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QUASITRIANGULAR EXTENSIONS OF C*-ALGEBRAS
AND PROBLEMS ON JOINT QUASITRIANGULARITY
OF OPERATORS

NORBERTO SALINAS

1. INTRODUCTION

In this paper we shall be concerned with the question of when an n-tuple of
operators on Hilbert space is jointly quasitriangular.

We recall that an n-tuple (T3, ..., T,) of operators on a Hilbert space 5 is
said to be jointly quasitriangular (cf. [5], [2], {19]) if there exists an increasing se-
quence {P,} of finite rank projections on J#, that tends strongly to the identity operator
1, and such that lim||(1 — P,)TP.ll =0, for 1 < k& < n. Since the separability

of 5 is implicit in this definition, and if 5% is finite dimensional all #-tuples of opera-
tors on J are jointly quasitriangular, we assume throughout the paper that # is
an infinite dimensional, separable Hilbert space. The set of all jointly quasitriangular
n-tuples of operators on J# will be denoted by QT,.

One of our main objectives in the present paper is to generalize, to the case
on n-tuples of operators, various results obtained in [2], [3], and [4] for the case of
single operators. This program was started in [29], where attention was focused in
proving invariant subspace theorems for commuting n-tuples of operators. The n-tu-
ples that we consider there are not necessarily commuting, and, since our aim in this
paper is different, we obtain other generalizations that were not given in [29].

Given an operator 7 on 4, let w_(T) be the set of those complex numbers 4
such that T—2 is essentially left invertible and of negative Fredholm index. Alter-
natively, A€ w_(T) if and only if T'— A is essentially left invertible but T—1 + K
is right invertible for no compact operator K. It was shown by Douglas and Pearcy
([16], Theorem 2.2) that w_(7T) = & whenever T € QT,. Apostol, Foias and Voicu-
lescu in ([2], Theorem 5.4) completed the spectral characterization of quasitriangu-
larity by proving that the converse of this result is valid. They also succeeded in com-
puting the distance from a non quasitriangular operator T to QT in terms of “thick-
ness’’ of w_(T). It is reasonable to ask what are the natural generalizations of these
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results when one considers (not necessarily commuting) n-tuples t - (T, ..., T,)
of operators on . The extension of the notion of quasitriangularity to n-tuples of
operators is straightforward and is already mentioned at the beginning of this paper.
What is not so obvious is what should be the substitute for the set w_(-) in the case
of n-tuples of operators. One may probably need to extend the following three
notions:

(#) The left essential spectrum.

(# #) The index outside the left essential spectrum.

(4 # #) A certain order structure on the set of indices, so that onc may speak
of negative indices {or equivalently positive indices).

An alternative approach is to use the equivalent definition of w_(T) given pre-
viously, in which case one also needs to extend the notion of right spectrum. An
important class of n-tuples on which this program could be tested is the class of
essentially commuting n-tuples of essentially normal operators.

In Section 2 we introduce various notions of left and right (essential) spectra
of n-tuples of operators and in Section 3 we prove a generalization of a result of
Douglas and Pearcy using the alternative definition of w_(-) mentioned previousty
(see Corollary 3.15). However, this is not the natural generalization that we are
looking for, because, as Theorem 6.11 shows, the converse of Corollary 3.15 can
not be valid for essentially commuting pairs of essentially normal operators. On the
other hand we also prove in Theorem 6.4 (see also Remark 6.5) using the Har-
togs’s| phenomenon of several complex variables, that the standard notion of index
outside the essential spectrum (as defined in [13]) for essentially commuting pairs of
essentially normal operators is not appropriate to reflect obstruction to quasitri-
angularity.

Inspired by the work of Brown, Douglas and Fillmore and its application to
the classification of essentially commuting #n-tuples of essentially normal operators
(see [8], [9]) one is led to consider extension theory of C*-algebras for the appropriate
generalizations of the notions (3#), (# #) and (3 4 #). Thus, in Section 3, we
introduce the semigroup Ext,(e/; %) of equivalence classes of C“-extensions of
the ideal of compact operators by the C*-algebras «/ which are quasitriangular with
respect to the Banach subalgebra & of o7 (see the definition after Lemma 5.7). The
general program is to characterize Exty(«/; %) in terms of .27 and 4. To this end, we
also introduce the subsemigroup K,(s7; %) of K (&) (see the definition after Theo-
rem 5.10). Using index theory, as is done in [9], one can define a homomeorphism
%: Ext(«/) — Hom(K,(=); Z). The result of Douglas and Pearcy gencralizes as
follows: If [t] € Ext,(/; #) then x[7] is non-negative on K,(«7;#) (see lemma
5.12). A natural question is in what cases the converse is valid. An equivalent for-
mulation of this problem for essentially commuting pairs of essentially normal ope-
rators is the following: Assume that (T3, T,) is an essentially commuting pair of
essentially normal operators such that =very 2 X 2 matrix whose entries are poly-



QUASITRIANGULAR EXTENSIONS 169

nomials in Ty, T, is quasitriangular; does it follow that (73, 75) € Q T,? We con-
jecture that the answer to this problem is affirmative and we present some partial
results in Section 6. However, the solution to this problem is far from being com-
plete. We should also point out that if one drops the assumption that (7}, 73) is an
essentially commuting pair of essentially normal operators then the question has a
ncgative answer. For instance, take an operator T on # such that (T, T*) ¢ QT,
(i.e. T is non-quasidiagonal) and such that every n X n matrix whose entries are
polynomials in T, T% is quasitriangular (see Remark 5.13, Part A).

In order to make this paper more accessible to readers in Operator Theory,
we have adopted an expository style. In §4, for instance, we have stated several
facts which are classic results in the theory of functions of several complex variables,
and we have made some remarks, which are perhaps less standard, that are needed
in the proof of Theorem 4.7 and in §6.

The organization of the paper is as follows. We start, in §2, with some remarks
concerning the joint left essential spectrum of an n-tuple of operators. In this sec-
tion, we study certain properties of the left resolvent functions 8(-) and J.(-),
which we use later, in §3, to estimate the distance from an arbitrary n-tuple of
operators to QT,. We devote §3 to study the various moduli of quasitriangularity
q(-),q'(-) and g*(-). These quantities represent the distance from an n-tuple of ope-
rators to QT,, in various equivalent norms. The main results, in this section, are
Theorem 3.9 and Theorem 3.14. In §4, we introduce the pseudoconvex hull (also called
Stein hull) of acompact subset of C" and we obtain a refinement of Theorem 3.9 (see
Theorem 4.7) employing a modification of an argument due to Voiculescu (see {29]).
We reserve §5 to present some general facts concerning extensions of the ideal of
compact operators on J by a separable C*-algebra /. We introduce the notion
of quasitriangular extensions with respect to a closed subalgebra of &/, and we show
that the natural topology of Ext(s/) is given by a pseudometric. We also prove that
the closure of the neutral element of Ext(%/) is always a group (see Theorem 5.3).
It should be pointed out that an example of a separable C*-algebra &/ for which
Ext(.7) is not a group was given in [1]. In §6 we prove the main results of the paper.
Using Theorem 4.7 and Hartogs’ theorem (i.e. Theorem 4.1) we show that if an essen-
tially commuting n-tuple (73, ..., 7,) of essentially normal operators satisfies the
property thatits joint essential spectrum X is connected, and is contained in a contrac-
tible compact subset of C* whose boundary is contained in X, then (7}, ..., T,) is
jointly quasitriangular (see Theorem 6.2). We then use this result and Hartogs’ theo-
rem to show that the n-tuple of Toeplitz operators associated with the coordinate
functions on a bounded strongly pseudoconvex contractible domain with a smooth
boundary is jointly quasitriangular (see Theorem 6.4). We further observe (see
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Remark 6.5) that there are Fredholm n-tuples of Toeplitz operators of this kind
with arbitrary index.

There are many questions left unanswered in the present paper, and they are
pointed out throughout. The most important one, perhaps, is posed in Remark
6.8(a) and is concerned with the characterization of jointly quasitriangular, essen-
tially commuting a-tuples of essentially normal operators.

We are indebted to Norberto Kerzman for some helpful conversations con-
cerning the results in the theory of Several Complex Variables that we present in
Section 4, and, we would like to thank Ronald Douglas for his useful suggestions
concerning the material of Section 6. He pointed out to us the possibility of using
Extension Theory to attack the classification problem of joint quasitriangular a-tu-
ples of essentially commuting essentially normal operators. Also, we are indebted
to the referee for his many helpful comments.

Finally, we would like to introduce some terminology which wiil be used
throughout the paper. In what follows, % will denote the algebra of (bounded,
lineur) operators on #, and % will denote the ideal of compact operators on J#.
The Calkin algebra &£/.#" will be denoted by (2 and n will denote the canonical quo-
tient map. Elements in the space & (= . ® C") will be denoted by t and it will
be understood that t--«(Ty, ..., T,). Given A and B in % we let At and tB be the
n-tuples (AT, ..., AT,) and (7B, ..., T,B), respectively. We denote by t* the
n-tuple (77, ..., T,). An n-tuple (4,, ..., 4,) in C” will be denoted by /, and we iet

# 142
i ( ¥ ;).,;3) . We shall also identify A with the n-tuple of operators (4. 1%, ...
V/SH |

.« .. /,l). The Banach spaces #” and (" will be provided with the norms ;t,.
=-max [Ty, 'tl = max =T, respectively, which converts them into C#-algebras.

1akan 1gksn

2. SOME REMARKS ON THE JOINT LEFT ESSENTIAL SPECTRUM

We begin this section by defining two bounded, linear transformations, cano-
nically associated with an n-tuple of operators.

DEFINITION. Given te Ll”, letD: # —> # @ C", DF: # ® C" — H# be the
bounded linear transformations defined by D,(x)=: (Ty(x), To(x), . . .. T,(x)), x € H#,

Di(xy, ..., x,)=s Y Ti(x), Xy, ..., X)) € # ® C", respectively.
k1

The following properties follow immediately from the definition given above.

For every tc .#” we have
(D)” - DE,
n 1,2
(D, = (D¥DY? = (DEDY* = (Z TT) ‘
K=1 .
Dy, < Yt

it <
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and
1D\l = 1D || = sup{a: € a(|D)}.
We shall denote by ||D,J|, = sup{a: a € 0,(|D,))}. Here, and in what follows,

o(T) and o (T) denote the spectrum and the essential spectrum of the operator T,
respectively.

DEFINITION. Given te %", we define
o(t) =inf{a:2co(|D])} and 5. (t) =inf{a:aca (D)}

The proof of the following lemma is elementary, and can be obtained by
applying [17, Theorem 1.1] to the operator |D,|.

LemMMA 2.1, Let te £
(a) &(t) = inf || D(x)||. In particular there exists a sequence of unit vectors
lxj=1

XEN
{xn} © H# such that 5(t) = lim |D(x,)|, and for every sequence of unit vectors
{Vm} S H we have 5(t) < liminf ||D(y,)ll-
m-»co

(b) 6. ()==sup O(t|.4#). Here (onwards), t|.# is the n-tuple of bounded linear
CO(}/llfl’lE‘/fﬁOO
transformations from the subspace 4 into H @ C" given by Y\ =(T\4, ... T,|H).
In particular there exists an orthonormal sequence {x,} < # such that §(t) =
== lim{|D(x, ), and for every orthonormal sequence {y,} < #,5.(t) < liminf||D(y ).
mn—00 n—-0Q

LemMMA 2.2, Let te £". Then 0 < 6(t) < 0.(t) < ||DJl, < ||D,|l. Furthermore,

(a) if dim(ker D)) < dim(ker Df), then there exists ke A™ such that 5 (t) =
= 8(t + k),

(b) there existsk' € A" such that |\D.||, = ||D,, |l

Proof. The first inequalities are obvious. To prove (a) we observe that we may
assume J.(t) > 0. Since 0 ¢ 6.(]D,), we know that |D| is Fredholm and hence D,
is left semi-Fredholm. Let E( - ) be the spectral measure associated with {D,| on 5
and let « = §,(t). This means that (« —|D}E([0, «]) is in 2". Because of the assump-
tion, we see that there exists vy € #” such that D, is an isometry and D, = D |D,|. Let
k = v(a — |DDE([0, «]). Then k € #* and for every x € 5, || x|| = 1, we have

IDeek()|l = [I[Dyip + Dya— o, ap] ()] =
= ||DJIDJE([e, |D D) + «£([0, o))(x)]| = allx]| = ().

So o(t +k) > d.(t). Now for the proof of the last part of the statement we let
B =Dl 1t follows that (iD,| — B)E((B, |ID|l) € A . Let D, = D_|D be the polar
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decomposition of D, where D is a partial isometry, we &" and letk’:
~-w(D, -- ) EWp, D7 Then

D72 DD E([O, 1) -+ BE((B, [iD, D) <
< [DZE(O, BN + BE((B. iDDYl < B+ Dy, .

REMARK 2.3. From the upper semi-continuity of the spectrum and the essen-
tial spectrum we see that the functions 4 — d(t — A} and 4 — § (t — 4), 4 C" are
lower semi-continuous. We also note that if A (::'D,’) = "D, , then for cvery
unit vector v& . we have

De-i(x), 2 /- Dx) = A (D,

$0 A — D i < §(t--4). We deduce that the functions d(t--- 2) and &t - 4).
. .. t <

A€ C” achieve their minimum value on non-empty compact subsets of C*. However,
these minimum values may be greater than zero. Indeed, let

7, -(° ]""’). ngz(o 0)
0 0 le 0,

and t: - (Ty, 75). An elementary calculation shows that

12028t — (172, 172)) == 8t --(1/2, 12)) = inf 5 (t - - 2).
2eC®

Drrintrion. Given t e #” we define the (possibly empty) compact subsets of C”,

oty - LeChdt--2): 0},
and
o ft) - {Ae TPt 4) o O
Also, we let
att) -~ {ie C:ico(t¥)],
and
o (t) - (LcCiiaa )l
The proof of the following proposition follows from Lemima 2.1 and the fact
that the bounded linear transformation D, is (essentiaily) left invertible if and only

if the same holds for the operator ‘D, in .& (see also [11, Theorem 4.1]). it also
serves as a characterization of the sets g,(t} and o,(t) when they are rnot empty.
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LEMMA 2.4. Let te &"
(a) The following conditions are equivalent :
(a) A=(4, ..., A )0 (t),
(ay) Di—; is not left invertible;
(ag) there is no s =(S,, ..., S,) € L", such that

Y ST — A = lw,
k=1

(a,) there exists a state @ on the C*-algebra C*(1, Ty, ..., T,) such that
(TFT) = o(T)e(Ty) and o(T,) = 4, 1 <k < n and

(as) there exists a state 0 on ¥ such that 0(AT)) = 2,0(4), for al
AeZ, 1<k <n.

(b) The following conditions are equivalent :

(b) 2 = (hay -+ -, ) € 01, (0);

(by) either Ran D,_; is not closed or dim(ker D,_;) = oo,

(by) there is no s =(S,, ..., S,) € %" such that

le =Y ST —A)e A,
=1

K==

(by) there exists a state Y on the C*-algebra C*(1, n(TD, ..., n(T,)) such
that Y(M(T)*n(T)) = Y(n(TYW((T) and Yn(T) =X, 1<k <n, where
n: L = Q is the Calkin map;

(bs) there exists a state n on the Calkin algebra Q such that n(an(T})) =
= An(a), for every acQ, 1 < k < n;

(bg) there exists a projection P in & of infinite rank and nullity such that
() = An(P),1 € k < n;

(b;) for every € > 0, there exists a projection P, in &£ of infinite rank and
nullity such that ||(t — D)P.|| < e;

(bg) for every & > 0, there exists a projection P, in & of infinite rank and

nullity such that (T, — A )P, is of trace class and (T, — APy <e 1 <k < n,
where || - ||, denotes the trace norm.

REMARK 2.5. (a) It follows that o,(t) = II ¢(T) and o, () = [] 0.(T0)-
el k=1
(b) If t is an n-tuple of essentially commuting operators in &, i.e. I,T, —

— T\ T;e o, for all j,ke{l, ..., n}, it is well known that o, ,(t) (and hence a,(t))
is nonempty. A direct proof can be given employing Lemma 2.4, the Gelfand-Nai-
mark theorem, the G.N.S. construction and the fact that maximal left ideals in &
are left kernels of states on % [14]. One can proceed as follows. } irst one proves that
o,(+) enjoys the projection property for commuting operators acting on a (non-ne-
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cessarily separable) Hilbert space ¢. This means that if S,,..., S,,; are operators
on ¥ and (4, ...,4,)€0(Sy,..., S,), then there exists 4,,, € 6,(S,,) such that
(s oo A1) €0,(Sy,. . 5 Sp41) (see [10]). One then represents the Calkin algebra
as a C*-algebra of operators on some Hilbert space %, and apply the above result
to conclude that the projection property also holds for o, (-). The fact that ¢ (t)
is not empty, for every essentially commuting n-tuple t, follows from the fact that
g, (T) + @, for cvery Te L.
(c) We point out that for every Te .& the sets R(T'), R(T) as defined in [25]
are given by R(T)~{A e C: (4, D) e o(T, T%)} and R(T) :{ic C: (4, ACa fT, T
LemMA 2.6, (a) Assume that o(t) # @ and let p(t) - = sup 4.
A€a(n)
(i) p(t) < Dyl
(i) d(t — A < inf A--2", forall ieC"
M Ea(t)
(a') Assume o, (t) % O, and let p,(t): - sup A},
A€a, (t)
(i) pr(t) < D,
(iiNd(t—A) < inf |-, forall 1eC"
VEa (O
Proof. Because of Lemma 2.2, (a’) ((i')) follows from (a) ({i)). Also, employ-
ing Lemma 2.2 we observe that (a) ((ii)) and (a’) ((ii’}) have similar proofs. So we
shall prove (a) ((i)) and (a') ((ii')). Let u € 6(t), v € 5,,(t) besuch that - = sup A’}

A Ea (t)
1
and 'v-- A" ~= inf 1A — A", Because of Lzmma 2.1 therc exists a sequence of unit
Z'Enle(t)
vectors {x,,} and an orthonormal sequence {y,} in # such that lim "D, ,(x,) -
= CC
¢+ 0, im {D¢ ()l =< 0. Therefore
Fit- 2 OO
ot — A) < liminf D¢ 2y} -
-0
= liminfiDy. ., A¥,)" <
Ni—= GO
< limsup|Dg . (¥, + limsup Doy (1), 14— Vi,
ny—>00 il 00

and

pl(“) v ﬂ == lim .xDu(Jcrn).f lim E;Dy--t : t(v\-m);; <

Hi1— OO 11+ 00

< limsup (D ,(x,)il + limsupiD(x,))1 < {Dh

nt— oo =00
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QuesTION. If t € £ consists of commuting hyponormal operators, is §(t — A)=
== inf A — ), py(t) = |ID]|?
A’ Eol(t)
The following result gives a partial positive answer to this question.

LEMMA 2.7. Let t € &" be a double commuting n-tuple of quasinormal operators
ie. T, — T;T, =0, T,Tf — T}*T; =0, j # k (double commuting property) and
T(TPT,) = (T¥T)T, (quasinormality), 1 < k < n. Then

(@) p(t) = [ID, 1],

(b) 8(t) = inf |A].

AEa,(t)

Proof. We recall (see [20, Problem 108]) that quasinormality implies that for
1 < k < »n there exists a hyponormal partial isometry W, € & that commutes with
P, = (T}*T)*?* and such that T, = W, P,. Now, the double commuting property
implies that P;P.:: PP;, P,W, = W,P;, W,W, = WW;,j,k=1,...,n Let
o = inf{y;: yea(iD))}, f=sup{y:ye a((Dti)}. By the standard functional calculus
on the abelian C*~algebra (1, Pl, ..., P)) we can find characters ¢ and  on

it such that « == Z [e(PO, B = Z [y (P,)}%. Now, by the projection property of

k=1
oy(-) {10, Proposition 1}, and by [10, Proposition 7] we can find characters 0, n
on C*(l, Py, ..., P,, Wi, ..., W,) such that O0(P,) = @(P,) and n(P,) = Y(Py),
1 <k<n Since C*(1,T,,...,T) € C*(1, P,,...,P,, W,, ..., W,) we have
# = 0(t) == 0(wp) = 0(w)f(p), v = n(t) = n(wp) = n(w)y(p). In particular, |u| =
=, [v] = f. Hence [D,f|= [[1D | =« = 4] < p(6) and 6(©O=p=I¥{> inf .
1

The following strengthening of Lemma 2.1 will be needed in the sequel.

LeMMA 2.8, Let te ", AL, ..., A" e C" and ¢>0. Then there exists subspaces
My H, 1 < j<msuch that dim 4; = oo, |\D, |l 4;l|<d,(t — ) + e, 1 <
< j < m and such that subspaces M; + T (M) and Jl;+ T,(M;) are orthogonal

#jand 1 <k < n.

Proof. Let {p:1=12,...} = CBl < k < n be sequences p{~Vm+/ =3/
for i=212,...,1 <j<m, 1 < k < n. By Lemma 2.1, we can find inductively
an orthonormal sequence {v} € # such that [D,_ ;(x)Il < 6,(t— W) + e,
CTdx)s Xp41) = TE(x), XD = KTETUX), X410 =0 for l<igjli<sksn
Indeed, using Lemma 2.1 we find a unit vector x; € # such that HDt_#l(xl)lls
€ 0,(t — u') 4 e. Having defined x;e o, 1 <7 < j, satisfying the above pro-
perty, let & = closure of the span of {x;, T,(x,), T¥(x)), TFT(x;) :1 < i<, 1<
< k < n}. Since dim A < oo, by virtue of Lemma 2.1 we can choose a unit vector
Xj41 in A" such that ”Dt Xl <6 St — u/*Y) + . Now we define J/; =

=2 [sp{Xgerym+;: £ == 1,2, ... }). By construction [.#;-+T(#;)]~ and [4;+ T, (4]~
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are orthogonal for i # jand 1 < %k < n. If z; € #;, then

&)

WD, a2t = Z T — /:I;)zj“‘z = 2 ‘] (T — %) 2 <z, x(i—l)m+j>x(i—1)m+j L=
k=1 ka1 ! .

i<l

n oo

L E Z 5(3,', x(i—l)m+j>:2 (T — I‘g_l)m“)x(i-l)muf;z =
k::1i=1
had . s
= l<2j, x(.'—1)m+j>|“ |;D,_ (i-l)m+j(x(i—1)m+j)il‘ <
i=1 “

< Z (sz, x(i—l)m+j>i2 [‘se(t - #a—l)mH) + 8]2)'“‘:
i-:1

= (O,(t — ) =+ &) iz,

Hence, |\D, ,;i#;ll < . (t— A7) + & and the proof is complete.

DerixiTION. Given te #", and employing the notation at the beginning of
§2, we define

6¥*(t) = inf{o : « € 6({DF )}
and
88 (t) = inf{e : w e o (|D{])}-
Also, we let
afy={1eC: 6%t — 2 =0},
and
ois(t) = {1 e C": 6J(t — ) = 0}.

REMARK 2.9. We observe that | D! can be identified with the square root of the
# by n operator matrix acting on 3 ® C" = #@®... DH (n times) whose (i, j)th
entry is T*T;, 1 < i,j < n. Thus, for every {=(x,, ..., x,) belonging to o# ® C”,
we have | DFl (&)l] = [ID{f(&)". Thus, a result similar to Lemma 2.1 also holds for
5 *(t)and 8§ (t). On the other hand we point out that the sets ¢} (t) and o1 (t) are rather

B n
large. In fact, it is easy to show that ot (t) 2 II 0,(T,) and onn(t) 2 II o1(Tw-
E=1 k=1

Although the proof of the following lerama is similar to that of Lemma 2.2, we
include it here because this result is central to our purpose.
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LeMMA 2.10. Let te " Then 0 < 6%(t) < 85 (t). Further, if dimker D§ <
< dimker(Df*)*, then there exists k€ A" such that 6% (t + k) = 5¥(t).

Proof. The first inequality is obvious. Thus, to prove the second assertion we
can assume o —= 0 (t) > 0. Let E(-) be the spectral measure of |Df| on # ® C.
Since a > 0, it follows that (@ — | D¢ ) E([0, ®)) € " (£ ® C"). Because of the assump-
tion, there exists v e %" such that D is an isometry and D& =Dy |Df|. Letk e &"

be such that D == D¥ o [(«—|DF ) E([0, ®))]. Thenk € 2" and for every & = (x,, ...
o X,) €S ® C" we have

D& = IDF < 1D | + (« — IDENE(O, )] &Il =

= ([[IDFIE[IIDEI) + «E(0, )] [l > allll = B

This completes the proof of the lemma.

3. THE MODULUS OF QUASITRIANGULARITY

Throughout the rest of the paper 2 will denote the directed set of all finite
rank projections in % and will be endowed with the metric d(P, @Q)=min{l, || P—Q||},
P,Qe 2.

The following result is essentially contained in [19], and was explicitly proved
in [26].
LemMa 3.1. (cf. [26, Lemma 2.4]). If v: & — R is a bounded uniformly conti-

nuous fuiiction, then for every {P,} < & such that P, S I we have liminfv(P) <

Pe2?
< liminf v(P,). Further, there exists an increasing {P,} < 2 such that P,,,—s> I
m-—oo
and liminf v(P) = lim v(P,,).
Pe? m-co

REMARK 3.2. Given te #", let v(P) = |[(I — P)tP| and vi(P) = |{|Da-pryr|l,
Pc?. Then

[v(P) — v{(Q)I < max| 1A = PYT.P|| — [[(I — T2l | <

< max ||(1 — P)T.P — (1 — Q)T 0l <

1gkgn
< (P — Ot + |1 — P — DIl < 2[t|| [|[P — Qll.
Likewise,
(vi(P) — V(O = | IDa-pyerll — IDa-oyell | < IDa-pyp — Da-oyell <
<2|DJilP—Qll, P,QeZ.

12 — 1105
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Observe that 0 < v(P) < {|t|, 0 < v(P) < |[D1]l, and also v(P) < v(P) £
< [nv(P), for every Pe . Therefore, v, and v, are bounded and uniformly
continuous functions on #.

DEerFINITION. Given te ¥” we define

q(t) = ]1m 1nf v(P), and g'(t) = liminf v{(P).
Pea

LeMMA 3.3. Given te &", the following conditions are equivalent.
(a) t is jointly quasitriangular, i.e. there exists an increasing 'P_} < # such

that P,, > I and lim [|(1 — P,)T,P, || = O, for 1 < k < n.
(b) q(t) == 0.
(c) ¢'(t) = 0.
(d) there exists {P,} = & such that P, > I and lim(l — PYT.P,": =0

for1 <k<gn

(e) There exists t' = (T4, ..., T,) € £” and an increasing sequence {P,} = &
such that P, 5 I, TyP,==P,TiP,, 1 <k<n m=12... and t ~t' € X"
Proof. By virtue of Lemma 3.1 (e) = (a) = (b) = (c) = (d) ~> (a). To show
that (a) = (¢) we need only choose an increasing {P,} < 2, P, 2, I such that

Y (1 - PYT,P, i < oo, for 1<k < n.

m=1

In the next two lemmas we describe some elementary properties of the func-
tions g and ¢’

LEMMA 3.4. For every te ¥” we have,

a(t) < g'(t) < Vng(t), 0<q®) < 1., 0<q'(t) <, DJ,

and for every t' € ¥" we also have,

q(t) - q(t), < fit—t1,. ') —q(t). < D~ Dyl < 1n 't t,
and hence q : " - R, q': £" — R are uniformly continuous. In peorticular QT,
is closed in "

Proof. The only non-trivial parts of the first assertion are the inequalities
g(t) < I't],, and ¢'(t) < ||D,!l, . To prove these facts we note that

g(t) - liminf)|(1 — P)tPij < lim sup{(1 - - P)t}j -+ inf -kt
Peo Pep kex"
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Also, by Lemma 2.2 (b)

g'(): lim inf||Da . pypll < limsup [[Da—pyll = Inf [|Desifl = |[D,J,-
Pes res ke

To prove the second assertion we observe that for every Pe 2,

V(P) € veev(P) + vi(P), vi(P) < vi_¢(P) + ve(P).

Thus, we have

g(t) = : liminf v(P) < limsup v¢. ¢(P) + lim inf ve(P) < |jt — t'||, + q(t).
Pe? Pe? Pe?

Analogously, ¢'(t) < D, — Dgll, - g'(t"). Interchanging the roles of ¢t and t' we
obtain the desired. inequalities. .

Since the set of essentially commuting n-tuples is closed in #”, it follows from
Lemma 3.4 that its intersection with QT, is also closed. This result was already
obtained in [24] employing a more complicated approach. In [24], it is also shown
that the distance from essentially commuting n-tuple t to the set just mentioned is
q(t). In part (c) of the following lemma, we use a different method of proof to
show that a similar result holds for arbitrary n-tuples.

LEMMA 3.5, Let te "
(a) For every {P,} = & such that P, 2 T we have

(qt) < liminfv(P,), ¢'(t) < liminfv(P,).
M- 00 nr— oo
Further, there exist increasing sequences {P,}, {P,} < P, such that Pm-—sr I,

s
P,,— I and

Himy(P,) = q(t), limv(P,) = g'(t).

- 00 ”— 00

(b) if ¢ e L and t -~ t' € A, then q(t) = q(t'), and q'(t) == ¢'(t').
©
(%) q(t) = inf |[t — s,
SEQTH

() ¢'(t) = inf 1D, — D,].
sEQT"
Proof. Part (a) is a consequence of Lemma 3.1 and Remark 3.2, and (b) fol-

lows from (a). To prove (c), we first observe that < in both (x) and (¥x) is a direct
consequence of Lemma 3.4. For the opposite inequality we use the Arveson dis-
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tance formula for quasitriangular algebras [5, Theorem 2.2]. Werecall that if {Q,,} <3 %

mi -
is an increasing sequence such that Q % I, and # - {S¢&:(1 ~0,)80,,: 0,
m-=1,2, ...}, then # + A is norm closed in & and inf (7. - § :

SecB+H
w:limsupli(l — 0,070, , for every T ¢ & (Arveson’s formula). We shall

-0

identify ¥ ® #, and A ® .#, with the algebra of # by » matrices whose
entires are in % and J, respectively. Here onwards .7, is the algebra of » by

n complex matrices and 1, is the identity matrix in .#,. Given te ", we fet t be
the diagonal matrix in & ® .#, whose A-th diagonal entry is T, and we lct i be
the matrix in ¢ ® .#, all of whose entrics are zero except for the first column
whose k-th entry is T;,. We note that }i?;‘ «= Nt} and !.if]} - 1Dy'.. Now, for a fixed
tc ¥ we let {P,} and {P,} < 2 be increasing sequences such that P, S,

P;, = [ and such that g(t) :=lim {(L — PItP,I, ¢'(&) - : im (1 - PP, . We

mls

denote by & and 7' the algebras & = {SeZL: (l--P ISP, :0, m
= 1,2,...} and ' = {S'e L:(1 — POS'P,~:0,m 12 ...}. We observe
that

A M, =Re L ® M, :[(l —P)® LIRP,, ®1,) -0, m 12, ..},

A QM ={ReL@M,:[(1 —P,)®LIR(P,®1) 0,m::12 ...}

—

By the Arveson distance formula we have

inf ft—sj= inf U —s'= inf B o- S s

sela+x)" selz+x)" selz e,

-~ limsup l[(1 — P)tP,1"] = limsupji(l — PP, q(b).

N—-» 00 7= 00
Analogously
inf 1D, — Dgij== inf [t -s'f-= inf jt S
s el +x)" s €l = X sl H)eH,

o= limsupfi[(1 — Ph) @ 1P ® 1,) == lim SupHD(l__P;n)w;n D gl

fl— o0 11— 0

Since (& - )" < QT, and (&7’ -+ )" < QT,, the proof of the lemma is
complete.
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The following two properties were already observed in [29], for the
function gq.

LemMMA 3.6. Let te ¥" and suppose there exists a directed family
{ Ay |ae A} of invariant subspaces for t= (T, ..., T,) such that span{,//la}

is dense in 3#. Then g'(t) < llmqu (t| #,). In particular, if t has a system

of common eigenvalues which is tota[ in K, then te QT,.

Proof. Let P, be the projection of # onto %, ,a€ A. Then Pai> I. By the defini-
tion of liminf, there exists an increasing sequence {P, } such that P, > I and
lim ¢'(t|4, ) = hm mf q'(t|.,). Let {e;} be an orthonormal basis for Jf and for

n— o0

each m=--1,2, ..., choosc a finite rank subprojection @,, of P, such that

, 1 .
KL — @l < (L =Py Yesll+- -, 1 <j<m
m
and

, 1
1D -0, 0, | < q'(t1H, )+ "

Then, since Q,,, I, we have

q'(t) < liminf Do o, Il == limint|iDe, -0, xo, Il <
nr— 00 m— oo

< limg'(tl2, )= hmqu (t1.% ).

= 00

The proof of the lemma is complete.

In what follows, P, denotes the projection onto the subspace A" of #.

LeMMA 3.7, If # < S is an invariant subspace for t € £", then
q'(t) < max{q'(t| &), q'(P . t|.7*)}.

Proof. Given P],Pneﬂ P, <P,, P,<P, wecan find O, @, €2 such
that P, < Q) < P, P,<Q,<P,, and such that P  T,0,(#) < Qi(5), 1 gk <n,
1D - opee,ll < g'(t I Ji) + & D, -one,ll <4 (P./,lltl/[l) + & where >0 is
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given. With Q :-- Q, -+ Q,, it follows easily that
LDa-oxel = i De -0, P 10O, O

= D -0pte, 4 D,y ~0yt0,i < max{De opwl.iDe | opre,) <

41
< (max q'(t;4) ~ e, q'(P .t} #1) — ¢}
Since ¢ is arbitrary the proof of the lemma is complete.

LemMA 3.8. Ler #;, | < j < m be separable Hilbert spaces, let te ¥" and
let Y eC" 1 <j<m Then

g'(t) < ‘1'(t ® ( g{; Zilapi )) - maxd(t -- A%).

j=1 1<jcm

Proof. Let ¢ > 0 and let 4;, 1 <j < m be as in Lemma 2.8. If 2 is a finite
dimensional subspace of 3, we can find a finite dimensional subspace # ¢ # @

m

@( () %’j)such that |!D m o < q’(t@ ( @ /'.j)) & LetW a3,
S

*
je=1 Pl ® 2 7
jee1

%;c H;, 1 <j< m be finite dimensional subspaces such that 2 « ¥ @

]’
@ ( ® ‘{Z/j) and let P;, 0 <j< m be the projections in g(&i’@(@ #J))
Josl jot
defined by

Po =P " )
e ( ® (Ol)
§ o=l

s

P, = P( -

(0») ¥,
i=0

i=0 i==j4

P, = P m , 1 <<j<m—1.
(@ (0))@%@( ® &0;)
1

Since dim(%) < oo, dim(.#;) = oo, and we can assume without loss of gene-

m
rality that dim(2# ;)= oo, we can find a unitary transformation U: 5# @( ® c%ﬁj) —-H
jesl

such that U(x@ ( @® 0)): x, for every x e [@/ +%Y Tk@/],andRan(UPj)EJlj,
k- j

jeal

m
for 1 € j < m. Nowforeveryze £ there exists y. € # such that Pyz - = 3, @ ( @0) .
i

It follows that UPyz == y,, U*T,UPyz = U# (.Tky:®( @0)):1’0{717@( & /ﬂ))zs
01

et i
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so we obtain

12, Tz = “UPQLU*T,C(UPOZ—}— y UPJ-Z)E
| j=1

2

= HUPQL[PO(T,‘ ® ( é /1{))z+ é U*TkUsz][
J

j=1 J==1 l

2

.))z— @ A,{sz + @ U*TRUPJ»Z]

ji=1 j=1

I
—=
s;"

|_
—
—_——
-3
@D
——
®s
2

m m R 2
=“UPQL[(T,¢€B ® Ai))z] + Y, UP_ UXT; — M)UPz
J

=1

Summing over k, 1 < k € n, and taking square root we obtain

D <

p. tp, (2
U, U,

=D woa. @+D G
UP‘%lltG)(.elﬂ )]Pﬂ UPQJ_U'(t—). )UPJ.
J= J

A

Izl + H 5_3! D(t—z’)vpj(l) ‘ =

D - m
P to P
o | {121 )] *
D m
Pafre 3 ) fe

< (q'(t ® ( & ﬂ))+ o el + [§; Gu(t— V) + oy ”Pj(z)uz]“z <

J=1 J=1

q1/2

¥

j=1

2] + [

D -a9)up j(z)

o

<[a(t0(8 #))+mu s -2 + 2|l

j=1

for every ze . Since UR > % > & we deduce that

. ' m s j
d -‘igg D, irg| < | PugtUa| <4 (t@ (,-(f, },1)).{_113?:'”530 — M)+ 2.
im({Z) <o

Now the conclusion follows from the fact that & is an arbitrary finite dimen-
sional subspace of 4 and ¢ > 0 is also arbitrary.



184 NORBERTO SALINAS

The following result is a generalization of [3, Theorem 1.4].

THEOREM 3.9. Let te #" and let n == (N,, ..
of normal operators. Then,

7O m < 4O <7D n) + up I(t — 7).
€o (n

., N, be a cowunuting n-tuple

Proof. We first remark that the joint essential spectrum o (n) coincides with
o,.(n) (see Lemma 2.4). By 8, Corollary 5.4] we canfind an n-tuple 0’ - : (¥}, ..., N})
of diagonal operators having a common? system of eigenvectors, each eigen-
value repeated infinitely many times, and such that n— n’c #. Then o(n’) - -
=: 0, (0') - - g (n). In particular ne QT,. Given ¢ > 0 it is easy to see that we can
ﬁnd MecCn and reducmg orthogonal mﬁmte dﬂmensxonal subspaces #7;, 1 < j < m

of /' such that Z H; = and ‘n — @ /’ﬂ,f < ¢. So, from Lemma 3.8
i l
we have

q'(t) € q’(t ® (@ /:f)) -~ max J,(t — ) <

je=1 1¢jam

' i .
SGE@W) - sup St-- ) - w ®# Le, P <
A€ a(n’ Jos

SgUt@n)-; sup S (t—-4i)-+¢.
Ae've(“)

Since ¢ > 0 is arbitrary, and the left hand side of the desired inecuality follows from
Lemma 3.7, the proof of the theorem is complete.

CorOLLARY 3.10. Let te %" be such that o, (t) # ) and let ne " be a
commuting n-tuple of normal operators. Ther

giten <qg(t)y <qgt@n)-~ sup inf |4 - pul.
A€a (o) u€a) ()

Proof. It is an immediate consequence of Theorem 3.9 and Lemma 2.6

REMARK 3.11. (a) Employing similar arguments to those given Jabove one can
show an analogous statement to Corollary 3.10 for the function g .
(b) We recall that if Te ¥ and dimker(7T) < dimker(7%), then ¢(T): :
q'(T) > 6(T) [4, Theorem 2.4]. It may be worth peinting out that the case n > 1
is radically different from the case »:-: 1. Indeed, if one considers the example
+(Ty, To) given in Remark 2.3 one has dimker(Dy) == 0, dim ker(Dy) : - oo
g'(t) == 0 but 4(t) - 1/2. However, as we shall see in Lemma 3.13, there is another
modulus of quasitriangularity, and a different left resolvent function for which the
above statement does have a generalization to the case n > 1.
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DEFINITION. For t € #” we define the following net on £2: vf(P) == |]D?§_p)tp1},,
Pe 2. We also let g#(t) = lim inf v¥(P).
PED

REMARK 3.12. It is easy to see that all the results at the beginning of the pre-
sent section up to Lemma 3.7 are valid (with similar proofs), when the function
q'(-) is replaced by g*(-).

In the following result we use the left resolvent function 6*(-) introduced
in the definition after Lemma 2.8.

LEMMA 3.13. Let te & If dimker(D{") < dimker(Dy)*, then §#(t) < g*(t).

Proof. If 6*(t) = 0, there is nothing to prove. Therefore assume a = §#(t) > 0.
Then ker(D{) = {0} and hence ker(DY)* = ker(De) # {0}. Let x, € ker(Dy),
X # 0, and let P € 2 be such that x, € Ran P. Then, using the notation of the proof
of Lemma 3.5(c) we see that ker[(Pt*P)~|ranP X 1,] # 0. Since P x 1, is finite
dimensional we conclude that ker((PtP)~|ranPx1,) # {0}. Let & be a unit
vector in this latter space, then

VE(P) = ID§_pyepll Z IIDE _pyploll = [IDEFE |l = IDEFIEo|I = a,
as desired.

THEOREM 3.14. Let te X" and assume that N o(t-+k)# @. Then,
keﬂ"

sup S¥(t — ) < g*(b).

‘e n o (t+k)
kex"

Proof. Since g*(t) = g*(t — 1), wecan assume that 0 e n o,(t + k), and we
keox"
need only prove that §#(t) < g*(t), in the case that 6#(t)>0. Then, since D¥ is left

semi-Fredholm we see that (D#)* = D has closed range. We claim that
dimker(D¢{) < dimker(D{)*. Otherwise dim ker(Dy) < 0o and hence Dy is left semi-
-Fredholm. Since dim ker(D¢) <dimker(D#) = dim ker(D)*, by Lemma 2.2 we see
that there exists k € 2™ such that (¢t +k)* is left invertible, i.e. 0 ¢ o_(t + k), contra-
dicting our assumption and our claim is established. Now, since dimker(D}) <
< dimker(D¥)*, it follows from Lemma 2.10 that there exists k e #™ such that

8&(t) = 8*(t -+ k). By the invariance of the index under compact perturbations and
Lemma 3.13, we conclude that 6*(t) == é* (t 4+ k) < g*(t 4 k) == g*(1).

The following result can be regarded as a generalization of [16, Theorem 2.2].

COROLLARY 3.15. If te QT,, then N a(t + k) = o} (t) N ore(t) (see the defini-
kex"
tion after Remark 2.3 and Lemma 3.8).
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Proof. Since one inclusion is obvious we need only show thatif0e n o(t: k),
kex"
then 0 € gt(t) N ore(t). Since g*(t) == 0, from Theorem 3.14 we see that D§ is not

essentially left invertible and hence 0 € o1(t). If Df were essentially right invertible,
then ker(D;) - = ker(D#)* would be finite dimensional and ran(Di) : = ran(D¥)*
would be infinite dimensional. By Lemma 2.2(a) we would then conclude that there
exists k € A" such that (t + k)* is left invertible, i.e. 0 € o (t + k) contradicting

the assumption that 0 n o/t + k).
kex”

REMARK 3.16. (a) In Theorem 6.11 we shall see that the converse of Corol-
lary 3.15 is not valid in general. This has a sharp contrast with the case n = 1 where
the converse of Corollary 3.15 does hold and constitutes the celebrated characte-
rization of quasitriangular operators obtained in [3, Theorem 5.4].

(b) The referee pointed out that the condition dimker(D{) < dimker(D{)*
of Lemma (3.13) is much more restrictive than the condition dim ker(T) < dimker(T*)

of Remark 3.11 (b). In fact, the former implies that Y5 dimker(Ti) <
K=

n

< dim n ker T, while the latter is satisfied whenever dimker(7}) < dim ker(7})
k=1

for some k, with 1<k <n.

In the next section we shall make use of certain results of the theory of func-
tions of several complex variables to produce an improvement of Theorem 3.9 (sce
Theorem 4.7).

4. THE PSEUDOCONVEX HULL OF A COMPACT SET IN C"

In the present section and in Section 6 we shall make repeated use of some
results of [21]. For the reader’s convenience we recall these results. In what follows
given an open set 2 in C", we denote by A(Q) the space of all analytic complex va-
lued functions on .

THEOREM 4.1. {21, Theorem 2.3.2). Hartogs’ phenomenon. Let Q be an open
setin C",n >1, and let X be a compact subset of Q such that Q\X is connected. Then
for every ue A(RN\X) one can find U € A(Q) such that u = U on Q\X. In particular
Q must be connected and U is necessarily unique.

The Hartogs’ phenomenon for functions of several complex variables is inti-
mately connected with the notion of domain of holomorphy (this is reflected in the
equivalence of (a,) and (a,) of Theorem (4.2) below). The following theorem is a
combination of [21, Theorem 2.5.5, Theorem 2.6.7, Theorem 2.6.11 and Theorem
4.2.8]. The group of statements (a,), (a,) and (a,) represent the equivalent definitions
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of domain of holomorphy, and the group of assertions (b,), (b,) and (b,) consist of
the various equivalent definitions of open pseudoconvex subsets of C”.

We recall that #: 2 — [— o0, co) is plurisubharmonic on the openset 2 = C”
if (i) & is uppersemicontinuous, (ii) the function t — h(z -+ Tw) is subharmonicin

7€ C for every z, w e C" whenever such a function is defined. The set of all pluri-
subharmonic functions on € is denoted by P (Q).

THEOREM 4.2. Let Q < C” be open. Then the following conditions are
equivalent.

(ay) There exist no open sets 2,, 2, in C" with the following properties.
) O #82 <2,nQ,
(ii) @, is connected and Q, £ Q,

(iii) For every ue A() there exists (a uniquely determined) U e A(Q,) such
that U=u on Q,.

(ap) There exists a function fe A(R2) which cannot be contained analytically
beyond Q, that is, it is not possible to find Q, and Q, satisfying (i) and (ii) in (a,) and
Sfo€ A() s0 that f = f, in Q, .

(ag) Given any compact X < Q, the Q-holomorphic hull X, o 0f X defined by
Xp={zeQ:|f(2)] < sup |f(2"), for all f< A®@)} is compact in .

(by) There exists a plurisubharmonic function h on Q such that {ze Q : h(z) < ¢}
is compact in Q for all c e R.

(by) For every compact X < Q, the Q-plurisubharmonic hull ng of Xdefined
by Xzs = {ze€ Q : h(z) < sup h(z'), for all he P(Q)} is compact in Q.
reX

(by) For every compact set X < Q the set X gs is compact in  and further, for

every open neighborhood Q' of X, gs, Q' < Q there exists a smooth (strictly) plurisub-
harmonic function on Q such that

(i) M(2) < O for all ze X, and h(z) > O for all ze A\ Q’;
(ii) for every ceR the set {z€ Q : h(z) < ¢} is compact in Q.

REMARK 4.3. (a) If {Q,: « € A} is an arbitrary family of open pseudoconvex

subsets of C”, then Int( n Q,) is also pseudoconvex [21, Corollary 2.5.7]. Further,
aC A

ifQ,NQ, = @ fora # fec A, then U Q,is open and pseudoconvex.
aE A

(b) @ = C"is open and pseudoconvex if and only if each connected compo-
nent of  is open and pseudoconvex.

() If 2« C", @ < C” are open, pseudoconvex and @ : Q — C* is holo-

morphic, then the set {z€ Q : ¢(z) € Q'} is also pseudoconvex [22, Theorem 2.5.14).
In particular, Q x Q' is an open, pseudoconvex subset of C*t#.
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A
(d) If @ is open and pseudoconvex, and X < Q is compact, then Int(X,)
1S open pscudoconvex. In particular, open convex sets in C* are pseudoconvex.

DurNiTIoN 4.4, Let X © C” be compact. We define the pseudoconvex hull

of X to be the set X - n X, where @ ranges over all open, pseudoconvex sets
Xen

containing X. We say that X is pseudoconvex if X -:: X.

REMARK 4.5. (1) Since X, is a filter of compact sets when @ ranges over all
open pseudoconvex sets containing X it follows that X is compact. Further from

Remark 4.3(¢) and Theorem 4.2(b,) we conciude that X is the intersection of all
open, pscudoconvex sets containing X. In particular, compact convex subscts of C”
are pseudoconvex. However, if Q is open, pseudoconvex and bounded in C*, {J may
not be pseudoconvex. For instance consider Q.= {(z;,z) € C*: z;' < 'z, and
max(iz,, 'z, ) <1}. Then Q is pseudoconvex, but @ # {(z,,z,) € C* : max('zy!, z.)) <
< 1} : = @”. This example is known in the theory of functions of several complex
variables by the Hartogs’ triangle.

(b) Given an open Q < C" there exists a smallest open, pseudoconvex set

containing 2 (see Remark 4.3(a)) which will be denoted by 0. Thus, X .32, Q

22y
ranges over all open neighborhoods of X, whenever X is a compact set in C”. Further,
in the above intersection we need only consider a fundamental ﬁystem of open neigh-

borhoods of X. Thus, if X; == {ze C":inf iz — =z’ < ¢}, then X n X,

'EX e>0

(c) Given an open connected Q@ = C”, it follows from [21, Theorem 5.4.5)
that there exists a Riemann domain .# ,, which is a Stein manifold and a holomorphic
extension of €. This means that .#, is a connected n-dimensional complex manifeld
with the following properties:

(1) there exists a regular holomorphic map #: 4 o —» C",

(ii) for every compact X =.#, the holomorphic hull ‘A\’J,Q is also compactin. ' ,,

(iil) @ is an open subset of .7, the map 5 of (i) is the extension of the coordi-
nate map from  to C” and the restriction map p: A(# o) » A(Q) given by
p(F) - FIQ is an isomorphism.

(d) Let € < C” be open and €;,jeJ be the connected components of Q-
We define .#, to be the complex manifold obtained by taking the disjoint union
ofb//q ,jeJ. If welet n: . # o — C" be the regular map i, //g -1;, jed. then
(A g, n) is a Riemann domain which is by definition the envelop of holomorphy of 2
Let @ - #(.# o). From the regularity of # it follows that @ is open in C”, and Q is
pseudoconvex if and only if Q@ := Q.

(¢) Let @< C"be open. Let Q, = Q and for every ordinal x we let Q,,,=:@Q,

If o is a limit ordinal we let Q, = u £, Since C” is second countable, there
f<e
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exists a countable ordinal o, such that fza = Q, for all @ > o, and it follows that

0

In what follows L*Q) will denote the Hilbert space of square integrable com-
plex functions on the open set Q < C", with respect to the Lebesgue measure.
Also, let m, denote the commuting normal n-tuple in L"[L2(2)] whose k-th element
is the operator multiplication by the k-th coordinate on L3(£).

The following lemma uses a modification of an argument given by Voiculescu
in [29].

LEMMA 4.6. Let te " and let Q<= C" be open. Then ¢'(t @ my) = ¢'(t @ mA)

Proof. Let A%(Q) = L¥Q)n A(Q) and let A2(Q) = {f:fe A%Q)}. Then,
L¥(Q) © A2%(R) is an invariant subspace of m,. Let my denote the restriction of m,

to the above invariant subspace and let my denote the compression of mg, to 42(Q).
It follows from the above mentioned paper of Voiculescu ({29, page 1450]), that

mg €QT,. Next we show that ¢,(mg) =2 Q. To this end let w € Mq. By [21, Lemma
5.4.1] there exists a compact X & Q such that |F(w)| < supIF(z)l for all F in A(4g).

Now, for ¢ sufficiently small we have (X,,)” € @ and hence

1
< prdi< o\ inEd,
1) z),, Sff( Fa< ilf

forall fe A(R), and z € X. By the Riesz representation theorem there exists g ,, € 4%(2)
such that (p~7 ; f)(co) = {f, 8oy for all f€ A%(Q). In particular, for 1 < k < n we have
<M'3kf’ go> = n(w)y (p_lj Yw) for all fe€ A% Q), where MTk denotes the operator

multiplication by the conjugate of the k-th coordinate on L3*). Thus, for every
w € Mo we have Dmg(gw) = n(w)g, and hence n(w)e€ o (mgy). This means that

Q= (A ) < o (myg), as claimed. Now we prove that
() q'(t @ my) = ¢'(t +- my).
Since the joint spectrum o(my,) and the joint essential spectrum o (my) coincides with
§ and we also have o(my ® 1) = 0, (mg ® 1) = O, there exists (see [8]) a unitary
transformation U: L¥(Q) — L2(2) ® # such that Um U™ —mg ® | € A "(LA2) ® ).

Hence, from Lemma 3.7, Corollary 3.10, and the fact that myy ® l,€ QT,
{because mg; has a total system of eigenvectors, cf. Lemma 3.6), we have

qg'(t @ my) =g'(t ® (Mme @ ly)) <
< max{g'(t ® mg @ ly),g'(my @ 1)} = ¢'(t ® (Mg ® lx) ® my) <
< max{g'(t ® my), ¢'(mg ® 1)} = ¢'(t + my).
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Here we have also used the fact that m;, ® 1, belongs to QT,, (which follows from the
result of Voiculescu mentioned at the beginning of this proof). Now using the results
of [8], as above, we observe that

g'(t ® mg) - ¢'(t--my @ mp) < max{g'(t & my), g'(mz)} -~ ¢'(t © my)

because @ < Q. Thus, assertion (=) is established. In order to prove the statement of
the lemma, let @, be as in Remark 4.5(e). From (=) we see that ¢'(t © mgaq) f

gt @ myg 2) for every ordinal . On the other hand, if fis a limit ordinal we
deduce from Lemma 3.6, Corollary 3.10 and an argument similar to one used pre-
viously, that

gte® mgﬁ) =q4'(t® mo, @® mrzz) <q9tD mg, ) <

< gt ® mg_ @mQ)~§up inf ' — A" g
/eQﬂlEQ

<q(tOmQ) -=sup inf 4 — ']
)e()ﬂ/'CQ

for every = < f. But since lim sup inf 2 — A" =:0,we haveq(t&)m%) o

e~ a3 "E«Qﬁ 2 ‘eR

=gt @ mgl) for all x < B. Now the lemma follows from the fact that Q. Q,o
for some countable ordinal «, (see Remark 4.5(¢)).

The following theorem is the main result of the present section, and is a
strengthening of Theorem 3.9 and [29, Theorem 2.3).

THECREM 4.7, Let te " and lef me L7 be a commuting nermal n-tuple such
that o/fn) < X’, where X is a given non-emipty compact subset of C°.. Then
Gt@n) <g'(t) <gt@n) - supdt - 2. In particular, if o (t) # O and

IEX
o) € [010)])", then ¢’ (t) = g'(t @ n).

Proof. Let Q bz an open neighborhood of X such thatsupinf 1--p <272,
AER ueX ’

where ¢ is a given positive number. Then there exists a commuting normal a-tupic
m e #*{L*Q)] such that ' m — m, ' < ¢ and o(m) - - 6,(m) =: X. Then by Theorem
3.9 and Lemma 4.6, we have

g'(t) < ¢'(t@ m) -- supd(t-- i) < ¢'(t @ my) -- &4 supd(t-- i) -
ieXx ieX

(@t @ mp) - supot— A) -l og
= A€EX

gt @ m @n) -+ ?élgée (t-—-A) - c<qg(t@n) + ;sggéc(t ) RN
- A 2
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Since ¢ is arbitrary and the other inequality is already known, the proof of the
theorem is complete.

COROLLARY 4.8. Let te ¥ be such that 61, (t) # O, let X be anonempty com-
pact subset of C", and n be a commuting normal n-tuple such that 6 (n) is contained
in X. Then ¢'(t ®n) < ¢'(t) < ¢g'(t ®m) +sup inf |u— 4.

1eX pea(t)
Proof. It is an immediate consequence of Theorem 4.7 and Lemma 2.6(a’).

In the next section we provide the necessary background from the theory of
extensions of C*-algebras for the application of Theorem 4.7 to the case of essen-
tially commuting n-tuples of essentially normal oprators given in Section 6 (see
Theorem 6.2).

5. QUASITRTIANGULAR EXTENSIONS

In what follows, unless otherwise specified, ./ and &' will denote unital,
separable C*-algebras. Let CP(«/, &/’) be the set of all unital completely positive
maps ¢: s/ — o/'. We recall that ¢ € CP(&/, &Z’) if and only if the naturally
induced map ¢, & ® M,—~ &' ® 4, is positive for n=1,2, ... . In [6] it
was observed that CP(«, &/") is a complete metric space with the strong operator
topology. A metric d on CP(«/, &/') can be defined as follows. Let {q,} < o be
dense, a, #0, k=1,2,..., and let ¢,y eCP(«, &'). Then d(o,¥) =
_ & e — ¥ @l

g1 2Kagll

metric on CP(«, &'). Let LCP (&, Q) be the set of all liftable maps from &/ into
the Calkin algebra Q, i.e. LCP(#, Q) = {n¢ : ¢ € CP(, .#)}. From [6, Theorem 6],
it follows that LCP(«Z, Q) is a closed subset of CP(.«, Q). Let E(«/) be the set of
all unital #*-monomorphisms t: &/ — Q. These t are called extensions of 2" by & after
[8], [9]. Tt is clear that E(s7) is a closed subset of CP(«#, Q). Thus, the set £_, (o) =
== E(s7) n LCP(«, Q) is also closed. Let % be the group of unitary elements in Q.
If = € E(s7) we denote by w*tu the conjugate of 7 by an element u € %, i.e. (u*tu)(a) —
= u*t(a)u, ac of. We define an equivalence relation on E(&/) by © ~ ' if there
exists u € % such that u*tu = ¢’. It follows from [30, Theorem 1.3] that if E(</)
denotes the set of trivial extensions in E(&) (i.e. 1, € E)() if and only if there exists
a unital *-monomorphism ¢: & — & such that 7 oo = 1), then 7 @ 1, ~ 7 for
every te E(&) and 7, € E(&). Here we have chosen a canonical identification of
Q @ Q as a C*-subalgebra of Q. Following [9] we denote by Ext(/) the set of all
equivalence classes {7] of elements 1 in E(s7), and we define the abelian operation on
Ext(s7) induced by the direct sum of elements of E(&/), i.e. [1] + [t} =[t @ 7'].
The celebrated result of Voiculescu described above implies that Ey(s#) is contained
in a single equivalence class which serves as the neutral element of the abelian semi-
group structure of Ext(s?).

. A change in the dense set {a,} produces an equivalent
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Let Ext(s7) be endowed with the quotient topology induced by that of E(s).
Our next task is to observe that this topology is induced by a pseudometric on

Ext(s7).
DEeFINITION. Given a subset £ < E(s7) we let R(Z) =: {te E(«7) : 1 ~ o for
some o ¢ £}. Given [1], [v'] € Ext(«Z), let d([1], [t']) == inf d(1,, 7}).

T, €R({z}}
r; ER((z"})

LEMMA 5.1. d is a pseudometric on Ext(<7). Further
(a) the topology on Ext(7) coincides with that induced by d on Ext{«7);

(b) if It;], [1j]e Extiel), j==1,2, then
‘}([71] -+ [ra], [e1] = [ra]) < d([ﬁ]’ [ri]) - ”T([T:]a [il),

(c) if [1] € Ext(&?) has an additive inverse, then

d([r)] 4 (1), fead + [2) - dUley), [2])

and in particular
d((), [ro)) = d(— [a], [}, for every o€ Eg( ),
Proof. We first note the following elementary properties of the metric ¢ on

E():
(1) for every ue %, 7,7’ € E(</), we have

) u¥tu — t')a b r——uru“a I )
(i, v') - }:v o — D Z a P el == d(t,ut’u®);
k1 2a,’ =1 2ktal

(ii) for every 1;, 1j € E(&), j == 1,2, we have

([(Tl ) Ta, T{ ® T:_;) = Z Il[(Tl @ T"’) (Tl @ 52)]akl <

ke=1 2 l!akn

o it — el . 2 ity — 15)a;
B VI S (Yt PN
k- 2Kjta, il fame 2% a,ll

We now prove the first assertion. It is obvious that ¢7([1:], []) ==: 0 and that
(7([1], (] - d([t'], [x]). Also, from (i) it follows that for any [;],j =: 1,2,3, we have

difry], [ra]) := inf  du(Frau,, uitus) < inf  [duFtuy, 1) - d(us oty )} = -
”l uﬂe o1 ul.u e
coinf dutty, ) - mf d(u¥Ftolta, 15) = d([1,), [t5]) - (l([rj, [z5]).

"E
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In order to prove (a) we first show that if Q < E(s/) is open, then R(Q)
is also open. It clearly suffices to prove that R(B,(7)) is open in E(s/) for every
¢ >0 and t€ E(«f) where B,(1) = {1' € E(«):d(z,7') < ¢}. But, if 7' € R(B,(7)),
then by (i) v’ € B,(u*tu) for some ue %. Again by (i) it follows that R(B,(u*tu)) =
== R(B,(7)) which contains B,(u*tu) and hence R(B,(t)) is open, as desired. Since

{Iv € Ext(sf) : d(['), [z]) < &} = {[¢') € Ext() : 7' € R(B())},

it readily follows that the topology induced by d on Ext(s) coincides with the quo-
tient topology, and (a) follows. To show (b) we use the properties (i), and (ii). In-
deed, for 1;, 7/ € E(&), j = 1,2, we have

d(fr) + [, [F]+[a) =  inf  dw(n, ® tu, 13 @ 15) <
US UK BH)

< inf d((u, @ w)* (1, @ )1y @ uz), 11 D T3) <

L% uze u

SMfW&MJ0+2yMﬁmma=MM$m+ﬂMHﬂ)

16”11

Finally, (c) is an easy consequence of (b). Indeed, since 3([1], [)=0= 3(—[1], —[z]),
we have

d([(z1), [t2]) = d([e)) + [1] — [x], [2a] + [ — [4]) <
<d([e + [5], [ra] + [5]) < d(fz), [ea)).

REMARK 5.2. (a) Since the topology of Ext(s/)is induced by a pseudometric,
the closure of a subset of Ext(/) is the set of limit points of sequences in the subset,

(b) Let Ext_,(«) be the group of invertible elements in Ext(s/). It was ob-
served in [6, § 4] that [1] € Ext_,(&/) if and only if 7 is liftable to an element of
CP(, &L),i.e.te E_ (). Since E_;(&7) is closed in E(&), and clearly R[E_,(&)] =
= E_ (&) we conclude that Ext_,(A4) is a closed subset in Ext(«/). From the con-
tinuity of the operations on Ext_ (%), proved in Lemma 5.1, it follows that Ext_,(%)
is a topological group (cf. [26, Remark, 2.8]).

From the above discussion we obtain the following result.

THEOREM 5.3. Let Exty(&) be the closure of the neutral element in Ext().
Then Exty(<f) is a closed subgroup of Ext_ ().

REMARK 5.4. Since d restricted to Ext_ 1(&) is translation invariant, we observe
that for each [t] € Ext_,(s7) the closure of {[t]} is [t] + Exto(#). Let g: Ext_ (/) —
— Ext_,(«7)/Exty(&/) be the quotient map. Then d([z}), [z2]) = 47([11], [s]) for every
[tile {'['151]'}: [ra] e {@, [z, [72] € Ext_,(#7) and hence the function p defined by

13 — 1105
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o(glty], glta]) = d([1,),[ta]) is a metric on Ext_,(&/)/Exty(s/) which is translation
invariant. Further, this metric space is complete. To see this, let {g[7,,]} be a Cauchy
sequence. By dropping to a subseqence, if necessary, we can assume that

- 1 .
Pt gltmedd) = AT, [T 1)) <"2'm » m==1,2,... . Inductively we can then choose

. ’ ’ l ’
a sequence [t} in E(&) such that d(t), 1:1) < o’ me= 1,20 .., and [t]

== [1,]. Since E(#7) is complete there exists T in E(&7) such that lim d(1/,,7) - 0.

F11=—s20

Hence lim p(g[r,], ¢g[t]) == 0, as desired. In particular if Ext_,(c7)/Exty(s7) is
countable, then it must be discrete.

DEFINITION. Let & €.%. We say that & is quasitriangular if t e QT, for every
teF" n-:12, ...

LEMMA 5.5. Let 4 < & be countable and let # be the norm closed and unstarred
subalgebra of & generated by €. Then the following are equivalent:

(a,) ¥ is quasitriangular.
4 . . 8
{a) There exists an increasing sequence {P,;,‘, contained in ¥ such that P, —» I
and lim (1 -- P,)CP," == 0, for all Ce%.

11—00

s . . .
(ay) There exists a sequence {P,} <& such that P,—1I and lim '(1- .P )CP, -
=00

=0 forall C¢ %.

(by) # is quasitriangular.

(by) There exists an increasing sequence (P} contained in P such that P, Ny
and lim (1 -- P )BP,\ =: 0, for all Be 4.

H1—=—00

. ]
b,) There exists a sequence {P,} in P such that P,, — I and lim “(1.~P }BP. "
R q U ms [ . in i

#1700

= Q for all B¢ 4.

Proof. We observe first that the following implications are obvious: (a,) >
= (a,) = (a;), (bs) = (bs) = (b,) = (a,;), so it remains to show that (a,) => both
(as) and (by). Let ¢ =: {C,, Cq, ...}. Since ¢ is quasitriangular we can construct

inductively an increasing sequence {P,} < # such that P, 5 Ias follows. Let {e,)
be an orthonormal basis for # andlet P, € ¥ be such that /(1 -- P)HC,P, ;< 12,
¢; Gran Py Having chosen Pje 2, ¢;eranP;, 1 <j < n, such that P, <... <P,
Wl —=PYCPi< 12, 1 <i<gj, 1 <j<m we use again the quasitri-
angularity of % to choose P,.,€2, Py =P, e, €RanP,,, and

max {(1 — P,41)CiP, 4]l < 1/27+1 Then, P, 57 and lim fi(1 P )CiP, i 0

1gignt] nm—sco
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for every j=12,...,and (a,) follows. Further, by [5, §2] the set {Te %:
lim (1 — P,)TP,||==0 is a norm closed subalgebra of £ and (b,) also

1= OO

follows.

CORGLLARY 5.6. Let & < &£ be such that the norm closed subalgebra & gene-
rated by & is separable. Then, & is quasitriangular if and only if & is.

DEFINITION. Let %4 be a closed (not necessarily starred) subalgebra of a unital
separable C*-algebra «/. We say that t in E(&) is quasitriangular with respect to
# Af 7Y (1(H)) is quasitriangular.

LEMMA 5.7. Let t in E(&7) be quasitriangular with respect to B. If v’ € E(A)
and ' ~ 1, then ' is also quasitriangular with respect to 9.

Proof. From Lemma 5.5 it follows that if & < & and & is quasitriangular,
then any compression of & to a subspace of finite codimension is also quasitriangular.
From this observation and the fact that t ~ 7’ if and only if there exists an isometry
or a coisometry Ve & such that (zV)*1(nV) = ', the lemma follows.

DerINITION. Given a closed subalgebra & of o/ we denote by Extq(/; 8) the
sct of equivalence classes of quasitriangular extensions with respect to £.

Rrmark 5.8. (a) We observe that if ¥ < &/, and 4 is the closed subalgebra
of o7 generated by &, then by Corollary 5.6, n ~1(7(%)) is quasitriangular if and only
if T is quasitriangular with respect to 4.

(b) If B and %’ arc closed subalgebras of & such that Z < 4, then
Extq(Z; #') = Exto(; 8).

(c) If # is a C*-subalgebra of o and t is quasitriangular with respect to %,
then 7 is actually quasidiagonal with respect to 4, i.e. there exists an increasing
{P,} < @ such that P,, > I and lim || TP, — P,T]| -= 0 for every T e n~Y(x(%)).

Thus, when # is a C*-subalgebra of &/ we shall write Extqa(s/; %) in place of
Extg(o7; 98). Notice that Extqy(#/; C) = Ext(#/) and Extg(sof; o) = Extg ()
as defined in [26].

THEOREM 5.9. If & is a closed subalgebra of s, then Extq(;B) is closed
in Ext(&).

Proof. Let {[t,]} © Extq(s/; #) and assume that lim J([r,,,], [z]) = 0 for

some [t] € Ext(s/). Since {1’ € E(&) : [t'] € Extq(&;#)} is R-invariant, we can
further assume there exists a sequence {t,,} such that lim d(t,, 1) =0, and [7,]€

N0

€ Extq(o7; #). We now recall that given te £”, we have

IDelle = sup a< i HrT)*(rT) M2 = [i HnTkH?]m_
K1

a€a (|D¢]) k=1
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For each & -: 1,2, ... let T}, Sy € ¥ be such that =T} - t(a)/ a, , =(SI") :
<T@ nagl, m==1,2, ... . Here, we have chosen the dense sequence {a,} in o/
such that {a,} is also a dense sequence in 4. For a fixed integer #, lett- (7}, ...
vy Ty, and sU = (S Sy 4 o- 12, ... . Then

. . oy 1: P (2 S
lim D, — D gy, <2 lim - (¥ e.nT,g—~ns;:’7’;.-) <
s

m—ce m—sco Qir gy

oy 1o 22t —1 (@) ., .
<2 lim Y, -"-(—————"M‘ <2#*1lim d(t, 1,,) < 0.
M—C0 ko1 2k.. ak !. =20

It follows from Lemma 3.4 that the n-tuple (7%, Ty, ..., To,) isin QT : = 1,2, ...,
and hence 7 is quasitriangular with respect to 4.

THEOREM 5.10. Let v:[0,1] — Ext_(Z) be a continuous function. Then (1) ¢
€ {y(Oj}. In particular, if # is a closed subalgebra of o, and y(0) € ExtgdoZ: ) n
N Ext_,(s7), then (1) € Extg(sZ; #).

Proof. The proof can be obtained by repeating verbatim the arguments in
Theorem 2.15 of [26].

DerFINITION. Let K (/) be the K,-group of .7 (also called the stable index
group of 7 [26]). We recall that K,(&7) is the inductive limit of the index groups of
& Q@ M, n-=12, ..., (see [15, Chapter 2] for the definition of the index group),
where the group of invertible elements of & ® .#, is considered as a subgroup of
the group of the invertible elements of &7 ® .#,., via the map

- (%)
0 1

For a closed subalgebra & of &/ we define K («7; #) to be the sub-semigroup of

K,(«7) consisting of all the equivalence classes of invertible elements of 4 & .#,,

n==12 ...

REMARK 5.11. (a) It would be interesting to know under what conditions K,(.<7)
is an ordered group with K (.«7; ) acting as a cone for its order, ie. X (&; #)n
N (- Ky(Z; #) == {0} and K (; D)+ (-- K(: B)) -= Ky(&/). Of course,
this is not always the case. For instance, if X is the suspension of the real projective
plane RP,, then it is well known that K!(X) is isomorphic to K%(RP,) :=Z,(-=Z27),
and hence if 7 is the algebra C(X) of continuous complex valued functions on X,
one cannot have any suitable order on K («7) (== K} X)). On the other hand if X
is a compact subset of C and P(X) is the closed subalgebra of C(X) consisting of the
closure of analytic polynomials, then it is an easy exercise to check that
K (C(X); P(X)) is a cone, and K,(C(X)) is ordered by this cone.
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(b) We recall that the index map from Q- onto Z defines a natural transfor-
mation x : Ext(-) —» Hom(K,(-),Z). Indeed, if a = [(a;;)] be the equivalence
class of the invertible matrix (a;j) of o @ M, then for [r]eExt(sf) we let
(#[1]) [(a; )] == ind((za;y)).

LEMMA 512, Let 8 be a closed subalgebra of . If [t] € Extq(; B), then
xlt] is non-negative on X(A ; B).

Proof. We must check that given an invertible matrix (b;;) in # ® ./, the
matrix (tb;;) in Q ® .4, has non-negative index. This is a consequence of the fact
that an »n by n matrix of jointly quasitriangular operators in % is quasitriangular,
and the fact that Fredholm quasitriangular operators have non-negative index (see
[16, Theorem 2.2]).

REMARK 5.13. (a) The converse of Lemma 5.12 is not true in general. For
instance this happens when & is too large, i.e. # = /. In fact, if & = C(RP,),
then, by aresult of Larry Brown (private communication), Extq (o ; &)=Extqq(H#)=0
while Ext(&f) == Z, [23], and therefore, since Hom(K,(s#), Z) is torsion free,
we have ker x == Ext(&f) # Extq(«, &). On the other hand, if 4 is too small (i.e
A == C), then the converse of Lemma 5.12 holds trivially (because K (7 ; C) = {0}).
Question; when does the converse of Lemma 5.12 hold?

(b) An interesting question related to the above problem is the following.
When does there exist a closed subagebra # of & such that C*(8) = &, and
ker x = Exty(o7; 8)?7 Note that the example in (a) tells us that this might not
happen in general.

{c) We recall that & is called quasidiagonal if the neutral element in Ext(%/)
is quasidiagonal, i.e. 0 € Extqa(s7). By [30], this is equivalent to asserting the existence
of a quasidiagonal trivial extension in E(&). Furthermore, since direct sums of
quasidiagonal representations of .o are quasidiagonal, the above definition is equiva-
lent to the existence of a faithful non-degenerate quasidiagonal representation
p: A - &, because for ¢ = p ® lg, mo is a trivial extension. It may be worth
mentioning that Extq(of) might be empty, in general, if o/ is non-guasidiagonal.
Indeed, this phenomenon occurs, for example, if & contains a non-unitary iso-
metry (see {26, Remark 2.1]). On the other hand, as was observed in [26, Remark
2.13], if &7 is an AF C*-algebra, then o/ is quasidiagonal and Ext(&/) = Extqq().

THEOREM 5.14. Let ¢ be quasidiagonal.

(a) If B is a closed subalgebra of o, then Exty(sf ; B) is a non-empty closed
abelian sub-semigroup of Ext(sf) containing the identity of Ext(sf).

(b) If &' is another unital separable C*-algebra, B’ is closed sub-algebra of
', and 0: o — ' is a *-homomorphism such that 6(%#) is contained in B', then
the induced homomorphism 0%: Ext(of') — Ext(of) satisfies 0%(Extel('; B')) <
< Extq(Z; #). Further, Extq(-;-) is a contravariant functor from the category
of quasidiagonal separable unital C*-algebras, with distinguished closed subalgebras
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into the category of abelian semi-groups with identity.
(c) Extqa(e7) n Ext_,{(&7) == Exty(s7).

Proof. (a) Follows from Theorem 5.9 and Remark 5.8(b). To prove (b) we
remind the reader that 6% is defined as follows. Let [t] € Ext(«Z"). Then 9%([z]) - -
=: [t o 0 @ 7,] where 1, € E, (). Since & is quasidiagonal, it follows thatt 0 @ 1,
is quasitriangular with respect to # whenever [t] € Extq(/'; #'). Finally, the proof
of (c) is obtained by repeating word by word the arguments given in [26, Theorem 2.9).

RemMARK 5.15. In [26] it was shown that Ext(-) is a homotopy invariant
functor from the category of quasidiagonal, nuclear, separable C*-algebras into
the category of abelian groups. Thus, by Theorem 5.10, it follows that Extg(-; -)
is homotopy invariant on the category of quasidiagonal, nuclear, separable C*-alge-
bras with distinguished closed subalgebras. We recall that <7 is nuclear if and
only if the identity map on 7 is a limit of finite rank maps in CP(Z, &7). By {12},
it follows that if &7 is nuclear, then CP(«7, Q) =: LCP(<Z, J) and hence by
{6, §4] Ext_,(of) =~ Ext(s#) and hence Ext(s?) is a group. For abelian C*-al-
gebras, this fact was first shown by Brown, Douglas and Fillmore in [8].

6. JOINT QUASITRIANGULARITY OF ESSENTIALLY COMMUTING #-TUPLES
OF ESSENTIALLY NORMAL OPERATORS

DEFINITION. Let te " Wesay that t = (Ty, ..., T,) is anessentially commut-
ing n-tuple of essentially normal operators (and we abbreviate this expression
by e.c. n-tuple of e.n. operators) whenever T, 7 - T7T, e A, for | i j<#n
(and hence T.T;-- T;T;e A, | <i,j < n).

In this section we turn our attention to the problem of joint quasitriangula-
rity for the class of e.c. n-tuples of e.n. operators.

Let X ¢ C" be compact and let Ext(X):= Ext(C(X)) and Exty(X)
= Exte(C(X); P(X)). As in Section 5, C(X) denotes the C*-algebra of continucus
complex valued function on X and P(X) denotes the closure in C(X) of analytic
polynomials on C”. Of course, C(X) (respectively P(X)) is the C¥-algebra (respectively
Banach algebra) generated by the coordinate functions y;: X— C given by y(Z) = Zy,
1<k < n. As observed in[8]eache.c. n-tuple of e.n. operatotst =: (T, ..., T,) on #
such that o (t) - : X gives rise to an extension t,in E(C(X)) determined (uniquely)
by (1) == 7(T,), 1 < k < n. Conversely, if 7 € E(C(X)) and t in 2" satisfies 1(y;) = :
.= 7(Ty), 1 <k <n. Then tis an e.c. n-tuple of e.n. operators on 5 such that ¢ (t): = X.

THEOREM 6.1. Let te %" be an e.c. n-tuple of e.n. operators. Then t& QT,
if and only if {1} € Extq(X).

Proof. This is an immediate consequence of Lemma 5.7 and Remark 5.8(a).
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As a consequence of the above theorem and the next result one can obtain
many examples of jointly quasitriangular e.c. n-tuple of ¢.n. operators.

THEOREM 6.2. Let X, Y < C", n > 1 be compact sets such that Y ¢ X Y
and X be connected. If iy: Ext(X) — Ext(Y) is the homomorphism induced by the
inclusion map i: X — Y, then Extq(X) = {[t] € Ext(X) : i,([t]) € Exto(Y)}. In par-
ticular if Y is contractible, then Extq(X) = Ext(X).

Proof. We first claim that ¥ < X. Since X is connected we observe that for

every ¢ > 0 the open set X, = {ze C": inf |z —z'| <g} is also connected.
z’eX

By Remark 4.5(b), X=n )A(a. Hence, to prove our claim it suffices to show that if
>0

Q' < C” is open, pseudoconvex and connected, and X < @', then ¥ < @'. Let
Q==1IntY. Since 0Q € dY € X < Q' we need only show that Q < Q'. Further
the above chain of inclusions implies that Q@ U (C* — Q) is open and hence
Z=Q — ' is compact. We next observe that Q U Q' = Q" U Z is connected,
Indeed, let @, and @, be two disjoint open sets in C" suchthat @ U Q' = Q, U ,,
Since Q' is connected, either Q; or Q, (say Q,) is contained in Z = Q@ — Q'. The
fact that Z is compact implies that 8, © Z < Q U Q' and since €, is relatively
closed in @ U € we conclude that 2, =(Q U @) n Q, = G, which is impos-
sible unless , is empty. Now, it follows from Theorems 4.1 and 4.2 that Qu Q' = Q'
and our claim is established. For [1] € Ext(X), by definition, iy ({t]) = [t o i* @ 7]
where 7, is a trivial extension for C(Y) and i*: C(Y) — C(X) is defined by com-
position with i. Let t, n € &#" be such that tis an e.c. n-tuple of e.n. operators and n is
a commuting n-tuple of normal operators such that (x,) = n(7)), () = (N,
1 € k < n. It follows thato (t) = X, o,(n) = Y= X, so by Theorem 4.7 we deduce
that ¢'(t @ n) = ¢’(t). Hence, te QT, if and only if t @ ne QT,. It follows that
iy ([t)) = [t1@n] € Extq(Y) if and only if [1] € Extq(X), as desired. The last assertion
is a consequence of the homotopy invariance of Ext(-), i.e. if Y is contractible, then
Ext(Y) = {0} and hence Extq(X) = Ext(X).

REMARK 6.3. (a) Let 2 be a non-empty open subset of C" and let p:C" —» R be

defined as follows: p(z) = — inf |w—z| + inf |w —z|. Noticethat Q@ = {ze C":
weC' - wenR

p(z)<0} and 0Q={z ¢ C": p(z)==0}. We shall say that dQ is smooth if p is a smooth
function onan open neighborhood of 4@ and grad p(z) #0for all z € Q. We point out
that if © is connected, bounded and psendoconvex, then by Theorem 4.1 it follows
that £Q isconnected. If, in addition, Q2 is smooth, then the condition grad p(z) #0for
every z € 09, in the above definition, forces 0€ to be also connected. Moreover, if
is contractible, then € is also contractible, and hence, X = 02, ¥ = @ satisfy
the hypothesis of Theorem 6.2. We recall that from [21, Theorem 2.6.12] it follows
that if Q is open in C” with a smooth boundary, then  is pseudoconvex if and only
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n n ‘.‘.

if for every zeéQ we have

wiy, = 0 for every we C” such that
joot ke 1(2 CZ
Y-

w; == 0 (Levi’s condition).
je=1 Zj

Q) '

(b) Let @ < C” be a bounded, connected, open set such that {Q is smooth
and strongly pseudoconvex (i.e. the quadratic form in the Levi’s condition is strictly
positive). Also, let T w» be the restriction to 4*(2) of the operator of multiplication
by z, on L%(Q), 1 < n. Further, let to = (7, T:,...,T:). Then, CH(1, tp)
is the C*.algebra 7’ P of Toephtz operators on as descrlbed in [27] In that paper
we showed that certain regularity properties of the Berkman kernel of € can be
used to prove that the following sequence is exact 0 — #'(L(Q)) » T, » C(¢Q) -~ 0.
Norberto Kerzman has kindly communicated to us that recent work by C. Fefferman
and others imply that the same regularity conditions of the Berkman kernel of @
also hold when @ is an open connected pseudoconvex subset of C* with real analytic
boundary. It readily follows that the following sequence is also exact.

0 HIND) ® M, > To® M, > CER) ® .4, — 0.

In particular, if @: {1, ...,n} = {1, %} and t§ = (T¢M, ..., T?™), then t}, is an
“1 “n

e.c. n-tuple of e.n. operators. Another important example of a set £ satisfying these
properties is obtained by taking @ to be any bounded open convex set with real ana-
lytic boundary. A typical case is when Q2 is the open unit ball in C"

THEOREM 6.4, Let @ = C", n > 1 be a bounded, connected, contractible open
set and assume ¢Q is smooth and strongly pseudoconvex. Then for every ¢ : {1, ..., n} =
= {1, =} we have tj e QT,,.

Proof. For each function ¢ as above we let F,: C” — C" be given by F,(z)==
s (290, L., z8™), where zF = Z,, 1 < k < n. Since ¢6Q is connected and Q' is
contractible by Remark 6.3(a) we see that F,(Q) has the same properties. By the
standard continuous functional calculus for commuting normal s-tuples and
Remark 6.3(b) we deduce that o (t9) = F (6.(tg)) = F,(02) = ¢F,(R2). Thus, the
theorem follows from Theorem 6.2 and Remark 6.3(a).

REMARK 6.5. Let 2 < C? be as in Theorem 6.4 and assume that 0eQ
By Remark 6.3(b) it follows that 0 ¢ ¢ (t,) and hence t,, is a pair of Fredholm opera-
tors in the sense of [13], i.e. the matrix

~ Tzl Tn
(to)” = (-—Tf‘ -

“a

,...“ L [ra
p g
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is Fredholm. The index of t, is then defined as ind(t,) = ind((tp)"). Using the results
of [7](see also [28]) one can show thatind((ty)) #0. Sinceind((ty)" *) = —ind((tp)"),
we see that t§ € QT, for every function ¢: {1,2} — {1,x} and there exist two func-

tions ¢,, @, of this kind such that ind(t7!) > 0 and ind(tJ?) < 0.

THEOREM 6.6. Let X < C", Y = C™ be non-empty compact setsand f: X - Y
be such that fe P(X).
(@) If f'e C(X), Ran f’' < Y and [’ is homotopic to f, then

S | Extq(X) = [ | Extqi(X) and f(Extq(X)) = Exte(Y).

(b) Let g: Y —» X be such that g € P(Y) and assume that g o f is homotopic to
idy and fog is homotopic to id, (i.e. X and Y are polynomially homotopic), then
St Extq(X) = Extq(Y), g4t Extq(Y) — Extq(X) are isomorphisms and g, = (fy) ™%

Proof. Part (a) is an easy consequence of Theorem 5.14(b) and Theorem 5.10,
Part (b) follows from (a).

COROLLARY 6.7. Let X = C" be compact, let Kp(X) = K (C(X); P(X)) (see the
definition after Theorem 5.10), and let %y : Ext(X) — Kp(X) be as in Remark 5.11(b).

(a) If [t1) € Extq(X) then xy[7] is non-negative on Kp(X).
(b) If X is polynomially homotopic to a subset of the plane then the converse
of (a) holds.

Proof. In view of Lemma 5.12 and Theorem 6.6, it suffices to show that the
part (b) of the corollary holds for X = C. But we know from [8, §11] that for an
essentially normal operator 7 the fact that T is quasitriangular is equivalent to the
condition ind(7" — 2) > 0 for every 1 ¢ ¢ (7). This observation proves the corollary.

REMARK 6.8. (a) Is the converse of Corollary 6.7(a) valid in general? In par-
ticular is kerx, always contained in Ext,(X)? In connection with the last assertion
of Theorem 6.2, we point out that if X, ¥ = C", n > 1, are compact, Y is contrac~
tibleand 0Y < X< Y, then Kp(X) = {0}. To see this, assume that(p;;) € P(X) @ #,,
is invertible in C(X) ® ., and let P = det(p;)). Then p is invertible in C(X).
We claim that P is actuallyinvertible in C(Y). Indeed, let Q be a connected component.
of Int(Y). Since 62 = Y < X, it suffices to show that p(z)s£0 for all ze Q. Let
Z = {z € Q: p(z) == 0}. We know that Z is a compact subset of . By the Riemann
extension theorem (cf. [18, page 20]), 2\ Z is connected and hence by Theorem 4.1
Z == @, and our claim is established. 1t follows that (p;;) is invertible in C(Y) ® .#,,
and since Y is contractible (p,;) is homotopic to 1 in the invertible group of’
C(Y) ® A, Thus, (p;) is a product of exponentials of elements in C(X)®.%,,
and therefore each of these factors has a logarithm in C(X) ® .#,, and hence (p;;) is
homotopic to 1 in the group of invertible elements of C(X) ® % ,,.
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(b) We learned from a private communication that R. G. Douglas conjec-
tured that if a compact subset X of C? is homeomorphic to a subset of R? (case in
which xy is injective), then [t] € Extq(X) if and only if ind(zf) > 0 for every fc P(X)
which is invertible in C(X). An affirmative answer to this conjecture would imply
that for such sets X the converse of Corollary 6.7(a) is valid. Gail Kaplan, in her
thesis [24], studied this problem for certain subsets X of R3 that do not necessarily
satisfy the hypothesis of Corollary 6.7 (b). She considered Ext,,(X) when X 1 $* x {0,1].
This would solve the problem of joint quasitriangularity for a pair of essentially
commuting operators, one of which is essentially unitary and the other is selfadjoint.
Another important case to consider is when X = S!X S This situation arises
when considering the problem of joint quasitriangularity of an essentially com-
muting pair of essentially unitary operators.

The following result might be familiar to the experts in the field but we include
it here in order to show what kind of arguments are needed to characterize Ext,(X).

THEOREM 6.9. Let t =: (Ty, Ts) be an essentially commuting pair of essentially
unitary operators such that o (t) == S* X SL. Then, te QT, if and only if ind(T}) = 0
and ind(T,) = 0.

Proof. Let E=(S*x {1}) u ({1}) X SH) and let IT=:S* X S1—({ie §': /- 1'<1} X
X (A€ 8114 +- 1, < 1}). Then there exists a strong homotopic retract r : IT — ¥ so
that if /: £ — ITis the inclusion map, then roi = id; and ior is homotopic to
id ;. Let 4 be the boundary of IT and let j: 4 — II, k: IT — S*X S be the inclusion

maps. Then the sequence 4 A i S1x ST induces (cf. [9, §2]) the exact se-

quence Ext(A)'—'> Ext(Il) i Ext(S*x St) L)»Ext(SA), where S4 is the suspen-
sion of 4 and ¢ is the boundary map. Note that 4 ~ S* and hence 45 ~ §2
We also observe that j, == 0. Indeed, to see this it is enough to show that
rejo  (Fof)s - -0 because ry is an isomorphism. But (rej), -: 0 because if =
traces 4, (r »j)(z) traces X 2-times both in opposite directions. Thus, from the
exactness of the above sequence we conclude that the following sequence is

exact: 0 — F.xt(H),ii Ext(Stx S') — 0. Since i.: Ext(2) — Ext(II) is an isomor-
phism we then conclude that (ko i).: Ext(Z) — Ext(S*x S) is an isomorphism.
This proves, in particular, the well known fact (cf. [23]) that Ext(S$!xSY) is
isomorphic to Z @ Z (because X is a wedge of two circles). Let y,: S1X S* — C be
the coordinate functions for k :=: 1,2 as above and let M, be multiplication by y,
on L3(S'x SY). Note that M;== 8® 1 and M, = 1 ® B, where B is the multipli-
cation operator by the coordinate function on L2(S?) (i.e. Bis the bilateral shift). It
follows that a system of generators [7,],[t.] for Ext(S1x SY)is given by 7,(}y)

Uy @My, 1(3e) == I @ M,, t(y) =1 @& M, and 1,(xs) =: U, © M,. Now,
let t - (7}, Ty) be an essentially commuting pair of essentially unitary operators
such that g (t) ~: S*X S* and let m; - = ind(7}), j =+ 1,2. Also, let 7, be the extension
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defined as follows:
T (1) = UTl @ M, t(x)= Ul:"’ @ M,,

where we have denoted U” the operator U, @ ... @ U, (—mn)-times if n < 0 and
Ul @ ... ® U ntimes if n > 0 and U° = I If 7, is the extension determined by
t, then it follows from the above discussion that t; ~ t;. Hence, t € QT if and only
if 1p € Ext, (S*x S1). It is easy to check now that this last condition holds if and
only if my=~indT; > 0, j=1,2.

REMARK 6.10. (a) From the fact that S* ® S'is pseudoconvex (see Remark
4.3(c)) it follows that if X & S' X S'is compact, then X = §' x S.

(b) If t is an e.c. n-tuple of e.n. operators, then o.(t) = g,(t) = g ,(t) <
s I ow(To) S oi(d).
ke=1
The following result should be compared with Corollary 3.15.

THEOREM 6.11. If t = (T, T3) is an essentially commuting pair of essentially

normal operators, then o (t) = (M} a({t+4 k)= M at+Xk).

kex? kex?

Proof. Since o (t) € M o(t+Kk) and o.(t) € M o(t+k), from
kex® ke
Remark 6.10(b), we see that one inclusion is obvious. To prove the other inclusion

assume that 0 ¢ o(t). Let D{= D(_r, 7). We observe that the hypothesis that tis

an essentially commuting pair implies that D#eD; € A4 ".Also, since |D;| = |D,| and
0 ¢ 0,.(t) we see that Dy is essentially left invertible. Let Q € L(# @ ) be the pro-
jection onto the kernel of DF. Since 0 ¢ o..(t) we see that RanD} is closed, and
hence, reasoning as in [13, Proposition 6.1] there exists t' € %% such that
DyoDf == 1 — Q. 1t follows that (1 — Q)D{ = D o D¥ o D} is compact. Let s€ £?
be such that D, = QD;. Then D; — D, = (1 — Q}D; iscompact and hence (D] being
essentially left invertible) we see that D, has closed range and dimker D < oco. It
follows that Ran Dy is infinite dimensional and since by construction Ran D, S ker D¥,
we also deduce that the latter subspace is infinite dimensional. Now, we use again
the fact that 0 ¢ o (t), so that RanD§ is closed and dimker(D#)* =
== dimker D < oo, to deduce that D,. is essentially left invertible and

(Ran D))" = ker D¥ is infinite dimensional. By Lemma 2.2(a) there exists ke 2
such that 0 ¢ o,(t* k) so that 0 ¢ (™} o(t-+~k). Now, using the fact that
kex®

0 ¢ 0.(t*), and the above proof, we also conclude that 0¢ (M) ot +k), as

) ke
required.
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REMARK 6.12. The above theorem implies that certain natural generaliza-
tions to the case of essentially commuting pairs of essentially normal operators of
[2, Theorem 5.4] are not possible. Finally, we would like to point out another interest-
ing phenomenon that occurs when considering essentially commuting pairs of essen-
tially normal operators. Let X be a compact subset of C2. Then, a result of [22] states
that there exist natural homomorphisms y, : EXt(X) —»S}tII(X), and o, Ext(X) —
—>Sf13(X ), where SHL(X ) and SHy(X) are the first and third reduced Steenrod homology
groups of X, so that y, @ y,: Ext(X) —+SI-II(X)@91~{3(X) is an isomerphism. We
claim that Ext,(X) > kery,. Indeed, we recall that the isomorphism 3, @& ¢, is
functorial in the following sense: if ¥ < C? is another compact set and /> X — ¥
is a continuous function, then the corresponding induced homomorphisms £, in
Ext and Steenrod homology levels commute with the maps 7, and 74. For the proof

of our claim we reason as in Theorem 6.2. Let i: X — X be the inclusion map.
It follows from Theorem 4.1 that the complement of every bounded pseudoconvex
open set in C” has no bounded components, s¢ that an immediate consequence of

Definition 4.4 yields that the complement of X has no bounded components. Since,

for every Y < C?, Sl-~I:,(Y) is isomorphic to the free abelian group consisting of the
locally constant integer valued functions on the bounded components of Y¢, we

deduce that sﬁa()? }==0. Let [t]eExt(X), and assume that y,([1]) - 0. Then,
fgopy([1]) = 0 == yy0i([7]), and since 7pgoig([7)) - 0, we see that i ([t}) ~: 0. This
means that i ([t]) e Extql()A(), and by Theorem 4.7 it follows that [t] € Extg(X). We
conclude that the obstruction that an essentially commuting pair t = (7, T;) of
essentially normal operators to be jointly quasitriangular lies solely on the nonvanish-
ing of y, at [t,}, where [,] is as in Theorem 6.1.

REFERENCES

1. AxDERSON, J., A C*-algebra A4 for which Ext(4) is not a group, Ania. of Math., 107(1978),
455 - 458.
. Arostor, C.; Foras, C.; Vorcirescu, D., Some results on non-quasitriangular opcrators.
1V, Rev. Roumaine Math. Pures Appl., 18(1973), 487 - 514.
3. Arostor, C.; Foias, C.; VoicuLescu, D., Some results on non-quasitriangular operators. VI,
Rev. Roumaine Math. Puves Appl., 18(1973)., 1473--1494.
4. Arostor, C.; Folas, C.; Zsipo, L., Some results on non-quasitriangular operators, Indiana
Univ, Math. J., 22(1973), 1151 1161,
5. ArvrsoN, W., Interpolation problems in nest algebras, J. Functional Analysis, 20(1975),
208 -233.
6. Arveson, W, Notes on extensions of C%-algebras, Duke Math. J., 44(1977), 329 355.
7. Bouret DE MoxverL, L., On the index of Toeplitz operators of several complex variabies,
preprint.

9



QUASITRIANGULAR EXTENSIONS 205

8.

10.

11.

13.
14,
15.
16.
17.

18.

24.
25.
26.
27,
28.
29.

30.

Brown, L.; DougLas, R.; FiLLMORE, P., Unitary equivalence modulo the compact operators
and extensions of C*-algebras, Proceedings of a conference on Operator Theory,
Lecture Note in Mathematics, Springer-Verlag, 345(1973), 58 —128.

. BrowN, L.; DoucLas, R.; FiLLmoORE, P., Extensions of C*-algebras and K-homology, Ann.

of Math., 105(1977), 265—324.

Buncg, J., The joint spectrum of commuting nonnormal operators, Proc Amer. Math. Soc.,
29(1971), 499—505.

BUNCE, J.; SaLINAs, N, Completely positive maps on C¥-algebras and the left matricial spectra
of an operator, Duke Math. J ., 43(1976), 7471—774.

. Crior, M.; Errros, E., The completely positive lifting problem, Ann. of Math., 104(1976),

585--609.
CurTo, R., Fredholm and invertible n-tuples of operators. The deformation problem, preprint.
DIXMIER, J., C*-algebras, North-Holland, New York, 1977.
DoucLas, R., Banach algebra techniques in operator theory, Academic Press, New York, 1972.
DoucLas, R.; Pearcy, C., A note on quasitriangular operators, Duke Math. J., 37(1970),
177—188.
FiLLMORE, P.; STAMPFLL, J.; WiLLiaMs, J., On the essential spectrum, the essential numerical
range and a problem of Halmos, Acta Sci. Math. (Szeged), 33(1972), 179—192.
GUNNING, R.; Rosst, H., Analytic functions of several complex variables, Prentice-Hall,
Englewood Cliff, N. J., 1965.

. HaLmos, P., Quasitriangular operators, Acta Sci. Math. (Szeged), 29(1968), 283 —293.
. HaLmos, P., A Hilbert space problem book, Van Nostrand, New York, 1967.
. HORMANDER, L., An introduction to complex analysis in several variables, Van Nostrand,

New York, 1966.

. KAMINKER, J.; ScHOCHET, C., Topological obstructions to perturbations of pairs of operators,

K-theory and operator algebras, Proceedings of a conference at Athens, Georgia, 1975,
Lecture Notes in Mathematics, Springer-Verlag. 575, 70—77.

. Kaminker, J.; ScHocHET C., K-theory and Steenrod homology: Applications to the Brown-

Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc., 227(1977),
63—107.

Karian, G., Joint quasitriangularity of 2-tuples of essentially normal, essentially commuting
operators on infinite dimensional Hilbert spaces, Dissertation, Stony Brook, 1979.

SaLiNas, N., Reducing cssential values, Duke Math. J., 40(1973), 561 —580.

SaLiNas, N., Homotopy invariance of Ext(&f), Duke Math. J., 44(1977), 777-794.

SaLinas, N., Hypoconvexity and essentially n-normal operators, Trans. Amer. Math. Soc.,
256(1979), 325—351.

VENUGOPALKRISHNA, V., Fredholm operators associated with strongly pseudo-convex domains,
J. Functional Analysis, 9(1972), 349—373.

Voicurescu, D., Some extensions of quasitriangularity. II, Rev. Roumaine Math. Pures Appl.,
18(1973 ), 14391459,

VoicuLescu, D., A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math.
Pures Appl., 21(1976), 97—113.

NORBERTO SALINAS
Department of Mathematics,
The University of Kansas,

Lawrence, KS 66045,

US.A.

Received May 17, 1982; revised August 17, 1982.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


