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ANALYTIC OPERATOR FUNCTIONS WITH COMPACT
SPECTRUM. III. HILBERT SPACE CASE:
INVERSE PROBLEM AND APPLICATIONS

M. A. KAASHOEK, C.V. M. van der MEE, L. RODMAN

0. INTRODUCTION

In the earlier papers [29, 30] spectral linearizations and spectral pairs have
been introduced to deal with classification and factorization problems for analytic
operator functions with a compact spectrum. To explain the main results of the
present paper we first recall the basic definitions of [29, 30].

Let 2 be an open set in C, and let W: Q —» £(H) be an analytic operator
function whose values are bounded linear operators on the (complex) Hilbert space
H. A (bounded linear) operator A: G — G acting on a Hilbert space G is called a
spectral linearization of W on Q if the spectrum o(A) of A is contained in 2 and the
operator functions W(1) @ I; and (1 — A) @ I; are analytically equivalent (cf. [10,
11]) on €, which means that the following identities hold:

i—d4 0 (W@ 0
(0.1) E(A)[ . I]F(/l)—[ A ] leQ,

H IG

where E(A): GO H->H®G and F(A): H® G- G @ H are some invertible
operators depending analytically on A € Q. Here the symbol I, stands for the iden-
tity operator on the space Z. If a spectral linearization exists, then the set

(0.2) I(W)={A€Q ] W(4) is not invertible}

is compact in 2 (in fact, as (0.1) shows, X(W) = ¢(A)). The set Z(W) we call the
spectrum of W. Conversely, if (W) is compact in € (in other words, if W(J1) is inver-
tible for A near the boundary of ), then a spectral linearization of W exists and is
unique up to similarity (see [29], where this is proved in a Banach space setting).
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So the class of operator functions considered here (as well as in [29, 30]) consists of
analytic operator functions with a compact spectrum.

A pair of Hilbert space operators (C, A) is called a (right) spectral pair of W
on Qif A: G — G is a spectral linearization of W on @ and (assuming (0.1) holds)
the operator C: G —» H is given by

C —=- ,1.. .Snp(;,)-l (2 — A)~1dA.
2ni
r

Here n: H@® G — H is the canonical projection onto H, the map 7: ¢ — G & H
is the canonical embedding of G and I is a suitable curve in Q around the spectrum
Z(W). In the next section we shall give another description of spectral pairs, which will
clarify the connections with earlier definitions of spectral pairs for matrix and ope-
rator polynomials and analytic matrix functions (cf. [22, 37, 17, 35]). Spcctral pairs
can be used to describe factorizations of analytic operator functions in terms of
restrictions to invariant subspaces (see [30] and the next section for more details).

In the present paper we prove that a pair C: G — H, A: H -» H of Hilbert
space operators can appear as a right spectral pair of an analytic operator function
with a compact spectrum if and only if for some positive integer m the operator

C

(0.3) ?A : G- H"

CAm—l

is left invertible. Furthermore, if this condition is fulfilled and |4 — zyi < § is an
open disc disjoint with o(A), then the operator function

(0.4) W) = I+ CF-1[62 — (1 - z0) (4% — Z,)]-'C*,

where

(0.5) = ¥ (AP — 3) " ICHC(A — 2) "
n-=0 :

is a solution of the corresponding inverse problem. This means that the operator
function W given by (0.4) is analytic on Q :=: {1€ C\ A —zo. > 8} and (C, 4) is
a right spectral pair for W on Q. This is the first main result of the present paper.

On the basis of the solution of the inverse problem for spectral pairs we show
that given an arbitrary invariant subspace of a spectral linearization there exists
an analytic divisor with a compact spectrum of the corresponding analytic opcrator
function, and an explicit formula for the divisor can be given. This fact allows us



ANALYTIC OPERATOR FUNCTIONS : 221

to construct explicitly spectral factorizations when the spectrum of the operator
function decomposes into two disjoint compact parts. The existence of such factori-
zations has been proved earlier in [21] by using certain theorems on the triviality of
analytic cocycles (see also [30], Section 5).

Further, in this way we are able to prove by construction the existence of a
greatest common divisor for a finite family of analytic operator functions with com-
pact spectra and to show the existence of a least common multiple for a finite family
of analytic operator functions whose spectra are mutually disjoint compact sets.

There is a close connection between the inverse problem for spectral pairs and
the spectrum displacement problem. The latter problem may be stated as follows.
Given bounded linear Hilbert (or Banach) space operators 4: G — G and C: G — H,
construct, if possible, a bounded linear operator B: H — G such that the spectrum
of A—BC lies in a prescribed open set Q. This problem is of interest in Mathema-
tical Systems Theory (especially the case when @ is the open left half-plane) and in
the finite dimensional case it is related to the well-known pole shifting theorem
(see, e.g., [38]). _

It turns out that the solution of the inverse problem for spectral pairs allows
us to solve the spectrum displacement problem for Hilbert space operators in the
following way. Let 4 : G — G and C: G —» H be bounded linear operators acting
between Hilbert spaces. Then there exists a bounded linear operator B: H — G such
that the spectra g(4) and o(4— BC) are disjoint if and only if for some integer m the
operator (0.3) is left invertible, and in that case the operator B = F~1(4* — Z,) ~1C*:
: H— G, where F is as in (0.5), has the property that

6(A—BC) = {4 | 1A — zo| < 8}

Recently, for separable Hilbert spaces a stronger version of the spectrum displa-
cement theorem has been proved by Eckstein in [9], but the method used in [9]
does not yield formulas for B.

Conversely, solutions of the spectrum displacement theorem can be used to
provide solutions of the inverse problem for spectral pairs. For example, in this
paper we use Eckstein’s spectrum displacement theorem [9] to solve the inverse
problem for spectral pairs of operator polynomials whose coefficients act on a sepa-
rable Hilbert space.

This paper consists of 8 sections. In the first section we recall some definitions
and results developed in [29, 30]. In Section 2 we solve the inverse problem for spec-
tral pairs, and in Section 3 its solution is applied to establish the correspondence
between factorizations and invariant subspaces of a spectral linearization. The
spectrum displacement problem is dealt with in Section 4. In Sections 5 and 6 we
study greatest common divisors and least common multiples, respectively. For ope-
rator polynomials (acting on separable Hilbert spaces) the inverse problem is solved
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in Section 7, and subsequently its solution is employed to solve the extension pro-
blem for monic operator polynomials (see [24] for the finite dimensional formulation
and solution of this problem). In Section 8 we establish a connection between the
theory of Sz.-Nagy—Foias characteristic operator functions (cf. [33]) and the ap-
proach developed in [29, 30] and the present paper. It turns out that, roughly speak-
ing, a Hilbert space contraction is a spectral linearization of the corresponding
Sz.-Nagy —Foiag characteristic operator function. Finally, in an appendix for the
infinite dimensional case we connect the left invertibility of the column (0.3) to
Hautus’ test for exact observability (see [27]).

Almost all results of this paper are stated and proved in a Hilbert space
framework. We have no solution of the general inverse problem for spectral pairs
in a general Banach space setting.

1. PRELIMINARIES

The notion of a spectral linearization is linked with the following notion of a
spectral node. Let € be an open set in C, and let W: @ — Z(H) be an analytic ope-
rator function with a compact spectrum X(W). Here £ (H) denotes the Banach
algebra of all operators on the Hilbert space H. Throughout this paper all spaces
are assumed to be complex and all operators are assumed to be bounded and linear.
A quintet 8 = (4, B, C; G, H) is called a spectral node for W on Q if G is a Hil-
bert space,

A:G-G, B.H-G, C:G-»H

are operators and the following conditions are satisfied:
(P) o(4) = Q;
(P;) W(A)~t — C(MI — A)~1B has an analytic extension on £;
(Py) W(X)C(AI — A)~! has an analytic extension on 2;

(P.) ( KerC4’ = (0).
o0

The operator A is called the main operator of the spectral node 8. The main operator
A is a spectral linearization of W on Q (see [29], Corollary 4.2) and, conversely,
if A is a spectral linearization of W on @, then 4 is the main operator of some spectral
node for W on Q (see [29], Theorem 5.1). The connection between linearization
(cf. [4, 32, 11]) and spectral nodes is explained in [29}.

A spectral node for W on Q exists and an explicit construction is given below.
First we introduce some further terminology. By a bounded Cauchy domain A
we mean a bounded open set in C whose boundary 84 consists of a finite number
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of disjoint, closed, rectifiable and positively oriented Jordan curves. If @ < C is
an open set and o is a compact set in £, then there always exists a bounded Cauchy
domain 4 such that 6 « 4 =« 4 = 2 (see [34], Section 148). For a bounded
Cauchy domain 4 we denote by L,(d4, H) the Hilbert space of all strongly mea-
surable H-valued Ly,-functions on the boundary 84 of 4 (see [28]).

THEOREM 1.1. Let W: Q — L(H) be an analytic operator function with com-
pact spectrum L(W), where Q < C is an open set containing zero. Suppose that A is a
bounded Cauchy domain containing 0 such that SW)c A <« A < Q, and let M
be the set of all functions f e Ly,(0A, H) which admit an analytic continuation to an
H-valued function on C,, "\ Z(W) vanishing at infinity, while W(2)f(A) has an analytic
continuation to Q. The set M endowed with the Ly,-norm is a Hilbert space. Put

ViM S M, (Vi) =z/() — <2ni)-lg Fow)dw,

04

(1.1)

K:H - M, (Ry)(z)=(2ri)~1 S(W(w))‘1 (z — w)~Yydw;

r

(here I' is the boundary of a bounded Cauchy domain 4’ such that (W) c 4’ <
cd cd);

(1.2) QM- H, Qf= (27ri)'18f(w)dw.

o4

Then (V, R, Q; M, H) is a spectral node for W on Q.

This result is a Hilbert space version of Theorem 3.1 in [29]. It follows from
Theorem 1.1 that if H is a separable Hilbert space, then the Hilbert space on which
the main operator V acts is separable too.

Any other spectral node for W on Q is similar to the spectral node (V, R, Q;
M, H) defined in Theorem 1.1 {cf. {29], Theorem 1.2). Here similarity means the
following. Two spectral nodes 8, = (A4;, B;, C;; G;, H), i = 1,2, are similar if there
exists an invertible operator S: G, — G, such that A, = S-'4,S, B, = S~1B,
and C, = C,S.

A pair (C, 4) (resp. (4, B)) of operators C: G —» H and A4: G > G (resp.
A:G > G and B: H — G) is called a right (resp. left) spectral pair for W on Q if
there exists an operator B: H — G (resp. C: G — H) such that 8 = (4, B, C; G, H)
is a spectral node for W on . The definition of a right spectral pair given here coin-
cides with the one employed in Introduction. Since spectral nodes for a given func-
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tion are unique up to similarity, the same is true for right and left spectral pairs.
Spectral pairs can be defined intrinsically in terms of the operator function W itself,
without reference to a spectral node (see [30], Section 3).

The notion of a spectral pair allows us to describe divisibility of analytic
operator functions in terms of restrictions of spectral pairs. Let us give the neces-
sary definitions. For i = 1,2 let (C;, 4,) be a pair of Hilbert space operators C;: G; —
— H and A;: G; = G;. The pair (C;, A4,) is called a right restriction of (C,, 4,) if
there exists a left invertible operator S: G, — G, such that

CIS == Cg, AIS == SAQ.

An analytic operator function W,: Q — #(H) with compact spectrum is called a
right divisor on £ of the analytic operator function W:Q — ¥(H) with compact
spectrum if W(Z) — Q(A)W,(4), #€ 2, for some analytic function Q: Q - Z(H).
Note that Q necessarily has a compact spectrum. The following result appeared
in [30] as Theorem 2.1.

THEOREM 1.2. For i:=12 let W;: Q — L(H) be an analytic operator function
with compact spectrum, where @ <= C is an open set and H is a Hilbert space. For
i:-:1,2 let (C;, A;) be a right spectral pair of W, on Q. Then the pair (Cy, Ay) is a
right restriction of (C,, A,) if and only if Wy is a right divisor of W, {on ).

A dual result holds for left divisibility of analytic operator functions with
compact spectrum. Here left restrictions of left spectral pairs will be involved.

The notion of a spectral node was introduced in [29] and studied in [29, 30].
For monic matrix and operator polynomials W and @ = C the analogous notion
of a spectral triple has been studied in {17, 18, 19] (see also [20]). For monic ope-
rator polynomials and @ the interior domain of a simple contour in C, the notion
of a spectral pair was introduced and employed in [22, 37].

Throughout the paper the following notation is used: C, stands for the.
Riemann sphere C y {oo}, the boundary of a set 4 = C is denoted by ¢4. Hilbert
(resp. Banach) spaces are described by the letters G, H (resp. X, Y), possibly with
subscripts. The finite block operator column (0.3) will often be denoted by X,,(C, 4).

2. INVERSE THEOREMS

In this section we give a full description of all pairs (C, A) of Hilbert space
operators that can appear as a right spectral pair for some analytic operator func-
tion with compact spectrum. Further, we solve the corresponding inverse problem,
that is, given such (C, 4) we construct an analytic operator function for which
(C, A) is a right spectral pair. Throughout this section 2 is an open set in C such
that O # C, i.e., the complement of Q in C has a non-empty interior.
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THEOREM 2.1. Let Q be an open set in C with Q # C. A pair (C, A) of Hilbert
space operators A: G - G and C: G — H is a right spectral pair for some analytic
operator function W: Q — L(H) with compact spectrum if and only if the following
conditions hold:

@ o) <cQ;
(i) the operator

C
21 K. (C, A) = CjA :G—-»> H™

Cam-1
is left invertible for some positive integer m. Furthermore, if (1) and (ii) hold true and
2n{lecC l | A — zo] < &} is empty, then the operator function

(2.2) W) = I+ CF-16% — (A — z)(4* — Z5)]-1C*,

where

23) F=3, 6(A* — Z0)"-1C*C(A — 2)~" 1,
n=0

is analytic on Q and has compact spectrum, and (C, A) is a right spectral pair for
W on Q. ‘

Proof. First assume that (C, A) is a right spectral pair for some analytic ope-
rator function W: Q — £(H) with compact spectrum. Then, by definition, Condi-
tion (i) holds true. The left invertibility of the finite column (2.1) has already been
proved in [30], Section 6, for any analytic operator function with compact spectrum,
defined on any open set in C and with values acting on arbitrary Banach spaces.
But the proof given in [30] is not straightforward and is based on factorization
results that are proved using theorems on the triviality of certain cocycles (see [21]).
For the case considered here a direct proof can be given, which goes as follows.

Choose r > 0 such that ¢(4) < {1 € C | Il < r}. We first show that the

operator

C
C (r-14)

(24) Ky = C(r—lA)z 16— KZ(H)
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is left invertible. Since the spectral radius of A4 is strictly less than r, the operator

K is a well-defined bounded linear operator. Further, Ker K, == {0} in view of the

condition that () Ker C4’ = {0}, which is satisfied by each right spectral pair.
i=0

Since ¢,(H) is a Hilbert space, we have to show that there exists 7 > 0 such that
IKoxil = 7ixi} for all xe G. Suppose not. Then there exists a sequence x, € G,

Mxfi=1,n 1,2, ..., such that K x, — 0 if # = 0. In particular,
2.5) lim CA/x,=~:0 (j==0,1,2,...).
n—oco

Let {H) = {u(H)[eo(H) and {G) =:{(G)/co(G) (cf. the paragraph preceding
Theorem 2.7 in [29]), and put

) =L, Xz, ...)> €<G).

Denote by (A>: (G> = {G) and {C):{G) - {H) the operators induced by A
and C, respectively. From (2.5) we conclude that

(2.6) e lﬂo Ker{C) <4}’

According to Theorem 2.7 in {29] the pair ({C), {AD) is a right spectral pair for
some analytic Z({H))-valued function with compact spectrum. So the right hand
side of (2.6) consists of the zero element only. So {y) - : 0, which contradicts the
fact that {jx,} = 1 for n > 0. Hence, the operator K, is left invertible.

Since a(A4) < {4 I |4 < r}, the spectral radius of r~'4 is less than 1. But
then we can use the left invertibility of K, and the fact that the set of ail left inver-
tible operators is open to show that for s sufficiently large the operator K, (C. r~1A4)
is left invertible. This proves Condition (ii).

Now conversely, assume that for the pair (C, A) Conditions (i) and (ii) hold
true. First, let us prove that the operator F defined by (2.3) is invertible. Since
Qnf{icC l A--zyh < 0} === O and 6(4) < Q, the operator A -- z, is invertible
and the spectral radius of (4 — z) ~! is less than § 1. It follows that the series at
the right hand side of (2.3) converges in the operator norm, and hence F is well-de-
fined. Observe that

(Fx,xy =+ ¥, 8CA = 2) "],

r=0
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Since the finite column K,(C, 4) is left invertible for some m, the same is true for
K, (C, (4 — zy)~Y). To see this, observe that

I 0o ...... o] [c ]
1 1
(O)ZOI (1 )1 0 | |cu—z)
(’" - 1) 1T (’" - 1) PR S I '
{ 0 1 1 Lo — zym1 )
2.7
[ C
CA
| CAm—l

So there exists y > 0 such that

m--1
Y ICA — zo)="x|* > ylIx|*, xeG.

n=0

But then F must be strictly positive, and hence F is invertible. Note that F is the
(unique) solution of the equation

(2.8) 8°F — (A* — Zg)F(A — z5) = —C*C.

To analyse the function W defined by (2.2) we introduce the following auxi-
liary operator

2.9) - B=FYA* — z))"C*: H- G.
From (2.8) it is clear that
A — BC = zy + 82F-Y(A4* — Zp)~'F,

and so

A— (4 — BC)= F~'[A — zy — 6%(A* — Z,)"|F.
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Since the spectral radius of (4% — zy)~! is less than 6%, the operator A -z, - -
— 0% A* — Zp) 7' is invertible whenever {4 -- z4i > . It follows that

(2.10) o(A — BC) c {i€ C | 1) — zf < d}.
In particular, for A € Q the operator A — (4 - BC) is invertible and
I —C[i—(A— BC)] B I— CF YL — zyg — 6%(A* — E) Y FB: :
= [ 4 CF1[8% — (A — zg) (4™ — Zp)]2C*.
It follows that the operator function W defined by (2.2) can be rewritten as
(2.11) W) =1— C[i— (4 -—-BC)]71B, 1€

From this representation it is clear that W is analytic on Q. Further, for 4 € @\a(4)
the operator W(/) is invertible and its inverse is given by (cf. [3], Section 1.1)

(2.12) W(A)~1 «= I -+ C(4 -- A)~1B.

Next we prove that (4, B, C; G, H) is a spectral node for W on Q. By Con-
dition (i), Property (P;) for a spectral node is fulfilled. From (2.12) it is clear that
W(%)~1 -- C(4 — A)~'B has an analytic continuation on £, and so (P,) holds true.
To prove (P,) we use (2.11). So for 2 € @\g(4) we have

W(A)C(L — A)-1 == C(4 — A)~* — C[} — (A4 — BC)]-1BC(% — A)~*.
Now write BC +: A — (4 -— BC) — (. — A). It follows that
W()C(. — A)=! = C[i - (4 — BC)]-L.

Since the spectrum of A—BC is disjoint with €, it is clear that W(A)C(~ - A) ™!
has an analytic continuation on , which establishes (P;). Finally, Property (P,)
holds true because of the left invertibility of K, ,(C, A4). So (4, B, C; G, H) is a Spec-
tral node for W on Q. But then (C, A) is a right spectral pair for W on Q.

We note that the function W given by (2.2) is of a rather special type. For
example, W admits an analytic continuation to a function which is analytic on
the Riemann sphere outside the disc |4 — zp. < 6 and whose value at infinity is
equal to the identity operator on H. Further, the function W(-)~! has an analytic
continuation outside o(A4) including the point infinity. These extra properties one
reads off directly from the formulas (2.10), (2.11) and (2.12). We shall come back
to this in Section 4.

In Section 7 we shall see that in the case when H and G arc separable Hil-
bert spaces one can take Q to be any open set in C. In fact, in that case one can prove
that (C, 4) is a right spectral pair for an operator polynomial, but we do not
have an explicit formula for the polynomial.
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Using the Hilbert space version of Theorem 2.8 in [29] we immediately obtain
the following result, which is the dual of Theorem 2.1.

THEOREM 2.2. Let Q be an open set in C with Q # C. A pair (A, B) of Hilbert
space operators A: G - G and B: H - G is a left spectral pair for some analytic

operator function W:Q — Z(H) with compact spectrum if and only if the follow-
ng conditions hold:

(i) o(A) = Q;

(i) the operator [B AB ... A™'Bl: H" - G is right invertible for some
Dositive integer m.

Furthermore, if (i) and (ii) hold true and Q n {1 € C l fA— 20| <6} is
empty, then the operator function

W(A) = I + B*[6* — (A — zp) (A% — Zy)]" F~ B,
where

F=Y, 8(Ad — 2)""'BB*(4* — z0)™"",

n=0

is analytic on Q and has compact spectrum, and (A, B) is a left spectral pair for
W on Q.

Let A:G—- G, B: H— G and C: G —» H be given Hilbert space operators,
and let @ = C be an open set with Q s C. In order that (4, B, C; G, H) is a spec-
tral node for an analytic operator function on £ with compact spectrum, it is neces-
sary that o(4) c Q and for some positive integer m the operators K, (C, 4) and
[B AB ... A™~1B] are left invertible and right invertible, respectively. This is clear
from the previous theorems. In the finite dimensional case (i.e., whenever dimH <
< 09) these conditions are sufficient; this can be shown using the results from [25].

If dim H = + co, these conditions are not sufficient as the following counterexample
shows.

ExAMPLE 2.3. Let W,, W,: Q2 - £(H) be analytic operator functions with
compact spectrum such that their H-extensions Wy(-) @ Iy and W,y(-) @ Iy are
analytically equivalent on @, while W, and W, are not analytically equivalent on Q.
If dim H = + oo, such a pair of functions exists indeed (see [11]). For instance,

take H=¢;, @ = {z | |z] < 1}, and let W, and W, be defined by

W) (x, ,,+=°3=(( —»—;—\x,,)m ,

n=0

W) ()1 = (x (A - ;) * (g _ ;_) Yor .. )

(2.13)
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Since the H-extensions of W, and W, are analytically equivalent on Q, by Theorem
5.3 of [29] there exist spectral nodes for W; and W, on  of the form

01 = (A: -Blr Cl; G’ H), 02 = (A: B2: Cﬁ; G’ H)’

respectively. For example, if W, and W, are as in (2.13), take H = G =:£,, A =

m ; -1, , By = C, =1, and define B,: £, = ¢, and Cy: £y = £, by

Ba(xn):fo = (-xb Xoy X3y » - -),
C2(xn);g::) = (O: Xos xl: .. -)-

Observe that the quintet 0; = (4, By, C,; G, H) has the following properties:

(i) o(4) = ©;

(ii) for some positive integer m the operator K, (C,, A) is left invertible and

the operator [B, AB, ... A™ 1B} is right invertible.
However, 0; is not a spectral node for some analytic operator function on Q.

To prove this, let us suppose that 6, is a spectral node on Q for the analytic
operator function W; with compact spectrum, and let us enforce a contradiction.
By Corollary 2.3 of [30] there exist invertible operators E(4) and F(4), depending
analytically on A in @, such that

Wy(2) = E(YWi(2), Wy(h) = Wy(DHF(A); A€

But then Wo(2) = E(A)W(A)F(2), 4 € &, and thus W, and W, are analytically equi-
valent on 2. Contradiction. Hence, €, is not a spectral node on 2 for some analytlc
operator function with compact spectrum. i

3. FIRST APPLICATION TO DIVISIBILITY

Let W: Q —» #(H) be an analytic operator function with a compact spectrum,
where € < Cis open. Let (C, A) be a right spectral pair for W on Q. The space on
which 4 acts is denoted by G. Recall from [30], Section 4, that a closed subspace
N of G is called a supporting subspace of the pair (C, A) if N is invariant under A4
and the pair of restricted operators (C'N, 4 N) is a right spectral pair for some ana-
lytic operator function W;: Q2 — Z(H) with compact spectrum. In that case W,
is a right divisor of W on Q (Theorem 1.2). The converse statement is also true,
Le., if Wy: 2 — ZL(H) is a right divisor of W on Q, then there exists a (unique)
supporting subspace N of (C, A) such that the pair (CN, A'N) is a right spectral
pair for W, on £ (see [30], Proposition 4.1). As an immediate corollary of Theorem
2.1 we have the following proposition.
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PROPOSITION 3.1. Let Q be an open set with Q@ # C, and let (C, A), where
A:G— G and C:G - H, be a right spectral pair for W on Q. A closed subspace
N of G is a supporting subspace of the pair (C, A) if and only if N is A-invariant
and o(A4|N) c Q.

Proof. If N is a supporting subspace of (C, A4), then by definition N is A-invari-
ant and because of the properties of a spectral pair on 2 one has ¢(4|N) = Q.

Conversely, now assume that Nis 4-invariant and ¢(4|N) < Q. By Theorem
2.1 the operator K,(C, A) is left invertible for some m. Hence, the same is true for
K, (C|N, A|N). Again we apply Theorem 2.1. So there exists an analytic operator
function W,: Q - Z(H) with compact spectrum and right spectral pair (C|N, AN).
So N is a supporting subspace. %

From the previous proposition it is clear that a spectral subspace of 4 (i.e.,

the image of a Riesz projection (2zi) —18(1 — A)-1dA for a suitable contour I)
r

is a supporting subspace of (C, A4) (cf. [30], Corollary 5.3, where this was proved

in the Banach space setting on the basis of theorems concerning the triviality of

certain analytic cocycles). The fact that any spectral subspace is supporting has the

following interesting consequence.

Let 2 be an open set with @ # C, and let W: Q —» £(H) be an analytic
operator function. Now assume that the spectrum X(W) of W decomposes into
two disjoint compact sets o, and g,. Then W admits a factorization W(1) = W, (A)-
- Wy(2), where W;: Q — Z(H) is analytic and its spectrum is equal to o; (i = 1,2).
This fact is known and has been proved by using theorems on the triviality of cer-
tain analytic cocycles (see [21]; also [8]). However, the fact that any spectral sub-
space is supporting allows us to give a simple operator theoretical proof of this
result and to give formulas for the factors.

THEOREM 3.2. Let @ < C be an open set with @ # C. Let W:Q — ¥(H)
be an analytic operator function with right spectral pair (C, A), and assume that
Z(W) = o(A) decomposes into two disjoint compact sets o, and o,. Let P be the ortho.
gonal projection onto the spectral subspace N of A correspornding to o, and define
E:N— N by

Ex = ¥ 0¥P(A* —2)"'C*C(4 — 20)™""'x, xeN,

n=:Q

where zoe C and & > 0 are such that 2 n {1 € C , A — z] < 8} = @. For
A€EQ put

3.1 Wi() = W(2) + W(A)C(A — A)~1E-*P(A* — Zg) ~1C*,
3.2) Wy(d) = I + CE-*P[6% — (A — zp) (A* — Zp)]~1C*.
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Then Wy, Wy: Q - L(H) are analytic, Z(W)) = a0y, X(Wy) == a5 and W(i) - W(4)-
-WoH), 1 Q.

Proof. Let W,: Q — £(H) be a right divisor of W corresponding to the sup-
porting subspace N of (C, 4); so (CN, A N) isa right spectral pair for W, on Q.
One such W, is given by formula (3.2), which is derived from (2.2). Now by formula
(2.12) the quotient W (1) = W(L)W,(4)~! is equal to

3.3) W(%) -+ W(2) (CN) (A — AIN)~1B,

where B+ E~(A N)* — z,] "} C N)* (cf. formula (2.9)). It is easily scen that (3.3)
coincides with (3.1). Finally, X(W.) = ¢, and the spectrum of W, is equal to g, (cf.
30}, Theorem 24. 7 }

If the set Q in Proposition® 3.1 is simply connected (or, more generally, if the
bounded components of C\o(4) do not intersect the bounded components of
C\\Q), then the condition o(4 N) < Q is satisfied automatically for every A-inva-
riant subspace N. In this case Proposition 3.1 gives a one-to-one correspondence
between the invariant subspaces of the spectral linearization of W and equivalence
classes of right divisors of W (two right divisors are called equivalent if W,W,!
and W,W ! are analytic on 2). A correspondence of this type has been observed for
matrix polynomials in [17, 12, 23] and for analytic matrix functions in [25, 36] (cf..
the divisibility theory for characteristic operator functions [33, 5]; also [3], Chapter 1).

4. SPECTRUM DISPLACEMENT THEOREMS

In this section we show that the solution of the inverse problem given in
Section 2 also provides a solution of the following problem: Given Hilbert space
operators A: G - G and C: G — H, construct, if possible, an operator B: H - G
such that the spectrum of the opzrator A —BC does not intersect with a prescribed
open set 4 in the complex plane. As we mentioned in the introduction, this problem
is of interest in Mathematical Systems Theory and is related to the pole-shifting
theorem (see [38]).

THEOREM 4.1. Let A: G — G and C: G — H be Hilbert space operators. Then
there exists an operator B: H — G such that o(A) N 6(A — BC) = () if and only
if for some positive integer m the operator

o

4.1) K, (C, )= ¢4 .G - H”

CAm -1
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is left invertible. Moreover, in that case given an open disc |A — zo| < & disjoint with
a(A) the operator B defined by

4.2) B = F~YA*% — z5)"'C*: H - G,

where

4.3) F = Z S¥(A* — Zg) ™" MCHEC(A — zo) ™Y,
n=0

has the property that

6(4 — BC) < {A€ C | |1 — z| < 8}.

Proof. Assume there exists an operator B: H —» G such that (4 — BC) n
N o(A4) is empty. Let £ be an open set in C containing ¢(A4) and disjoint with
o(A — BC). Put

W) =1 — C[A — (4 — BC)]-'B, AeQ.

Obviously, W is analytic on . Note that for each A € Q the operator

(A—/l B

):G@H—rG(—DH
C I

is invertible and its inverse is equal to

@) ( (C/vi——BC——,l)-’; —(A——BC—-A)-IB)
—C(A — BC — 1)1 W(i)

Since the operator (4.4) depends analytically on A € Q, we can apply Theorem 4.3
in [29] to show that W has a compact spectrum in £ and (A4, B, C; G, H) is a spec-
tral node for W on Q. In particular, (C, A) is a right spectral pair for W on Q. With-
out loss of generality we may assume that Q # C. So we can apply Theorem 2.1
to show that for some positive integer m the operator K, (C, A) is left invertible.

Conversely, assume that for some positive integer m the operator (4.1) is left
invertible. Note that formulas (4.3) and (2.3) are identical, as well as formulas
(4.2) and (2.9). This theorem is now immediate from Theorem 2.1. v

COROLLARY 4.2. If for some positive integer m the operator K, (C, A) is left
invertible and 4 + @ is any open set in C, then there exists an operator B: H > G
such that o(4 — BC) c A.

Proof. Without loss of generality we may assume that C\(4 U o¢(4)) has
a non-empty interior. Choose an open disc [L — z4| < § which is disjoint with
4 and o(4). Since the operator K,,(C, A) is left invertible for some positive integer m
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we can apply the second part of Theorem 4.1 to show that there exists B,: H - G such
that

o(4 — B,C) = {4 | 14—zl < 8}
Now observe that 6(4 — B,C) is disjoint with 4. Further, from our hypothesis

on K, (C, A) it follows that the operator K, (C, A — B,C) is also left invertible for
some m, in view of the formula

I 0 0 0 C \
CB, I 0 0 CA*
CAB, CB, I 0 C(A*)? ==
CA™B,  CA"B,  CA™B, ... I C(Ax™?

C

CA

= C A2
C Am-—l

where A* stands for 4 — B,C (cf. Section 1V.3 in [3]). Now apply the second part
of Theorem 4.1 to the pair (C, A — B,C). So there exists an operator B,: H - ¢
such that o(4 — B,C — B,C) = A. Hence, the operator B — B, -+ B, has the

,,,,, o

desired properties.

When H and G are finite dimensional, Theorem 4.1 and Corollary 4.2 are
well-known and the operator B can be obtained, for example, from Brunovsky’s
canonical form (see [7, 16]). In fact, in the finite dimensional case a stronger result
holds true, namely, given a finite set K < C with at most k different points (k =
=: dim G), there exists B: H — G such that 6(4 — BC) = K, and to a certain extent
one can prescribe the multiplicities of the eigenvalues of 4 — BC. Here, of course,
we assume that K,,(C, A) is left invertible for some positive integer m, which in this

k-1 )
case amounts to the requirement that (M} CA’ = {0}, where k == dimG.
i-=0

For infinite dimensional separable Hilbert spaces H and G the analogue of
the stronger finite dimensional result has been proved recently by Eckstein in [9];
however, an explicit formula for B is not provided there. In [9] the connection be-
tween the left invertibility of X, (C, A) and the existence of an analytic operator
function with (C, 4) as a right spectral pair does not appear. The following version
of Eckstein’s result will be used later on.
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THEOREM 4.3. Let A: G — G and C: G — H be operators acting between sepa-
rable Hilbert spaces, and assume that the operator K,(C, A) is left invertible. Then
there exists F: H — G such that (A—FC)*~% = 0.

In the first part of the proof of Theorem 4.1 the fact that H and G are Hilbert
spaces is not used, and hence the arguments used there can be employed for Banach
spaces too. This leads to the following Banach space version of the spectrum dis-
placement theorem.

THEOREM 4.4. Let A: X - X and C: X — Y be operators acting between
Banach spaces, and let Q = C be an open set containing o(A). Then there exists an
operator B: Y = X such that 6(4A — BC) 0 Q = Q if and only if (C, A) is a right
spectral pair for an analytic operator function W: & — L(Y) with the property that
W(-)~* has an analytic continuation to an analytic operator function on C,\od(A)
which is invertible at co.

Proof. The “only if”” part is covered by the first part of the proof of Theorem
4.1. To prove the “if”” part, assume that (C, 4) is a right spectral pair for an analytic
operator function W: Q — £(Y) such that W(-)~! has the desired analytic conti-
nuation, U say. Let D = U(oo), and choose F: Y — X such that (4, F,C; X, Y) is
aspectral node for W on Q. According to Theorem 4.3 in {29] the operator

(A_'l F): XOY-X®Y
C D

is invertible for A e Q. Since D is invertible, it follows that 4 — FD-1C — A is
invertible for all A e Q. Now put B = FD~* Then 6(4 — BC)n Q2 = ©. 7%

It is not known whether Theorem 4.1 holds true for Banach space operators
C and A.

5. GREATEST COMMON DIVISORS OF ANALYTIC OPERATOR FUNCTIONS

Let Wy, ..., W,:Q - #£(H) be analytic operator functions with compact
spectra. A right divisor W of each W,, i= 1, ...,r, on 8 is called a greatest
common (right) divisor of W,, ...,W, if every right divisor of W, ..., W,on Q
also is a right divisor of W on Q. A greatest common divisor (if it exists) is uniquely
determined up to multiplication from the left by an analytic operator function
E: Q —» #(H) such that E(2) is invertible for all 1€ Q.The following theorem is
the main result of this section.

THEOREM 5.1. Let W,, ..., W,: Q - £L(H) be analytic operator functions
with compact spectra, and assume that Q is an open and simply connected set with
Q # C. Then there exists a greatest common right divisor of Wy, ..., W, on Q.
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Proof. Without loss of generality we assume that zero is a point of Q (other-
wise we replace W;(4) by W (2 + a) for a suitable « € C). Choose a bounded
Cauchy domain 4 containing zero such that { JZ(W,) c 4 c 4 Q, and let

i1
V:L(04, H) —» Ly(24, H) and Q: Ly(24, H) — H be the (bounded linear) opera-
tors defined by the following formulas:

(5.1) Vf(z) = zf(2) — (2mi)~1 S Sfo)dw, zedd;
G4
(5.2) Qf (2mi) ! Sf(w) dw.

04

Fori=<1,...,r let M; bz the subspace of Ly(¢4, H) consisting of all functions
S €Ly(04, H) that admit an analytic continuation to C,\Z(W,) vanishing at
infinity, while W(A.)f(/) has an ana]ytlc continuation to Q. By Theorem 1.1, the
restriction (Q M, VM) of (Q, V) is a right spectral pair for W;on Q (i-=1,...,r).

In particular, the operator K,,( Q M, VM ;) is left invertible for some m (not depend-

ing on i=1,...,r). Put M= r’j M;; then also ,,,(QM VM) is left in-
i1
vertible for some m.

As @ is simply connected, one has a(VM) < Q. By Theorem 2.1 there exists an
analytic operator function W:Q — Z(H) with compact spectrum, for which
(Q‘M I7M) is a right spectral pair on €. By the divisibility theorem (i.e., Theorem
1.2), the function W is a right divisor of each W, on Q. The same Theorem 1.2 also
ensures that I is a greatest common divisor of W,, ..., W, on Q.

L, o

The proof of Theorem 5.1, together with Theorem 2.1, yields the following
formula for a greatest common divisor of W, ..., W, on Q (assuming zero belongs

to Q). Let 4 be a bounded Cauchy domain such that {0} u (| Z(W)cdcA<Q,
i--1

and let M be the set of all feLy,éd, H) such that f is analytic in
Coo\ U Z(W)), floo) == 0 and for i : - I, ..., r the function W,f is analytic in Q.
i -1

Let A == I7:M and C = QM, where ¥V and é are given by (5.1) and (5.2), res-
pectively. Then

©0 -1
W) =-1-+C { Y 0% (4% — Z)™"1 CHC(A — zo)‘"‘l} .

71:=0

[[0° — (4 — z9) (4% — 2))]7'C¥, 1€ Q,
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is a greatest common divisor of W,, ..., W, on Q, where z, C and 6 > 0 are
chosen such that {1e C l [A—zl <d} n Q= @.

In case r = 2, Wy(d) = Al — T, and Wy(1) = Al — T,, Theorem 5.1 implies
the following statement.

COROLLARY 5.2. Let Ty, T, € ¥(H) be Hilbert space operators. Then a greatest
common divisor of Al — T, and \] — T, (on Q > o(T}) U o(T,)) is given by the
Jormula I— P, + (Al — Ty)P,, where P, is the orthogonal projection onto the maxi-
mal Ty-invariant subspace N such that TN = T,IN.

For matrix polynomials common divisors and greatest common divisors were
studied in [12] in terms of spectral pairs, and in [13] in terms of generalized resul-
tant matrices.

6. LEAST COMMON MULTIPLES OF ANALYTIC OPERATOR FUNCTIONS

Let £ be an open set in C, and let W;: Q@ - £L(H), i = 1,2, ...,r, be analytic
operator functions with compact spectrum. We say that W: Q — Z(H) is a (left)
common multiple on Q of the functions W, ..., W, if W is analytic, has compact
spectrum and

for some analytic operator functions U, ..., U,. A right common multiple is defined
in an analogous way. We shall consider left common multiples only (the corres-
ponding results for right common multiples can be obtained by taking adjoints).

A common multiple Won Q of Wy, ..., W, is called a least common multiple,
if every other common multiple W of Wy, ..., W, on £ is divisible by W on the
right, i.e., the function I:‘V(-)W(-)‘1 is analytic on Q. Clearly, if a least common
multiple exists, it is determined uniquely up to multiplication from the left by an
analytic (on Q) &£ (H)-valued function whose values are invertible operators.

In the finite dimensional case (dim H < oo) there always exists a least common
multiple for analytic operator functions with compact spectrum (see [36]; for matrix
polynomials see [14, 13, 12]). In the infinite dimensional case this is not true: common
multiples (let alone least common multiples) do not always exist (see the example
given below). A necessary condition is given by the following proposition.

PropoOSITION 6.1. Let W,, ..., W,:Q — PL(H) be analytic functions with
compact spectra and right spectral pairs (Cy, A3), ..., (C,, A,), respectively, where
Q < Cis an open set. Assume that there is a common multiple W of Wy, ..., W,
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on Q. Then
KerKl([C1C2 s C,.], Al @ . o @ Ar) ==
(6.1)

= M Ker[C4i Codi ... C,4i]

i==0
Jfor some integer I.

Proof. Let (C, A) be a right spectral pair for W on Q; so K\(C, A) is left inver-
tible for some . By Theorem 7.1 of [15] there is a Hilbert space G, and a pair of
operators A,: Gy - G,, C,: G, - H such that (C, 4) is a right restriction of
(Cy, A,) and the operator K,(C,, A,) Is invertible. Then

(6.2) CoAl K (Cy, A)) ™Y K(C, A) = CA'.

By Theorem 1.2, for i == 1, ..., r the pair (C,, 4;) is a right restriction of (C, A).
Now (6.2) implies that

CoAg [Ki(Co, A7 K([Cy ... CJ, 4@ ... @ 4) =
= [CIA{ R CrAl]s
and (6.1) follows.

Proposition 6.1 allows us to produce examples of analytic operator functions
without a common multiple. For example (c¢f. Example 2.1 in [15]), define

0 0...0 0 00...0 1
10...00 10...00
T, [0 1...0 0], S:=f0o 1...00
00...10 00 10

as operators from C* > C* Let H=C @ C@C*®..,and put T--T, @
T, T, ®...; S=S,®S.@® S;@ ... . Then for every open set 2 in C
containing o(T) U 6(S), the analytic operator functions AJ — T, Al--- §:Q —
— #(H) do not have a common multiple (Condition (6.1) is violated).

The following result reduces the existence problem for a least common mul-
tiple to the existence problem of a common multiple (assuming € is simply
connected).

THEOREM 6.2. Let Q be a simply connected open set in C with @ # C, and
let Wy, ..., W.:Q > L(H) be analytic operator functions with compact spectra.
Then there exists a least common multiple of Wy, ..., W, on Q if and only if there
exists a common multiple of Wy, ..., W, on Q.
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Proof. Assume W, is a common multiple of W, ..., W, on 2. Without loss
of generality we may assume that 0 e 2. Choose a bounded Cauchy domain 4

containing zero such that | ) Z(W;) c 4 < 4 < Q. Let M, be the set of all f €

i=0

€ L,(04, H) thatare analyticon C,, \Z(W),), are zero at co such that W, f is analytic in
Q@=1,...,r). ByTheorem 1.1, the restriction (Q]M,-, 17[.Mi) is a right spectral
pair for W; on @, where ¥ and 0 are given by (5.1) and (5.2), respectively. Since W,
is a common multiple of W, ..., W,, we have My > M; + ... 4 M,. Put
N=M + ... +M,. Clearly, Nis a V-invariant subspace and N « M,. Further,
by Theorem 2.1, K,,,(Q|M0, f/[Mo) is left invertible for some m; so K,,,(Q[N, V|N) is
left invertible as well. Since o-(I7|MO) < Q and Q is simply connected, also a(I7|N) c Q.
By Theorem 2.1 there exists an analytic operator function W: Q — L(H) with right

spectral pair (Q|N, I7|N). Using (divisibility) Theorem 1.2 it is easily seen that W is

a least common multiple of Wy, ..., W, on Q. 77

We point out one case when the existence of a least common multiple is
ensured.

THEOREM 6.3. Let @ = C be an open set such that @ # C. Let W,, ..., W,
be L (H)-valued analytic (in Q) functions with compact spectra such that X(W;) 0
N Z(W;) = O for i # j. Then there exists a least common multiple W of Wy, ..., W,

on Q, and (W)= ) Z(W)).

i=1

Proof. We shall consider the case r = 2 (the general case can be obtained
easily by induction on r). For i = 1,2 let (C,, 4,) be a right spectral pair for W; on Q,
where 4;: G; — G, C;: G; > H (G, is a Hilbert space). Without loss of generality we
may assume that the spectral radius of 4; is less than 1, i = 1,2 (otherwise replace
W(2) by W(ai) for a suitable fixed positive number «). Consider

M= {(x, x:)€G, ® G, | Cidix, + Codix, = 0; j=0,1, coe}e

Note that M is a closed subspace of G; @ G,. We shall prove that M is, in fact, the
zero subspace. Define

Ny, = {xe6G, ] Ax, € Gy (xy, X5) € M}

Ny, = {x,¢ G, l 3x; € Gyt (xy, x5) € M}.

Clearly, N, and N, are linear sets. Given x; € NV,, there is a unique x, € G, such that
(%1, X5) € M (this follows from the fact that Ker K,(C,, 4,) = {0} for some m); write

3 - c. 1324
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X2 = 8;x;. Thus §,: N, = N, is a linear map. Similarly, given x, € N, therc is a
unique x, € G, such that (x,, x,) € M; write x; = Sox,. S0 Sy: N, = N, is a linear

map and S; = STt
Choose an integer m > 0 such that X, (C;, 45) and K, (C,, 4,) are left inver-

tible. Let
Al = [Kn(c‘.l, Ai’,)]+ Km(cls Al): Gl I Gﬂ’

Ay == — [K(Ch, AD]* Ki(Cs, A): G = Gy,

where the superscript -i- denotes a left inverse. Then S; —= A; N;, i = 1,2. As for
i = 1,2 the map S, is a restriction of a (bounded linear) operator A;, and M is closed,
it is easily seen that N, and N, are closed as well. Observe that N, is A-invariant,
i — 1,2, and the restrictions 4, N; and A, N, are similar. So for the boundaries of
their spectra we have ¢a(4, N;) = Co(A4,'N,), which in view of ¢o(4; N;) < 6(4;),
i=1,2, and 6(4,) N 6(4;) = O leads to a contradiction, unless N; = {0}, 7+ = 1,2,
So M = {0}. Put

c, G
Cid, Cod,
6.3) Ko=|cur cu|: G ® G 0ult).

Since o6(A4;) U 0(4.) = {4 ! 14. < 1}, formula (6.3) defines a (bounded linear)

operator K,,. We have shown above that KerK,, = {0}. It turns out that K, is
moreover, left invertible To see this, let {G;> ==((G,)/ 4(G;), i= 1,2, and
(H) ==0(H)/cy(H). Now C; and A; induce operators {4,>: <G> -» (G;> and
{CD: (G —» (H). Using the property a(4;) = 6({4,)), i = 1,2, we see that K,
induces an operator {(K.):<{Gy> @ {G.) - £o((H)). As above we prove that
Ker{Ky) = {0}, which means that there exists y > 0 such that "K_ x| > 7"x" for
all x € G, @ G, (cf. the proof of Theorem 2.1). Thus X is left invertible. Conse-
quently, a finite column K([C; C,], 4; @ 4,) is left invertible for some integer m. By
Theorem 2.1, there is an analytic function W: Q - £(H) with compact spectrum
whose right spectral pair is ([C) C,], 4, @ A.). Clearly, W is a common multiple of
W, and W,. It is not difficult to check (using, for instance, the particular spectral
pairs described in Theorem 1.1) that W is, in fact, a least common multiple of W,
and W,. Since A; @ A4, is a spectral linearization of W on @, clearly (W) =:

= Z(Wy) U Z(Wy).
In the framework of monic operator polynomials acting in Banach spaces,
Theorem 6.3 has been proved in [36].
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7. AN INVERSE THEOREM FOR OPERATOR POLYNOMIALS

In this section we assume the Hilbert spaces A and G to be separable. Using
Theorem 4.3 (due to Eckstein) we shall prove the existence of an operator poly-
nomial with given right spectral pair (C, A), provided K,,(C, A) is left invertible for
some m. In this way we shall derive a sharpened version of the inverse Theorem
2.1. More exactly, the following result holds true.

THEOREM 7.1. Let C: G > H,A: G- G (resp. A:G—> G, B:H— G) be
operators acting between separable Hilbert spaces, and assume that the operator
Kn(C, A): G- H" (resp. [B AB ... A™~B]: H™ —» G) is left (resp. right) in-
vertible for some m € N. Then there exists an operator polynomial W(A) with degree
at most 3m — 2 such that (C, A) (resp. (A, B)) is its right (resp. left) spectral
pair on C.

Proof. We shall prove the part of Theorem 7.1 concerning the pair (C, 4) only.
Without loss of generality we assume that A is invertible (otherwise replace A by
A—2, for some A, ¢ a(A4)). Since K, (C, A)is left invertible, so is K,,(CA~1, A~Y).
By Theorem 4.3 there exists B: H — G such that (4-* — BCA~1)3"-2 = (. Put

WH) =I— CAY (A"t — (4= — BCA~Y)~'B, L€ C\{0}.

Clearly, W(4) is a comonic operator polynomial in A (i.e., a polynomial with con-
stant term J) and its degree does not exceed 3m — 2. We shall check that (4, —A4B,
C; G, H) is a spectral node for W(4) on C, thereby proving the theorem. Define

W() =1 — CA-Y(A— A=' 4+ BCA-%)-1B, 1€ C\{0l.

As in the proof of Theorem 3.1, one verifies that (4-1, B, CA-*; G, H) is a spec~

tral node for W on C\{0}. Since W(1) = W(A-Y) (0 # A e C), in view of Theorem
2.6in [29] we conclude that (4, —A4B, C; G, H) is a spectral node for W on C\{0}
(this fact is easily verified directly too). As W(0) = I is invertible, (4, —AB, C; G, H)
is a spectral node for W on the whole complex plane. 7

Vo

As a corollary of Theorem 7.1 we obtain the following factorization theorem
(which is a stronger result than the factorization result mentioned in Section 3;
here, however, we need the separability condition on the Hilbert spaces H and G
for its proof). '

THEOREM 7.2. Let H be a separable Hilbert space, and let Q < C be an open
set and W: Q — FL(H) an analytic operator function with compact spectrum. Assume
that (W)= o, U 04, where o, and o, are disjoint compact sets. Then W admits a
factorization

(7.1 ‘ W(d) = Ry(A) E(A) R(%), L€,
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where for i == 1,2 the function R;: C - £ (H) is an operator polynomial with Z(R,) =
== ¢;, and E: Q - L(H) is an analytic operator function with invertible values.

Proof. Let (C, A) be a right spectral pair for W on Q. Note that we may assume
that the operators C and A act on separable Hilbert spaces. By Theorem 7.1,
there is an operator polynomial R.(1) with right spectral pair (C;N, 4 N), where
N is the spectral subspace of A corresponding to ¢,. Let W(/’.) —= W(AD)RL(A)1,
and let R,(%) be an operator polynomial whose left spectral pair on C coincides
with the one for W on Q (such a polynomial exists by virtue of Theorem 7.1). With
these polynomials R, and R,, the factorization (7.1) follows. u

Let A: G — G and C: G — H be a given pair of operators. It is known that
(C, A) is a right spectral pair on C for a monic (i.e., leading coefficient equal to the
identity I) operator polynomial of degree & if and only if K,(C, A) is invertible (see
[19], where this is proved in a Banach space setting). If K;(C, 4) is only left invertible,
then one can construct a monic operator polynomial of degree k with spectral

pair (C, A) on C such that (C, A) is a right restriction of the pair (6‘, A) (see [19, 15,
24]). In the finite dimensional case A can always be chosen in such a way that A4
has at most one eigenvalue more that A4 (see [24], Theorem 0.1), but in general the
existing knowledge about the spectrum of A is not very extensive. Therefore the
following theorem is of interest.

THEOREM 7.3. Let C: G — H, A: G — G be separable Hilbert space operators
such that K,(C, A) is left invertible. Assume i, ¢ o(A). Then there exist separable
Hilbert space operators Cy: Gy = H and Ay: Gy = Gy such that Ay — A, is nilpotent
and the block operator

c C,
A
(72) CA C?O 0 :G @ GO - H3m-—2

(:‘A:}m—s C:Vo Agm-—:}

is invertible, i.e., ([C C,), A ® A,) is a right spectral pair on C for a monic operator

polynomial of degree 3m—2.

Proof. With no loss of generality (see formula (2.7)) we assume 4, -=0. So A

3m-.2

is invertible. Let W(3) =1+ Y, A1W; be the operator polynomial with right
Je=1

spectral pair (C, A~Y). According to Theorem 7.1 such a polynomial exists indeed.

Put
1.3) W(2) = 23m=2 (A,

Then ﬁ/’().) is a monic operator polynomial of degree 3m —2. It is easily seen that
(C, A) is a right spectral pair for W on C\{0} (cf. Theorem 2.6 in [29]), and con-
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sequently a(4) = Z(W) < (6(4) U {0}). Assume X(W)=a(A) u {0} (other-
wise Kj,,—o (C, A) is invertible and the theorem holds true for G, = {0}), and let
(Co, To), To: Gy = Gy, Co: Go — H, be a right spectral pair for W on a neighbour-
hood of zero which does not intersect 6(4). Put C= [C C,] and A=4® T,-
Using the definition of a spectral pair (Section 1), it is not difficult to check that
(C", ;1) is a right spectral pair for W on C (cf. the proof of Theorem 6.3). Hence,
the operator (7.2) with A, replaced by T, is invertible.

Since o(T,) = {0}, the operator T, is a limit in the uniform topology of nil-

potent operators (see [2]; also [26]). So for some nilpotent operator A, sufficiently
close to T, the operator (7.2) is invertible. vz

Let W: Q —» #(H) be an analytic operator function with compact spectrum,
Assume Q # C. Then Theorem 7.3 implies that there exists a monic operator poly-
nomial L(4) such that L{(A)W(A)~* and W(A)L(A)~* are both analytic on Q.

Using Theorem 7.3 one can show that in case of a separable Hilbert space H
the condition € # C can be omitted in the statements of Theorems 6.2, 6.3 and 5.1.

8. A CONNECTION WITH CHARACTERISTIC OPERATOR FUNCTIONS

Let T: H —» H be a Hilbert space contraction, i.e., ||T]] < 1, and let 6,(%)
be its Sz.-Nagy—Foias characteristic operator function (see the definition given
below). In general, T is not a spectral linearization of 6;(1) on the open unit disc 4
(because T may have spectrum on the boundary of 4). Nevertheless, there is a rela-
tionship between T and 0;(1) which is much like the definition of a spectral line-
arization (see formula (8.1) below). This formula will be used to compare spectral
properties of T and 6,(1).

First we recall some definitions. For a Hilbert space contraction T: H — H,
define as usual: ‘

Dp = — T*T)"*, Dgre =~ TT*)Y?
Dr =1mD,, Dr =ImDse.
By definition the Sz.-Nagy —Foias characteristic operator function of T is given by
0r(2) =[—T + ADps (I — AT*)" Dy} | D1: D1~ D1+

(cf. [33]). Note that 8, is defined and analytic on the set of all 4 such that J — AT*
is invertible. In particular, 0, is analytic on A.
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THEOREM 8.1. For a Hilbert space contraction T the following equality holds :

0 A—=T 0
()[0 or(ﬂ)] [o IQT]F('D’ red,

where E(A) and F(2) are invertible operators depending analytically on . € A, given
by the following formulas :

Dre

T—i
E() = L H® Ore— H® Dy
@ [ Dy —T*] ! "
I (I — AT#)-'D,

F(3) = [ )
Dy I — Dy — iT%-'D,

]: HOIr~>HS Yr;
E()~= [ o —arm)= (7= lT*)‘lDT] :
L Dp(I — AT*)"1 6.(%) ’

T*(I — AT*) "1 (i — T) (I — AT%)" D,] .

F(2)—1=
e L

T
Proof. By direct verification, using the following relations (see [33]):

TDy = DT, T#Dye = DyT%;
0x(A)Dy = Dre (I — AT%) =4 — T).

As a corollary of Theorem 8.1 we compute spectral nodes for contractions
when we do not have spectrum on the unit circle. Observe that for such a contrac-
tion T the characteristic operator function OT(/) is unitary on the unit circle (this
follows from the formula

0:(A)~* = [=T% + Dy(A — T)"*Dr:) Dre: D+ = Dy, A€ ANa(T)).

In particular, the spaces 9, and 97+ are isomorphic.

COROLLARY 8.2. Assume T is a contraction with spectral radius r(T) < 1. Then
for any unitary operator U: Gy« = D1 the quintet
(T’ DT‘U=::a DT: H’ QT)
is a spectral node for Uy on the open unit disc A.
Proof. Apply Theorem 4.1 in [29] to (8.1), taking into account the formulas
for E(A) and F(4)-1. L

As another application of formula (8.1) we have the following result (cf. [6];
see also [31]).
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COROLLARY 8.3. Let T be a Hilbert space contraction. Then for every 2| < 1
and every n = 1,2, ... the subspaces Ker(lg — T)" and

[ O7(Ao) 0 .0
- O 07(2) .0
Ker '
1 6%-2(4o) L 0272(2) v 07(20)
| (n —1)! (n — 2)!

are isomorphic.

Proof. Given an analytic .#(Y)-valued function W in a neighbourhood of
Ao € C (here Y is a Banach space), denote

r W) 0 ... 0
—i~Wmuo Wio) .0
oWil)=| : : ;
1 1
R — 1 _we-nqy .o
e I e LA G

n=123,... .80 @,(W; ) is an operator ac;ing on Y". The following properties
of the operators @,(W; 4y) are easily verified:

(i) ®,(W; %) is invertible if and only if W(4y) is invertible;
(i) @(W1Ws; Jo) = Du(Wy; A0)Po(Wo; Ao);

(iii) the Banach spaces Ker &,(W; 4,) and Ker d,(W @ I,; 4,) are isomorphic
for any Banach space Z.
Corollary 8.3 follows immediately from formula (8.1) and properties

(i) — (). v
APPENDIX

In Theorem 2.1 we have seen that for Hilbert space operators 4: G — G
and C:G — H the left invertibility of

C

k€ o= | 6o H"

éA"'"’l
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for some integer m > 0 is equivalent to the condition that (C, A) is a right spectral
pair for an analytic operator function with compact spectrum on some open set
Q2 >6(A). Itis well-known that in the finite dimensional case (i.e., dim G< oo, dim H<
< 00) the column K, (C, A) is left invertible for some integer m > 0 if and only
if the matrix

(A1) [ ”';A ]

has full rank for each 2 in C. In Mathematical Systems Theory the latter statement
is known as Hautus’ test for observability (cf. [27]). Note that the matrix (A.1) has
full rank if and only if it is left invertible. With this terminology the equivalence
result mentioned above extends to the infinite dimensional case, as follows.

THEOREM A.l. Let A: X — X and C: X — Y be bounded linear operators acting
between complex Banach spaces. Then the operator

C

(A.2) c4 ‘X ¥

Cam1

is left invertible for some integer m > 0 if and only if the operator
(A.3) [)';A]: XoXeY

is left invertible for each 1€ C.

Proof. let Z,, ..., Z,,_, be bounded linear operators from Y into X, and
assume that [Z, Z, ... Z,] is a left inverse of the operator (A.2). Put R(2) ==

m..1 m-2
=Y AZ;, and let Q(4) = Y, &Q;, where
j=0 i

i=0

QJ T = (Zj+lc + Zj-}-?.CA + .. ‘{" Zm_ICAm—j—Z), j = 0, T sy m — 2.
m--1
From ¥} Z,CA’ == I, one easily deduces that
Jj=0
O() + RYC(A-Y + 124 + A=342 + .. ) =
= A" L A4 4 AT34% 4

for |2 > |l4]. In other words Q(}) + R(A)C(A — A)~1= (A — A)~* for 4 >
> [14]]. But then
(A.4) Q) (2 — A) + RAQC =1Iy
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for |A] > ||A4]l. Since both sides of (A.4) are operator polynomials, this equality
holds for each A e C. This implies that for each A in C the operator [Q(4) R(A)] is
a left inverse of the operator (A.3).

To prove the converse, assume that for each A e C the operator (A.3) has
a left inverse. Since the operator (A.3) depends analytically on A in C, one can
apply a result of G.R. Allan (Corollary of Theorem 1 in [1]) to show that there
exist entire operator functions V(1) and U(4) such that

ViYL —A+UNC=I, JleC.
In particular, we have
(A.5) V) + UQCA — A=A — A7 Al > [ 4].

Write U(4) = Y, MU;. Let I be a positively oriented circle centered at zero with
j=0

radius r > ||4||. By integrating both the left- and right-hand side of (A.5) over I'

we obtain

I= 1. S(l — A)~Mdi = _‘_S U)C(A — A)—1dA =
2mi P, 2ai

=Y U,c4.
J=0

’ m-1

It follows that for m sufficiently large the operator Y, U ;CA’ is invertible. But
Jj=0

then we may conclude that for some integer m > 0 the operator (A.2) is left in-

vertible. 9%

N

Note that the operator (A.3) is left invertible for all A not in the spectrum of A.
In that case a left inverse of (A.3) is given by [(4 — 2)~! 0].

THEOREM A.2. Let A: X - X and B:Y — X be bounded linear operators
acting between complex Banach spaces. Then the operator
[BAB... A" 'B]: Y™ > X
is right invertible for some m > Q if and only if the operator
[A—4 Bl: X®Y->X
is right invertible for each 1 in C.

Theorem A.2 may be viewed as the dual statement of Theorem A.1. Its proof
follows the same line of arguments as in the proof of Theorem A.1 and, therefore,
is omitted.
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