C(zN)-»
- C(T) and v,: C(aN) = C(T) such that ¢¥v,, is the identity on C{(xN) &, C(=N)
and Y%, is the identity on C(xNV).

With the self-adjoint linear map ¥ as in Lemma 5, we consider the map
vy ¥0°: C(T) - C(T). Suppose that v,¥¢° has a positive decomposition v,¥¢”
<= by — a. We have then a positive decomposition ¥ == YOu, W'y, = - YN v, -
—- Y%,v,. This is a contradiction.

REMARK 8. Every bounded linear map ¢ of C{xN) into itself with ¢{oo): : 0
is determined by an infinite matrix [21, Theorem 4.51-C). Using this representation
we have a positive decomposition of ¢.

PROPGSITION 9. Let T be a compact Hausdorfi' space which contains a convergent
sequence of distinct points. Then there exists a bounded linear wiap of C(T')® ., C(T')
into C(T) which has no positive decompostioi.

Proof. By the assumption, there exists a homeomorphic imbedding ¢: «N — 7.
By [3, Theorem 3.11] we have a positive map v of C(aN) into C(T) such that
¢@%v is the identity on C(aN). Let ¥ be the sclf-adjoint linear map as in Lemma 5.
A similar argument as in Proposition 7 shows that v¥(¢° ® ¢*) has no positive
decomposition.

Since a separable unital commutative C®-algebra is =-isomorphic to C(X)
for a compact metric space, the next lemma follows from Proposition 9.

LemMMA 10. Let B be a separable unital commutative C=-algebra. If every
bounded linear map of any C*-algebra A into B has a positive deconmposition, then B
is finite-dimensional.

Tsui proved in [24, Theorem 1.4.6] that cvery bounded linear map of any
C*-algebra into a von Neumann algebra M has a positive decomposition if and
only if M -+ $]® R;, where each R, is of type I,;, and sup n(ij < oo. The corres-

a(i
ponding result for C*-algebras has not been known yet but we prove the problem
in the case of separable C#-algebras. This may be also regarded as a limited converse
of Wittstock’s theorem {25, Satz 4.5].
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THEOREM 1. Let B be a separable C*-algebra. Every bounded linear map of
any C*-algebra into B has a positive decomposition if and only if B is finite-dimen-
sional.

Proof. We only nced to establish the theorem in one direction; assume there-
fore every bounded linear map of any C*-algebra A4 into B has a positive decompo-
sition. The proof is divided into several steps.

(i) We first show that B is unital. Suppose that B is non-unital. We may
assume that B acts on a Hilbert space such that an approximate unit {u,}
for B converges strongly to the identity operator 1. Let B, be the C*-algebra gene-
rated by B and 1, so that Bis an ideal of B,. We dcfine the map v: B, > B by
x - ol — x. Suppose that v has a positive decomposition v == v; — v,, where
v, and v, are positive maps of B, into B. For each w,, we have that

U, = V(L{n) < vl(un‘) < 1’1( ]‘)

Hence 1 < (1), so that v(1) is invertible and v,(1) ¢ B. This is a contradiction
Therefore B is unital.

(if) By Theorem 3 every irreducible representation of B is finite-dimensiona]
with bounded degree. Let n(1) < n(2) < ... < n(k) be the dimensions of irredu-
cible representations of B and let I; be the intersection of kernels of irreducible repre-
sentations of B with dimension less than or equal to n(i).

It then suffices to show that the dual space B” is a finite set.

(iii) We prove that (B/f})" = Xis a finite set. We first notice that since B/I;
isan n(1)-homogeneuous C*-algebra, X is a compact Hausdorff space and the center
of B/1; is regarded as C(X). The map ¥: x = {Tr(p(x))},ex is, by [7, Proposition
3.6.4] a projection of norm one from B/I, onto C(X), where Tr denotes the canonical
trace on M, such that Tr(l,,,) = 1. By [5, Corollary 3.11] we see that the injection
7,0 x = x of C(X) into B/, has a completely positive lifting map , of C(X) into B
such that n,t, == 1,, where m; denotes the quotient map 8 — B/I,.

Let A4 be a C*-algebra and let v be a bounded linear map of 4 into C(X)-
The map t,v has a positive decomposition TV = v; — v, + i(vs — v,). We
then have a positive decomposition v = Y, mv; — Yy vy -+ (Y vy — Yymyvy). It
follows from Lemma 10 that X is a finite set.

(iv) Assume that (B/I;_;)" is a finite set. We assert that (B/I,)" is a finite set-
Since (B/I)" = (B/I;_y)" U (I;_/I})", it suffices to show that (£;_,/I;)" is a finite set.
Thus, suppose that (I;_;/;)" is an infinite set. Since B/I;_, is finite-dimensional,
we have a finite set {a;}?..; of Bsuch that for x in B there exist an @ in I;_, and com-

n
dlex numbers {&;}7; with x =a + ¥ «;0;,. Let Tr be the trace on M,
voigi . i“i
i=1

that Tr(l,;,) = 1. The set {Tr(p(@)}peq,_yr1p~ is bounded. Since ([;_,/I))" is

a metric Space, let {n,‘}f’:, (resp. D) be a discrete sequence or a convergent

«j, such
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sequence of distinct points of ([;_,/I})" (resp. I;_, 4- Cl or I;_;) according as
(I;..4/I;)" is non-compact or compact. Passing to subsequences we may assume
that there exists the limit lim Tr(m/(a;)) for each 7 < »n. The we have

k

lim Tr(m(x)) == lim Tr(n(a)) + ¥, ; lim Tr(m(a)).
k k i1 k

Let J be the intersection of kernels of {m}r ;. Then (D/J)" is homeomor-
phic to «N. Hence the center of D/Jis regarded as C(aN) by [17, Corollary 4.4.8).
Furthermore the above argument shows that the map ¥,: x — {Tr(m(x))} 2, s a
projection of norm one of B/J onto C(aN). The injection 7;: x -» x € B/J has, by
[5, Corollary 3.11], a completely positive lifting 7,: C(2aN)— B such that m,1y -7y,
where n, denotes the quotient map B — B/J. Therefore the same argument as in
(iii) shows that every bounded linecar map of any C#-algebra into C(xN) has a
positive decomposition. This contradicts Lemma 5. Hence (I;_,/I;)" is a finite sct.

Consequently the space B consists of finite points. This completes the proof.

So far we have been considering (compietely) bounded maps and the problem
of their (completely) positive decompositions in the category of rather proper
C*.algebras as range algebras. We shall however finally construct an example which
shows that completely positive decompositions may not be expected in general even
within the category of von Neumann algebras.

Let ¢ be a completely bounded map of a C*-algebra A4 into a C#-algebra B.
If Cis a C*-algebra acting on a Hilbert space H, let {p,} be a net of finite rank pro-
jections in L(H) which converges strongly to the identity operator and let {i;}
denote the net of compression maps by {p,}. Considering the diagram

id®y e®id

> B @pin L(p,(H)) & B® ;. LH).

A® pyin LIH) —— A ® iy L{p,(H))-

we have the map 9@y, A ®pin LIH) > B @ LH) with [0 @ ;! < [0,
By a standard argument [22, Theorem 5.1] we also obtain the map
o®id: A®,;, C = B®,;, C. Moreover we note that if ¢ has a completely positive
decomposition, we have a unique linecar map ¢ ® id of A ®max C iNt0 B mac €
720, Chapter IV, Proposition 4.23].

Now let A be the C*-algebra generated by the left regular representation of
the free group F. on two generators on /%(F,) and let B denote the enveloping von
Neumann algebra of 4. Recently De Canniére and Haagerup [4] has shown that
there exists a sequence {©,} of linear maps of finite rank of A intoitself with "¢, ' ., €1,
which converges to the identity map in the pointwise norm topology. Let &7 be

the direct sum of a sequence of copies of B.
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(o]
ExAMPLE 12. With theabove notation the map p= ¥ ® ¢, is a completely
n==1
bounded map of A into M which has no completely positive decomposition.
Proof. It is easily seen that || @]l., < 1. Suppose that it has a completely posi-
tive decomposition. By the above remark there exists a unique bounded linear map
¢®id of 4 ®,_,, Ainto M ®,.. A. Let, be the x-homomorphism of M onto B

such that (p,,(zwi) « x, for ¥'®x, in M and let §,®id be the -homo-
[ =1 i1

morphism of M® . Aonto B®,,. A. Since ¢, is of finite rank, we have the bound-
ed linear map ¢, ® id of 4 ®,,,, 4 into B ® ., A. Then we have (y,®id) (¢ ® id) =
= ¢, ® id. Hence, ||¢, ® id)| < ||¢ ® id|| for all n. Therefore we have that
lim(g, ® id)(x) = x for all x in A ®,__ A.

max

Now by [1, Theorem 2] there exists a C*-norm fon B O Asuchthat B ®z 4 =2
2A ® ., 4, that is, the restriction of the norm § to the subalgebra 4 ® A4 agrees
with the maximal C*-norm. Let p be the canonical homomorphism of B ®,,,, 4
to B®, A. We notice that p(¢, ® id) maps 4 ®,.., 4 into the subalgebra 4 ®,,,, 4
in B®; A and as the family {¢, ® id} is uniformly bounded, we have that

lim p(¢,®id)(x) = x for all x in A®,,,, A. Let f beastateon 4 ®,,,, 4 and f bea

max

state extension of f to B ®, A. Note that the functional 7p(<p,, ®id) on 4 ®,,, 4
belongs to A* © A*, the algebraic tensor product of the conjugate spaces. Let a
be an element of the kernel of the homomorphism: A ®,,, 4> A ®_, A.As in
the proof of [12, Theorem 3.4] we have then

min

= lim fp(9, ® id)(a*a) = f(a*a) = f(a*a)

and a*a = 0, that is, a = 0. Since 4 ®,,, 4 is different from A®
119—121], this is a contradiction.

min 4 [19; PP-
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