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NUCLEAR OPERATORS IN NEST ALGEBRAS

S.C. POWER

1. INTRODUCTION

The main result shows that each nuclear operator T in a nest algebra Algé
admits a representation

T = STEdr(E),

&

where 7 is a finite positive Borel measure on the nest and " — T is a nuclear ope-
rator valued function on & such that Ty = ET (I — E_) almost everywhere. This
representation leads to conditions under which 7" can be decomposed into an exact
sum of rank one operators in Alg & in the following sense:

T=$ R, ITh=Y IRl

with R,, R,, ... rank one operators in Algé. We call this property exact decom-
posability and it is shown, in particular, that T is exactly decomposable if & is coun-
table or if T is dissipative.

A basic result required in the analysis is a construction of Lance, Lemmas 3.2,
3.3 of [11]), which splits an upper triangular 2 X 2 operator matrix into a sum of
two operators of the form [ ; ; ] and [g * ] An indication of some of the

*
power of this decomposition is given in the fact that it leads naturally to a useful
result of Parrott [14]. In [11] it is used to derive Arveson’s distance formula [1], to
which Parrott’s result is closely related [15].

In Section 3 we make inductive use of the lemma, and an inherent left
continuity, in order to associate with each positive operator C and nest & a positive
operator valued Borel measure C(4) on &. If this construction is applied to the posi-
tive part C of an operator T = UC in Algé& then the operator measure UC(4)
on & provides the appropriate generalisation of Lance’s construction, and in case &
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has three elements coincides with this construction. In Section 4 we give a Radon-Ni-
kodym theorem for nuclear operator valued measures. For a nuclear operator T
this allows us to form the derivative T of the measurc UC(4) with respect to the
scalar measure 1(4) - : trace C(4) and thereby obtain the main result. The relation-
ship between C and C(4) seems to be worthy of further analysis.

In Section 5 we complete the proof of the main result and give various appli-
cations. A natural corollary, of wider interest, is discussed more fully in {16]. This
is Lidskii’s theorem that the trace of a nuclear operator is the sum of its eigen-
values (counted with their algebraic multiplicity).

NotaTioN. We fix a separable complex Hilbert space A. The term subspace
means closed linear subspace. We let 6 denote a complete nest of self-adjoint pro-
jections on H. Thus & is a totally ordered (underj range’ inclusion) family which
contains the projections 0 and I, and which is closed in the strong operator topo-
logy. If E¢: & and E # 0 (resp. £ # I) then we define E_ (resp. E,) as the supremum
(resp. infimum) of the collection of F in & with F < E (resp. ¥ > E). The algebra
of all bounded linear operators on H is denoted by B(H), and B,(H) denotes the class
of nuclear operators (trace class operators). The nuclear operators form a Banach
space under the norm

iy = te(T*T)%)

where tr denotes the trace on B,(H).

The nest algebra Alg'é associated with a nest ¢ is the algebra of all operators T’
such that (I — E)TE = 0 for all £ &. We denote the family of nuclear operators
in Alg & by Alg, &. The rank one operator x — (u, x)v is denoted u ® v.

2. A LEMMA OF E.C. LANCE
Our starting point is the following fundamental lemma of [11], reformulated
in a manner appropriate for later induction.
LemMma 2.1. Letr C be a positive operator which has an operator matrix
A B " . . -
[ D] with respect to a given decomposition of H. Then the limit, as n — oo, of

the sequence B%(A - n—*I)~1B exists in the strong operator topology. If D, denotes
this limit then the following hold.

() Dy < D.

. B
(i) The operator C; = [A ] is positive.
1

B D
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(iii) If U is an operator on H and UC has the form [; *], then UC, and
E

0(C — 3 have respetively, the forms [ ] and [

*®

COROLLARY 2.2. If T = [Tl Tz] is @ nuclear operator then there exist T,

3
"

and Ty ‘so that if R = [(7;1 ?] and S = [g T ] then T=R -+ S and ||T}, =
3
= |[Rlly + ISl

Proof. The corollary follows immediately from an application of the lemma to
the polar decomposition T = UC. Note that

[Tl = tr(C) = tr(Cy) + tr(C — Cy) = |[UC, [l + IU(C — Clls,

so we may take R = UC, and S = U(C — C,).

The corollary may be used now to obtain a useful result of Parrott (see [14]
and its footnote for partial anticipations). The proof below makes free use of the
B,(H), B(H) duality and is closely related to the discussions of the distance formula
in [11] and [12).

COROLLARY 2.3.

e s)l=m={Ils sI-le Nt

|
Proof. Let us suppose that the operator matrices are relative to an orthogonal
decomposition H = H, ® H,. If Z e B(H) then write Z, for the functional on
the annihilator of B(H,) which is induced by Z. That is, Z determines a functional
on B,(H) and Z_ is the restriction of Z to the annihilator mentioned. This annihilator
is simply the collection of nuclear operators whose first operator matrix entry is

zero. If Z == [0 A]
C B

inf
X

Cirx 4
(2.1) ||z,|[<1§fir[c B]“,

since operators X in B(H,) induce the zero functional on the annihilator. On the
other hand, by the Hahn-Banach theorem, Z, has a norm maintaining extension,
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and so equality occurs in (2.1). But, using Corollary 2.2, we see that

IZl=  sup ;tr([" U} Z)
[ U] [ =1l vw 5
114

Y

S ml:,ztr(r; R R

0 B

The last equality follows because the supremum of tr([ _— ] [0 4])
1
0 0 r
as W ] varies in the unit ball of B,(H), is the operator norm of l

V 1
The corollary is now proven.

(=]
1N
et

6 B

A well known result of Ringrose (see Erdos [5]) asserts that each operator T
in Alg & with finite rank # may be written as a' sum of n rank one opera-
torsin Alg &. Lemma 2.1 provides an alternative proof of this with the strengthen-
ing of the conclusion to an exact sum, as we now show. Moreover the method
provides a constructive rather than existential approach and so may be of added
interest. Extensions of Ringrose’s result have been made by various authors to
reflexive algebras Alg .# for certain commutative subspace lattices . We refer
the reader to Hopenwasser and Moore [10] for a good discussion of this and for
the following two results:

(1) decomposition into rank ones is possible if % has finite width (although
the length of the sum may have to be greater than the rank),

(ii) there is a totally atomic % and a rank two operator in Alg.# that
cannot be written as a sum of rank one operators in Alg .%.

Before proceeding it is convenient to introduce the following concept.

DEFNITION 2.4, An operator T in Alg & is said to be suspended by a
set ¥ < ¢ if (E -— F)T(E — F) = 0 whenever the interval (F, E] is disjoint from ¥
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If T is suspended by two disjoint intervals then T looks like this

'\\V//// 7

AN
N
N

L pS

One can verify that T is suspended by a singleton E # 0 if and only if
ET(I — E_) = T. Each rank one operator in Alg & is thus suspended by a singleton
since, as is well known, it may be expressed as e ® f with fe E and ee I — E_,
for some E 0. If T e Alg; & is suspended by the singleton E then it is easy to

.

(o]
obtain an exact decomposition of 7. Let C = Y, C; be any decomposition of
i=1
C into positive rank one operators where 7 = UC is the polar decomposition of
(o)

T. Then T =Y, UC, is an exact sum. Also

i=1

i=1 i=

f UC,=T=ET(I—E_) = E EUC(I — E_),
=1

and so ||EUC(I — E )|, = |[UC,],,, i=1,2,...,and hence each summand UC;
belongs to Alg & and is suspended by E.

It can be shown that every exact sum X = i X;, with each X; of rank one,
i=1

must arise through a rank one positive decomposition of the positive part of the
nuclear operator X. One often takes a spectral decomposition for the positive part,
giving a Schmidt expansion for X, but in our context this takes no account of
the invariant subspaces of X and need not correspond to the internal exact decom-
position for Alg & obtained below.

COROLLARY 2.5. Let T e Alg, & be a finite rank operator of rank n. Then
there are rank one operators R, Ry, ..., R, in Alg E withT =R, + R, +... + R,
and [Tl = [IRylly + [IRelly + ... + [IRylly-

Proof. We use the notation of Lemma 2.1. Let 7= UC be the polar decom-
position, let Ec &, E # 0, I and let C, be constructed from C, as in Lemma 2.1,
relative to the decomposition induced by E. Let C, = C — C,. We first show
that rankC, + rank C, = rank C.
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Let P denote the range projection of 4. Then the positivity of C, shows that
B*P =: B% (see Lance’s proof). Thus

D, == 1im B%(4 + n=Y)~B = lim B*P(4 4 n~Y)~'PB = B*(PAP)~'B

where (PAP)~* denotes, informally, the operator which is 0 on (I —P)H and the
inverse of PAP on PH. Let S be the invertible operator

—_ I 0 .
- [ B*(PAP)-1 1]

Then since B*(PAP)~'4 == B*P = B*, and B*(PAP)~'B = D, we have

(2.2) C, = S[A B].
0 0

Also

2.3) C,=5SC,= S [0 0 ] :
0 D-—D,

Since B*P := B* we have

ker[A B]uaker 4 0],
0 O 0 O

and thus
rank A B] = rank A.
|0 0
Hence
rank 4 B] + rank 0 0 ]:: rank lA 5 ]
0 O 0 D-— D, 0 D--D

Now ‘apply’ S-! to this last equation and use (2.2), (2.3) to ¢ec that rank C, -+
-i-rank C, - : rank C, as desired.

To complete the proof the above is used inductively until we obtain C':- K -
- Kyt 4K, relative to 0=Ey< E; < ... < E,_; < E =:1 with the
following properties:

(i) rankK; > 0;

(i) rankC = ¥ rankK;;

(i) UK; is suspended by [E;.., E), i==1,2, ..., k;
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(iv) K; cannot be further decomposed with non zero summands relative to
any projection in [E;_,, E)).

Plainly, (iii) and (iv) show that UK is in fact suspended by a single projection.
The proof is now completed.

REMARK. As observed in {11] there is a version of Corollary 2.2 for upper
triangular operator matrices relative to decompositions of both domain space and
_range space. For example suppose P, Q are self-adjoint projections with Q@ < P
and that T has the form

0i0 0
Fe|Ti T 0
0iT, 0

It can be checked that the Lance decomposition of 7 provides an associated decom-
position of T.

With the ideas above one can obtain a version of Corollary 2.5 for finite rank
operators in a weakly closed operator module of Alg &, and hence a strengthening
of Lemma 2.1 of [8].

3. OPERATOR VALUED MEASURES

We now make inductive use of Lemma 2.1 to associate with each positive
operator Cin B(H) a positive operator valued measure. This association will depend
only upon the fixed nest &. The construction of Lemma 2.1 has an inherent left
continuity property with respect to the weak operator topology. This is expressed
in Lemma 3.2 and provides just the continuity property required for extending
finitely additive measures to measures.

Let & be the finite subnest 0 = Fy < E; < ... < E,=TIof & Let Cbe a
fixed positive operator on H and decompose C as in Lemma 2.1 with respect to E;
to obtain C'= C; + C;. Next decompose C; with respect to E, to obtain C; = C, +-
-+ Cy, and so on, until we have the following decomposition

(3.1 C=C,+Cot ... +C,
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bt

associated with #. (Here C; has the form [A 5 ] and Cj == C — C;, and so

1
on.) We now define CglE;_,,E)=C,, i=:1,2,...,n The next lemma shows
that C[E, F) is independent of the subnest &, and so we shall denote the common
value by CI[E, F).

Let 2(&) be the ring of subsets of & generated by the collection of semi-inter-
vals [E, F) with E, Fc §, E < F.

LemMA 3.1 (i) The operator ClE;_y, E;) is independent of F, the finite nest
containing E,_, and E;.

(ii) The correspondence [E, F) — C[E, F) extends to a finitelv additive positive
operator valued function on R(&).

Proof. We first claim that the decomposition (3.1) arises independently of
the order of successive applications of Lemma 2.1. More specifically consider a
quadruple subnest 0 = Ey < E, < E, < E; == I. Use Lemma 2.1 to decompose
C as C' -~ Cj relative to E,. Next decompose C’ relative to E, as C' = Cj -+~ Ci.
We show that, with the notation used earlier, C; = C,, C; = C, and Cj == C,.
That Cj = C, should be clear. Since C, +- C, is positive and (C; -+ Co)E; = C'E,
it follows, by the minimality property of Lemma 2.1(i), that C' < C; + C;. Hence
C) + C; < C, -+ Cyand C; < C,. But C3E, = C,E,, and so, by minimality again,
C, £ C;. Thus C, -= C; and C; == C;. Our original claim now follows easily by
induction with the quadruple case.

The proof of (i) is now immediate, because if two finite subnests &#, and #,
determine C;1 [E, F) and C,;2 [E, F) then, from the above, Cg,—1 [E, F) -
= C; uz,|E F) = C; [E,F).

To establish (ii) we need only verify that if E < F < G belong to & then
C[E,G): = C[E, F) -~ C[F, G). This too is an immediate consequence of the claim
and its proof.

LEMMA 3.2. If Ec & and E_ = E then C[F, E) converges to zero in the weak
operator topology as F increases to E with F < E.

Proof. Note that, with respect to the Hilbert space decomposition induced

by £, C[0, £) has the form [; B ], as in Lemma 2.1. Also with respect to the
= D,

o A" B

decomposition induced by F (F < E), C[0, F) has the form [B" , ] Moreover,

1
since £._: = E, we have 4’ - A, B’ - B in the weak operator topology as F — E,

F < E. Thus the monotone increasing net C[0, F) converges in the weak operator

A B} .
topology to an operator X’ £ C{0, £) which has the form [ Z] with respect to
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E. But, by the minimality of D;, C[0, E) < X. Hence X = C[0, E) and the
lemma follows.

From the last two lemmas and the basic theory of positive operator valued
measures, [2, p. 15], there is a unique positive operator valued set function C(4)
defined on the Borel subsets 4 of & (& is metrized by the strong operator topology),
which coincides with C[E, F) on %(&), and is such that

32) )= 3, C(4)

whenever 4 is a disjoint union on Borel subsets 4;, and convergence is with respect
to weak operator topology.

It follows from Lemma 2.1 (iii) and the constructions above that if UC € Alg &
then UCIE, F) € Alg& and is suspended by [E, F) for each E, Fe &, E < F.

4. A RADON-NIKODYM THEOREM

We now establish some integration theory for nuclear operator valued functions
sufficient for our application. No attempt is made at generality.

Let (2, Z, p) be a sigma finite measure space. A function f: Q — B,(H) is said
to be measurable if the function ¢ — (f(£)x, ¥), t € Q, is measurable for every pair of
vectors x,y in H. In view of our separability assumption on H it would suffice here
to require measurability for x, y in a dense subset. If f is such a measurable function
then, again by separability, ¢ — [|f(¢)]l; is measurable. The function f is said to be
integrable if t — ||f(1)]}; is integrable. Simple applications of Lebesgue’s dominated
convergence theorem reveal that for an integrable function f the sesquilinear form
[,] defined by

x, ] = S(f(t)x, M du(t)
2
satisfies

18

Do 2l | < Sufmm du(r)
n=1
2

for every pair of orthonormal sequences {x,}:2;, {y,}o>,. Hence there exists a
nuclear operator T such that [x, y] = (Tx, y) for x, y € H. The operator T is called
the integral of f and we write T = Sfdu.

Q

THEOREM 4.1. Let (2, X, u) be a sigma finite measure space "and let C(A) be an
operator valued measure on X such that C(Q) is nuclear and C(4) = 0 whenever A €
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and p(4) == 0. Then there exists a positive integrable nuclear operator valued function

D(t) such that C(4) == SD(t)dy(t) forall 4 € ZX.
4

Proof. Let Q denote a subset of H consisting of all linear combinations,
with coefficients in Q + iQ of a fixed orthonormal basis e;, e;, ... . For x, ¥y in i/
let p, , denote the scalar complex measure on 2 defined by g, , (4) - (C(4)x, ).
By the Radon-Nikodym theorem there exists a measurable integrable function

D, , such that u, ,(4) = SDX' y(1)du(2). The derivative D, ,(t)is determined almost
a

everywhere. Thus it is possible to choose a null set N so that for all ¢ ¢ N the mapping

x,y = D, ,(¢) is a finite and sesquilinear form, over Q + iQ on the vector pairs

x,y in Q. Also, by the monotone convergence theorem,

S(; De,,ven(t)) du(t) = Y, SDen""n(t) du(r) =

n

(4.1)
= Y He,, o (Q) = Y. (C(Qe,, e,) =: tr(C(Q)).

Hence we can arrange N so that Y, Den'en(t) is finite for all r¢ N. It follows by

standard arguments that for each ¢ ¢ N there exist a positive nuclear operator D(t}
such that D, ,(t) == (D(t)x, y) for all x,y e Q. Set D(z) == Oforte N. Since Q is
dense it follows that D(¢) is measurable and, by (4.1), integrable. Since

(CU)x, ) = e (d) == SDx_y(t)du(z) -

4

g S D), Ydutt) = (&D(z)d;:(r)x, y) for x,ye0,

J
4 4

the theorem follows.

The integral of an integrable function has been defined in a weak sense and
such a description could be used to integrate suitable B(H) valued functions. For
B,(H) valued functions however the integral exists in the following, much stronger,
sense, and this will be useful.

THEOREM 4.2. Let (R, Z, 1) be a sigma finite measure space and let D(t) be an
integrable nuclear operator valued function on Q. Then for each ¢ > 0 there exists a
measurable partition A,,4,, ..., 4, of Q and t;€4; for i=1,2, ... such that

iiSD(t)du(t) — % Dyud) <e
2
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Proof. We make the simplifying assumption that u(2) = 1 and that ||D(#)]}; <
< M almost everywhere since the theorem follows easily from this special case
Let P,, n=1,2, ... be finite rank projections such that P, tends strongly to the
identity. If X e B,(H) then P,XP,— X in B,(H). Thus P,D(t)P, — D(t) in B,(H)

for almost every ¢. In particular there is a measurable set K with u(K) < - E

and an integer N, such that ||P,D(t)P, — D(t)|, < —§~~ forallm > N,y and t¢ K.

Also there exists an N > N, such that

&
< —
1 5

“ SPNDU)PNdu(t) - SD(t)du [

Since PyD(t)Py is an integrable operator valued function with values in B(C")
it follows from the integration theory for scalar functions that there exists a partition
4y, 4., ..., 4, of Q such that

H SPND(t)PNdum ¥ PuD(t) Py

i=1

1
) s
for almost every choice of 1, € 4;,i=1, 2, ..., r. We can also assume that K ={_) 4,

i=1

for some s < r. It follows that

r r ! e
Y, PuD(#)Pyp(4:) — Y, PyD(1)Pyu(4; _5”
je=1 i=s+1 i1

r r e
| 3 PPerw@) = % D | <
i=s+1 fmst1 1 5

and

|

Combine the displayed inequalities above and the theorem follows.

Z D(tyu(d;) — Z D(t)u(4,)

£
i=s5+1 1 5

5 MAIN RESULT AND APPLICATIONS

THEOREM 5.1. Let T € Alg, &. Then there exists a finite positive Borel measure
T on & and an integrable nuclear operator valued function E - Ty on & such thas

G T = S T, dr(E),

&
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(i) | 1T = S I T2lhde(E),
&
(iif) Tg= ET(I — E_) almost everywhere.

Proof. Let T = UC be a polar decomposition of 7 with U an isometry and
C a positive operator. By the construction of Section 3 there is a nuclear operator
valued measure C(4) defined on the Borel algebra of &, such that UC[E, F) is sus-
pended by [E, F) whenever E, Fe &, E < F. Let t be the scalar Borel measure
on & defined by 1(4) = tr(C(4)). Plainly C(4) is absolutely continuous with respect
to T and so, by Theorem 4.1, there exists a positive integrable B,(H) valued deri-

vative E — D such that C(4) = SDE di(E). Define Ty = UD;. Then E—- T,
4
is integrable and (i) and (ii) follow.

Let ¥ be a countable order dense subset of & and let .# be the collection of
intervals 4 =: (F, G] whose endpoints belong to 4. To establish (iii) it will be suffi-
cient, in view of the remarks following Definition 2.4, to show that for almost every
E we have 4T A = 0 for every projection 4 = G — F with 4 ¢ # and E ¢ 4. (The
notational economy here should cause no confusion.)

Fix M, N in & with M < N and consider a scalar step function ¢(E) on [M, N)

n
on the form ¢(F) = Y aya,(E), where 4, = [Ei-1, E) and M =FE, < E; <
k=1

< ... < E, = N is a finite measurable partition. Since STE dr = UC(4,) is sus-
A
pended by 4, it follows that \ @(E)T:dr is suspended by [M, N) and thus that
[M, N)

S @(E)ATgddr = 4 S @(E)YTgdt 4=0
iM, N) {M,N)
for every 4 € .# which is disjoint from [M, N). Since ¢ is arbitrary it follows that
there is a null set 4,, y such that ATp4 =0 for all E€[M, N)\ 4,, y andall 4
disjoint from [M, N). Let 4% be the union of all the sets 4,y with M, N in 4.
Then it follows that if E ¢ A4* then ATzd = 0 for all 4 ¢ # with E¢ 4. Thus (iii)
is proven, since t(4%) = 0.

Recall that an operator T € Alg, & is said to be exactly decomposable if there

exist rank one operators Ry, R;, ... in Alg& such that [|T|, = ¥, |R;l}y and T ==
j==1

!
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COROLLARY 5.2. (i) If & is countable then each T in Alg, & is exactly decomposablc.
(i) Let T e Alg, & and let ¢ > 0. Then there exist rank one operators Ry, R, ,. ..

in Alg & such that T =Y, R;and Yy, Rl < ||IT||; + &
i=1 i=1

Proof. (i) Theorem 5.1 shows that T'= Y t({E})T and that this sum is exact.
E

€8
Since T is nuclear and suspended by a singleton, our remarks following Definition
2.4 show that each T is exactly decomposable. This proves (i).

(ii) Note first that if S e Alg, & is suspended by a finite number of points
then S is exactly decomposable. This is a consequence of Theorem 5.1 but follows
from Corollary 2.2 more directly. Theorems 5.1 and 4.2 show that there is an approxi-
mating sum Sy, which is suspended by a finite number of points, such that ||T— S, ||; <

< ¢f2. Similarly obtain S,, S;, ... each suspended by afinite number of points,
such that

T — (S, + ... +S,,)H1<~;;, n=1,2,...

&
1Sully < ——, n=2,3,....

2M+1

<
Write each S; as an exact decomposition S; = ¥, R{”. Then T = Y}, RY) and

i=1 i, J
ZHM”&<Hﬂh+a
1.]'

REMARK. The second part of the corollary shows that every nuclear operator
is approximately decomposable, and shows that in the unit ball of Alg, & the finite
rank operators are dense. This could also be obtained as a consequence of Erdos’ den-
sity theorem: In the unit ball of Alg & the finite rank operators are dense in the weak
operator topology [5]. This useful result (e.g. see [6], [8]) is usuvally applied in the
equivalent form: there is a net F, of finite rank operators in Algé& with ||F,|| < 1
and F, — I in the weak topology. This looks like a bounded approximate identity
for the weak operator topology, and in fact provides a (norm) bounded approximate
identity for the Banach algebra (Alg &) n 4 with the operator norm (24 = the
compact operators). In particular factorisation is possible (by means of Cohen’s
factorisation theorem [3, p. 61]). This algebra is rather interesting, being radical if
& is continuous. All closed ideals can be described by using the methods of [8]. Each
closed ideal J of (Alg &) n A is of the form

J={XeAlg&)n A |(I— EXE =0, all Ec &}

where E — E is a left continuous order homomorphism of &, with E < E for all
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Ein &. A similar description holds for the closed ideals of the Banach algebra
(Alg, &, - ).

REMARK. It also follows from Corollary 5.2 (ii) that the upper triangular
integral (in the usual sense [7]) of an operator T e Alg, & converges to T in the nuclear
norm. That is, if % #(T) = Y, E,T(E; — E,_,) is the upper triangular sum associated
with a finite subset & = {E) < E; < ... < E,} then % &(T) converges i ', to the
operator T as & runs through the directed set of all finite subsets.

This contrasts sharply with the well known fact that % ~(X) need not converge
i i for X e B(H) (although it does converge || [I,, 1 <p < oo0). Indeed the
canonical projection from B,(H) to Alg, & is not || |, bounded if & is infinite.
Let us digress a moment to indicate that Alg, & has #o complement in B,(/7). The
proof is modeled on Newman’s proof that A* has no complement in L! [9]. Speci-
fically we show that if there is a continuous projection = : B,(H) — Alg, ¢ then,
by averaging, we can deduce the uniform boundedness of certain canonical projec-
tions on Alg %, & a finite subnest of &, and thus obtain a contradiction. Indeed for
a given finite subnest & let G& denote the unitary group in &' (the double com-
mutant) with Haar measure dU. Define

7 (X) == S SU*n(UXV*)VdUdV.

G Gy

This exists as a Riemann integral of { |, continuous B,(H) valued functions on

G;X G . Wehave |[n_{[<{in]], for the operator norms of these mappings,and, since
wAlg & = (Alg, 6)G5= Alg, & it follows that m _ is a projection. Since n_(WXY) =
= Wrn(X)Y for W, Y e G it follows that ng(SXT) = Sn (X)T for S, Te F".
In particular
(E; — Ej-yp) 7fé:(X) (B — Ex-1) =0

for j >k. If & denotes the restriction to operators X with 0 = (E; -- E;_)X(E; -~
-- E;_,) then it follows that 7 is the canonical projection into Alg . Now we have
I|% i< ilm)f for all &, which is a contradiction.

THEOREM 5.3. Let T e Alg, &. If T is dissipative then T is exactly decomposable.
Proof. Recall that an operator is dissipative if (7% — T) > 0. Let T :=

--~:STE dr be the decomposition of Theorem 5.1. Since tr(T) = 0 when E_ : - E
pe
we have,

te(i(T* — T)) = Str(i(T‘E"’ — Tp))dt =
153

= Si tr(TE — Tp)dr

2
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where @ = {E : E_ < E}. This shows that @ is non void if 7% — T # 0. Let H,
be the closed span of {(E — E_)H : E e @}. This is the subspace on which & is
totally atomic. More precisely, if P is the orthogonal projection onto Hy then P
commutes with & and if P#0 then &, = {EP : Ee &} is a totally atomic nest on
H,. Moreover &, = {E(I — P) : E€ &} is a continuous nest on H, = (I — P)H

if P#/1. Let us write
i
T, T,

relative to the decomposition Hy @ H,. Since T, is also dissipative and belongs to
the continuous nest algzbra Alg &,, by our initial observation T, is self-adjoint.
Hence T, -= 0. But since T is dissipative this now implies that T, = T5. Thus
TiT, = TyTy, = (I — P)TPT (I — P) is a compact self-adjoint operator in a conti-
nuous nest algebra, and so T, = 0. By Corollary 5.3(i) Ty is exactly decomposable
relative to &, and this provides an exact decomposition relative to &.

REMARK. The first part of this proof shows that a non zero dissipative nuclear
operator cannot possess a continuous nest of invariant subspaces. In fact it is a
theorem of Lidskii that the closed range of T'is the closed linear span of the principal
vectors of T'. This is a simple consequence (see [17, p. 149]) of another well known
theorem of his, namely that the trace of a nuclear operator is the sum of the eigen-
values counted with their algebraic multiplicity [13], [4, p. 1104], [17, p. 139],[18,

Chapter 3], [6]. It is shown in [16] how the formula tr(7T) = Str(TE) dr also leads
to this result, thereby providing a triangularisation proof. (The triangularisation
proof of [6] uses Erdos’ density theorem.)

REMARK. If T'e Algé& and C(4) is the operator measure for C = |T'| then it
may happen that t(4) = tr(C(d4)) is a locally finite measure in the sense that t((E,F)) <
< + oo for all E> 0 and F < [ and 0, == 0 and I_ = 1. In this case we could
refer to T as a locally nuclear operator. Such an operator admits a representation

T:= S Tdt which exists, for example, as a weak integral. One can obtain a mild

generalisation of Lidskii’s trace theorem: If T is locally nuclear with eigenvalues
M (T),As(T), ... counted with their algebraic multiplicity, such that

Y 4(T)] < + oo then
i1

Y A(T) = limtr((F — EYT(F— E)) as E L 0, F 11
i:=1

It may be of interest to obtain external characterisations of locally nuclear operators
and of the sigma nuclear operators, where sigma nuclear means 7(4) is sigma finite.
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REMARK. We do not have an example of a nuclear operator T which is not

exactly decomposable.

If the measure t of Theorem 5.1 is discrete then, as in the proof of Corollary

5.2(i), T is exactly decomposable. However there are exactly decomposable operators
for which z is continuous.

w

e = NV R -8

12.
13.

14,

15.

16.

17.
18.
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