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PRODUCT STATES OF THE GAUGE INVARIANT
AND ROTATIONALLY INVARIANT CAR ALGEBRAS

B. M. BAKER and R.T. POWERS

1. INTRODUCTION

In this paper we study the restriction of product states of the CAR algebra
A to the gauge invariant algebra AT and the rotationally invariant algebra A€ <
< AT, We obtain necessary and sufficient conditions for such states to be factor
states, classify the factors according to type and obtain necessary and sufficient
conditions for the quasi-equivalence of two such states. We also obtain results for
the restriction of general factor states of U to AT and NE.

This paper is a continuation of [4] although it can be read with no knowledge
of our earlier paper. The main new idea of this paper emerged while we were talking
with Vaughan Jones and we wish to acknowledge our debt to him. The idea is this.
Suppose = is a *-representation of ¥ induced by a factor state w. Then if w has
certain properties, the weak closures n(UAT)” and =(UC®)”" may be bigger than one
would expect. In fact, one may have n(A7)"’ = n(W)"’ or n(WA®)” = n(WAT)"" (see
Theorems 3.4, 3.6, 3.8 and 3.9). Then the analysis of representations of ¢ and AT
reduces to analysis of representations of 2, about which much more is known. This
is a great simplification, which among other things allows us to classify with regards
to type the restriction of product states to AT and A (see Theorems 4.3 and 4.7).

2. NOTATION AND DEFINITIONS

Let 8, = M(2, C) be the algebra of all complex (2X2)-matrices. Set %,
isomorphic to %, for all peN = {1,2,3,...} and %, = ® £, isomorphic to
p=1

M(27, C) for all m e N. We denote by U the C*-algebra obtained from the norm
completion of the inductive limit of the o, i.e., W = |_J A,,. This C*-algebra,

m=1

sometimes called the CAR algebra, is a UHF algebra of type 2% (see [7]).
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Let G = SU(2) be the group of all complex unitary (2 X 2)-matrices of deter-
minant one and T be the subgroup of all diagonal unitary matrices of determinant
one. We associate G with the group of rotations (SO(3)) and T with the group of
rotations around the z-axis. We denote elements of G by letters g and /2, and when
we want to draw attention to the fact that they are matrices we will write U, or U,,.

We define a product action of G (and, therefore, T) on A as foliows. Fixing
matrix units E;;, ef?’ for 2, and # ,, respectively and isomorphisms 7y, : # = E;; -»
- e’ € .4, we denote by afP’ the *-automorphism of Z#, given by

otg,”’(/_{) = Ug,p)AUép)—l

for all A ¢ B, where UP = y,(U,). We define the *-automorphism a,, of %[ as fol-
fows. T A=A, ® A ® ... ® A, € U, we set

tg(A) = afi(4) ® 04 ® ... @ af’(4,,).

By linearity «, extends to %[,, and by norm continuity «, has a unique extension to
all of 9.
We denote by U° and AT the subalgebras,

AC = {4 eU; a,(4) = 4 for all geG}
AT = {4 cU; a,(d) = A for all geT).

Clearly, % o AT 5 AC. These algebras are AF-algebras generated by increasing
sequences AL and A of finite dimensional subalgebras (see [S] and [4] for further
details). If w is a state of 9 we denote by w® and w7 the restriction of @ to ¥ and
A7, respectively.

In this paper we will be primarily concerned with product states. Given states

e .
o, of #, we may construct the product state ® = ® w, of ¥ as follows. If 4 - -
p=1

= Al ® AB ® e ® Am € c‘)Im we define CU(A) = wl(Al)wﬁ(A2) e wm(Am)' By li-
nearity w extends to a state of 2[,, and by norm continuity to a unique state w of
We will make use of the Pauli spin matrices,

(0 1) 0 — i) 1 0’

0, = o, = 0. = .

10 (1 0 (0 — 1)

For aeR® we denote by a-0 = a,0, + a,6,+ a.o.. The association between

elements g € G = SU(2) and rotations R, is given by

(Ra)-0 = Uyla-o)U;?
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for all acR3. We will write ¢,.,0,,,0,, for y,(0.),7,(6,), v,(0,) and 6, -0, =
= 04,0, + 04,0,, + 6,,0,,. Note g,-0, is in A® and A is generated by these
elements (see [12]).

The Pauli spin matrices are useful for describing states w, of #,. A state w,
of %, may be characterized by a vector a, € R® by the relation (a,, a,,,a.) =
= (0(04y)> ®(0y,), ®,(0,.)). The vector g, must have length not exceeding one,

[ee]
la,) < 1, since w, is a state. Then todescribe a product state = ® w, of A we

k=1
need only give a sequence {a,} of three vectors of length not greater than one. To
(=]
draw attention to these vectors g, we will sometimes write @ = ® Wq,.
k~=1

Several times in this paper we will be proving that two states w, and w, are
quasi-equivalent, denoted w; + @2 This means that the cyclic *-representations

they induce are quasi-equivalent (see e.g. [6]). We will often make use of the fact
that two *-representations m, and 7, are quasi-equivalent if and only if the mapping
¢ defined by ¢(m,(4)) = ny(A4) for all A in the algebra is g-strongly bicontinuous
(or o-weakly bicontinuous). The extension of ¢ to the weak closure is a *-isomorphism
of m (A"’ with 7,(AW)".

For the case of factor states (states which induce factor representations) the
induced representations are either quasi-equivalent or disjoint. It follows that if
w, and w, are factor states and ||, — w,|| < 2 then o, 5 @2+

We will need some estimates on the norm differences of two products states
of AU. Each state w of an (n X n)-matrix algebra M corresponds to a density matrix
Q e M via the relation w(A4) = tr(4Q) for all A € M, where tr is the normalized
trace. If o, and w, are states of M with density matrices 2, and Q, then it follows
from the Powers-Stormer inequality (see [10]) that

@1 2(1 — tr(QQY) < oy — @]l < 2(1 — tr(QIEQY2YH,

m m
Ifo,=® Wa,, and w,= ® wp, are products states of U, one can use the above
fe<=1 k=1

formula to estimate the norm difference of w, and w, using the facts,
tr(Q2QL?) = tr(Q}li?QLi" ®...® Q;::Q;::) =

= I'(ay,b) I'(as,b,) ... I'(ay, b,)
where
I'(a, b) = tr(QY2Q}*) = tr((I + a-0)'*(I + b-0)4/?) =

@2 - i (VT Tl -+ Vi = 1aD) T8l + YT= 8D+

+ i /1 +Tal — VI =) YT F 1B — YT = [B1) a- blal lbl.
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Since this formula holds for all m andl the A, are dense in A it follows for

product states w, = ® co,,k and w, = ® w that we have

kol
(2.3) 21 —5) € fo, — ;<2 )1 — s
where
— ﬁ F(ag, by).

It follows (see also [10]) that the product states w, and w, induce quasi-equi-
valent factor representations if and only if

Y (4 — (g, b)) < oo.
k-1
We end this section with a computational lemma concerning I'(a, ).

LeMMA 2.1. Suppose a, b, ¢ e R® are vectors of length not greater than one
and a = b - ¢ with b and ¢ orthogonal, i.e. b-c=0. Then 1--1I(a,b) < icj®

Proof. Assume a, b and ¢ satisfy the hypothesis of the lemma. Rewriting the
expression for I'(a, b) we have

1--I'(a,b)=1 ~—;—V1 + la Y1+ bl — - 1/1 lal V1 --Tiby

(2.4)

4 (al }bl — a-B) (l 1 lagz-l—azl'l = ;a:)nh + :blz—;i

!/1'7—':bi").

Since /1 -+ jaf — 1 — |ai < )2 a! (similarly with a replaced by b) and a-b--
== {b|® we have

1 — I'(a, b) < 1—-—~12~11+laIV1+|bl—————]/l—.a, V1 —ib -

2.5)
; 161 (lal — [B1).

Since /1= Tal T — 16 > 1—lai, YT+ 1al YT+ 16 > 1 + la] — (a: ~ ) and
ol — 1b] < - - e ,b; “1 it follows that

1 — I'(a,b) < -; (la] — 16i) + ; IBi(lal — 161) < 11?“ Y
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Hence for || = 1/3 we have

2.6) 1 — I'(a, b) < |cf®

Now we need an estimate for when |b| < 1/3. Let s=——12— (la] -+ |b}) and

d= ~21--(!al — |b]). We have

V1T +lal Y1+ 16 + V1 —lal V1 — 6] = Y{1 + )% — @+ T — s5)* — &=

Since for 0 < x < y we have (32 — x%)¥2 > y — x?¥/y it follows from inequality
(2.5) that

1 —TI(a,b) < —%dz(l + 51+ —21— d3(1 — s)—t 4 [bld.
Since we assume |b] < 1/3 we have 0 < s < 2/3 and

1 —TI'(q,b) < -;—dz + 3d%/2 - 741— lc]2 =242 21 c]2.

1 1 1
Since d = — |c|?(la] + |b]) ! = — |c|®la|~! > —|c| we have
2||(|| 1) 21|l| 2[,

1 — I'(a, b) < (3/4)|c]?

for jb| < 1/3. Combining this inequality with (2.6) we have 1 — I'(q, b) < |c|%. Done.

3. RELATION BETWEEN =n(7)", »(aCy’ AND m(1)”

In this section we will show that, under certain conditions, if = is a factor re~
presentation of 2 then n(AT)"” = n(A)"" and n(A%)" = =(AT)"".

LEMMA 3.1. Fix ke N. Then N7 is generated as a C*-algebra by o,, and AC.

Proof. Let # be the C*-algebra generated by o, and AC. Since g,, € AT
2
and A° < AT we have B < AT. Let P,;, = % ePel?. One can show (see [12])
i, j==1
that P,  is an hermitian unitary element contained in % which exchanges %, and
B, for r#s eN. We will call the P,; transposition elements. Since o,, ¢ Z and
P,. € # we have o,, = P,,04.P,. € Bforall reN. Sinceg,, = e} — ef) we have
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e e for all reN and i=:1,2. Next we note that e{Jely :.: e{QeldP,, ¢ Z.
Now it follows from [5] that A7 is generated by elements of the form
CRRREN o)

11 22 Yt

iz

where the &'s are distinct and the sum of the i's equals the sum of the j’s, i.e., i,
p 1

w
-2 Y} jp- Since such terms can be written as a product of terms e’ or effefp : -

peal
= efel?) it follows that such terms are in #. Hence % > AT. Done.

LemMa 3.2. Fix ke N. Then o, and 97 generate W.

Proof. Let # be the C*-algebra generated by o,, and U7. Arguing as in the
Jast lemma we have P, € A°¢ < AT < # and, therefore, 0,, = P,.6;,P,, ¢ 4 for
all r ¢ N. Since 0,. € 4 and ¢,, and o, generate #, wehave &, < &4 for all r ¢ N.
Since the &, gencrate U we have 4 == . Domne.

[oie]
Lemma 3.3. Suppose w - [® Wa,, is a product state of W and (w, H, fi) is
/SIS |

o
a cyclic “-representation induced by . Suppose Z aix + aiy = co. Then, n(0,,) €

ke
e (A7) for each p e N.
Proof. Suppose w satisfies the hypothesis of the lemma. Let Z, =: ¥ ai. i ai,.

k22
We will show that n(ey,) € n(UT)". Since n(P,,) € 7(AT) forall r, s € N it will follow
by the argument of Lemma 3.1 that 7(6,,) = : (P,01.Py,) € n(UT)” for allp € N.
We define 4, € AT as follows:

n
97l X ; (1), 0k
A, 22, 2_, (a1x 2 iay,) efPef
k=:2

or

n
An = an Z (akx _E‘ iaky) el(.}?.)(akx - iaky)'
AR

Let Uyz):: nlexp(it(4, + A5)). We will show
Un(#) — n(exp(ito,)) = V(¢)

strongly as n — oo, where the convergence is uniform for ¢ in a bounded interval.
To accomplish this we will show {V(¢) f — U,(6)f|l = 0 as # — oo for unit vectors of
the form f= (4, ® 4: ® ... ® 4,,) fowith 4, 7,. Since the linear span of
such f are dense in # and the U,(¢) and V{¢) are unitary it will follow that U,(f) —
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— V(1) strongly. For such f the state w (4) = (f, n(4)f) is again a product state

o= @ @y, with b, = a, for k sufficiently large (k > m). Now we have
ket

G0 VO — S = 2 — 2 Re(w(exp(—it(d, + A7) exp(itoy,)))-

We have
d(:‘_ exp(— it(4, + A5)) exp(itoy,) =

= - iCXp(— it(An + AI;)) (An + An - Glx) exp(ito-lx)'

Integrating we have
exp(—it(4, + 43)) exp(itoy,) =

=1 iSexp(——is(A,, + AN (A, + A — 0y,) exp(isoyy) ds.
0

Inserting this in equation (3.1) we have

V@ f— U f1F =

= 2 Re (i S o (exp(—is(4, + 4))) (4, + A7 — 0y,) exp(isay,)) ds) ,

0
Then we have

(3.2) Vs — UAr < 28 l2((4, + A7 — 01y) explisoyy)) f1l ds.
0

Now the effect of the n(exp(isa,,)) on fis just to change the state w, determined by f
by rotating the first vector b, around the x-axis by 2s radians. Since this does not
change the general form of funder consideration we will simply replace n(exp(isey,))f
by fin estimating the right hand side of inequality (3.2). We have

In(A, + A7 = a1 ) fIl < ln(4, — e fll + In(4; — @) flI.
Estimating the first term we have

In(4, — e fI* = 0 (47 — ) (4, — ef})) =

n
= Zi';z Z (akx - iaky) (alx + ialy) (Df(eg})(akx + jaky) (Glx - ia/y)) -
k=2

- 2Z/1_1 2 Re((akx -+ jaky) wf(egz)(akx - jaky))) + wf(eg‘%))'
k2
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. 20
Using the product state property of w, == ® w, we have
/28 | &

(A, - - ef) fii* = opef)a, — 11 +
(3.3)

n
:‘ (Df(e‘.(:!_‘)) le s ‘X (ai.w : (l,:)) (2 * 2bk: - bl:.:.\ - bi?y)
ke
where

n
n Zﬁ'l Z (al’.':t - iaky) (b[\'x - lbt‘.’y)'
koog

Since by, == a, for k > m we have for n > m

bz

Oy * = 1 + Zn‘I Z (arx = ia(xy) (be Ty j(b[xy aky))‘

kon

Since Z, — oo as n — oo we have o, — 1 as n — co. Hence, the first term in equation
(3.3) tends to zero as n — oo. Since 2 + 2b,, — bj, -~ bi, < 4 we have that the
second term in equation (3.3) is not greater than 4o (efy)Z,*. Since Z, - oo
this sccond term tends to zero as # — co. Hence, (A, -- eR)f, — 0 as n — oo.

A similar calculation shows 'in(4, — e{) f — 0 as n — co. Recalling we have
replaced m(exp(iso,,))f by f we see our estimate of the convergence is uniform in s.
Hence, from inequality (3.2), i#: 71U () f -~ V(£)f. — 0 as n —» cc, where the con-
vergence is uniform in . Hence ¥(¢) =: n(exp(itc,,)) is in the strong closure of m(*).
Hence, V() and, therefore, n(ay,) (its generator) are contained in n{M7)”’. And as
we have seen this implies n(o,,) € 7(AT)"” for all p € N. Done.

0
THEOREM 3.4. Suppose © = ® Wa, is a product state of W and (z, 3, fy)
Lol *

is a cyclic “-representation of W induced by w. Suppose Y Giy i aiy -+ 00, Then.
K
(WY = (Y.
Proof. Suppose the hypothesis of the theorem is satisfied. From Lemma 3.3
we have n(oy,) € n(UY)"”" and from Lemma 3.2 we have that n(oy,) and =(")
generate () as a C*-algebra. Hence, n(A")"" = n(A)"". Done.

REMARK. Let 9 be the C#-subalgebra of 9 generated by the &, with k > 2
and YT and AUC be the group invariant C* subalgebras of . Recalling the arguments

of Lemmas 3.2, 3.3 and 3.4 we see that if 2’ aj. -+ ai, = oo then n(o,“)er(“l’)”
&

for k > 2 and n(AT)’ = n(‘QI)" (i.e., Theorem 3 4 holds for AT and N).
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To study the relation between n(2%)"” and n(AT)"" we will need the following
lemma.

[oe]
LemMaA 3.5. Suppose o = ® wq, is a product state of W and (m, A, fo) is
k=1

oo
a cyclic *-representation induced by w. Suppose Y, lau® = oo. Then there is a sub-
k-1

oo
sequence a,;, so that 2 @y * = oo and |ay,| "t ayyy — s as i — co. Furthermore,
i1 ’
n(s-0,) € n(AC)" for each p e N.
Proof. Suppose the hypothesis of the lemma is satisfied. Since the surface
S? of the unit sphere in R® is compact it can be covered with a finite number n, o
open discs {Dy;, i =1,...,n} of radius 1/2. Let Q,; be the set of ke N so that
a., # 0 and |a/ta,e D,;. Clearly,

forsomei==1,...,n,sayi,. Begin forming the subsequence i — k(i) by choosing
the first s, integers from O, where m, is big enough to insure that the sum of the
squares of the lengths of the chosen g, exceed one.

Since the closure of Dy, is compact it can be covered with a finite number
ny of open discs {Dy;, i =1, ..., n,} of radius 1/4. Let the sets Q,; be defined as
were the Q,;. Then, we have

Y laft= o0
keg,;
for some i ==1,...,n,, say i;. Pick the next m, integers for the sequence i — k(i)
from Q. in the order they appear in Qz,-1 and choose them not repeating those pre-
viously chosen, where m, is sufficiently large to insure that the sum of the squares
of these next choosen a,’s exceeds one.
Continuing the procedure we have begun in the obvious manner we obtain

[ee]
a subsequence i — k(i) so that ¥} [a,[* = o0 and la, ;7 ag, — 5 as i — co.

F==1
Now we show 7n(s-a;) € n(AC)". Let

n i
Z, =Y, law? and A4,=2Z;" Y, lakplor- og g
=

k=2 Qo=

U,(1) == n(exp(it4,)) V(1) = n(exp(its-a,)).

We will show U,(z) converges strongly to ¥(z) as n - oo. Arguing as in Lemma 3.3
it is sufficient to show || U, (1) f — V(#)f|| — O for unit vectors f of the form f = n(4; ®
®4;® ... @ A,)fo. For such vectors the state w, is again a product state w,=
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o]
= ® @y, with b, = a; for k > m. Since the computations are almost identical
ksl d

to those in Lemma 3.3 we summarize them as follows,
?
UL f— V(D fI* < 28 lln((4, — s-01) exp(it’s - a1)) f1f dt".
0

And replacing n(exp(it’s- a,)f by f as we did in Lemma 3.3 we have

(4, —s-0) fif = 0, (4, — 5-0)%) =

n
== 2 -2 ! 2 H 123 -1
=6, = ST Z70 Y i)t (B — 2by by, — b)) <le, — s i 32,
=2

n
Cp == E Ayl bk(i)'
i—2
We can express ¢, — s in the form

n
Cp— 8= Z;z.l Z lak(i)l2 (!ak(i)l—l bk(i) —S)'
f

Suppose ¢ > 0. Since b, ;, = a4, for i sufficiently large and la,;)| ta; — s as
i — oo there is an integer m so that | |a, ;| "6, ;, — ' < & for i > m. Then it follows

b3
e, — sl <( 2Z71 Y, Iak(i)l) +e.
ie

Since Z, - oo as n — oo and & > 0 is arbitrary we have !¢, -— s' — 0 as n — oo.
Hence, |[n(4, - - s-01) f]] = 0 and, thus, U,(¢) converges strongly to V() as n -» oo.
Hence ¥(¢) and its generator n(s-o0;) is contained in n(UC)"’. By the argument of
Lemma 3.1 n(2%) contains the transposition operators n(Py,) and, hence, n(s-0,): :
= (P p(s-07) Pyp) € (W) for all p e N. Done.

oo
THEOREM 3.6. Suppose @ -: ® w, . 1S a product state of A and (n, #, fy) is
k-:1 v

o0

a cyclic #-representation of W induced by . Suppose Y la, |2 =: co. Then there is
k=1

a unit vector s € R3 satisfying the conclusion of Lemma 3.5, and n(N°)" == n(a (NT))"

where R, is a rotation so that R,(0,0, 1) = s.

Proof. Assume the hypothesis of the theorem is satisfied. From Lemma 3.5
it follows that n(s- ;) € n(2A°)"". From Lemma 3.1 it follows that ¢,. and ¢ gene-
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rate AT as a C*-algebra. Since «,(0,,) = 5-0y it follows that s-0, and AC generate
o, (AT) as a C*-algebra. Hence, m(A®)" = n(oy(AT))"". Done.
REMARK. As in the remark following Theorem 3.4 we see that if ¥, la,f? =

k=1
= oo then there is a unit vector s € R? satisfying the conclusion of Lemma 3.5, and

n(UC)" = n(a, (UT))” where R,(0,0,1) = 5 and U is the C*-subalgebra of A gene-
rated by the %, with k > 2

CoOROLLARY 3.7. Suppose o = ® Wq, ISa product state of W and (n, H, fy)
k=1

is a cyclic *-representation of W induced by «. Suppose Y, |a,|? — (a;-s)? = oo
k=1
for all unit vectors s € R3. Then n(N%)"" = (A"

Proof. Suppose the hypothesis of the corollary is satisfied. Then from Theorem
3.6 there is a unit vector s so that n(UA®)” = n(a,(AT))" where R,(0,0, 1) = s.

Since Y] layf* — (a,-5)’= coit follows from Theorem 3.4 that m(o (A7) = n(AW)"".

kel
Hence, n(AC)"’ == n(A)"’. Done.

REMARK. As we remarked after Theorems 3.4 and 3.6 if the hypotheses of
Corollary 3.7 are satisfied then (%) = =(A)"".

We conclude this section with some results for arbitrary factor states of U.

THEOREM 3.8. Suppose o is a factor state of W and (n, H#, fy) is a cyclic *-re-
presentation of W induced by w. Suppose that w(c,,)? + w(0,,)? does not tend to zero
as k — 0o, Then n(AT)' = n(W)"’ and w7 is a factor state of the same type as w.

Proof. Assume the hypothesis of the theorem is satisfied. Then there is a sub-
sequence i — k(i) so that w(o,;,) = @ and w(g,;,,) = b as i = oo and a® 4 b% > 0.
Let

Ay = 2(a® + 571 (a + ib) effefi™

= (02 + b2)—1 (a + lb) e] (Uk(ll)x ja.k(")y)'

We will show that n(A4,) tends weakly to n(e{y) as » — co. Since the 4, are uniformly
bounded it is sufficient to show (f, (4, — ei¥)g) - 0 for all fand g in a dense set
in #. We take for our dense set vectors f and g of the form f= n(x)f, and g =
== (y) fo with x, y € U, for some m € N. Then we have for n > m

(f, W(e — A) 8) = w(x*(eld — A))y) =
(3.4
= w(x*eQy) — 2(a® + b%) ~* (a + ib) w(x*elY yel).

Since w is a factor state it has the cluster property (see [9]) so w(Ael) — w(A)m(e)
as p — co. Hence,
20(x"eByelk™) > a(x*elly) @0y — i0gn,) = w(x*eily) (@ — ib)
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as n — oo, Combining this with equation 3.4 we see (f, n(e{¥ — 4,) g) — 0 asn -» oo,
Since A, € A" and n(AT)”" is weakly closed we have n(e{l)) e n(AT)". Since n(e!) «
e n(A") for i- 1,2 and =(AT)" is closed under taking adjoints we have n(e}}) ¢
e r(NT)Y" for i,j = 1, 2. Recalling from Lemma 3.1 that the transposition operators
P, c A% < it follows that m(e¥) : = n(PeP,,) € m(ATY for i,j: 1, 2 and
k e N. Since the e¥ generate A we have n(2A7)" - - m(A)"".

Since f, is cyclic in & for =(AN)'"" and a(ATY": m(W)"', fy is cyclic in F# For (W),
Hence, if n”'is a cyclic *-representation induced by w7 then =7 is unitarily equivalent
to the restriction of = to A7, ie., n” ~ = UL, Hence, #'(AT)” is isomorphic to
(WY’ . m(W)”. Hence, w” is a factor state of the same type as w. Done.

THEOREM 3.9. Suppose w is a facior state of W and (n, H, f3) is a cyclic “-re-
presentation of W induced by w. Suppose the sequence of vectors w(o,) has at least
two linearly independent accumulation points. Then m(N6)” - n(W)"’ and w" is a
factor state of the same type as o.

Proof. Assume the hypothesis of the theorem is satisfied. Then there are
subsequences i — k(i) and i — p(i) so that w(g,;) — a and w(s,;) — b where a
and b are lincarly independent vectors. Let

poy

A, =010y, and B, =00,

Arguing as in the previous theorem we see 7(A4,) = n(a-0,) and n{B,) - n(b-0y)
weakly as n — oco. Since 4, , B, € NC and =(AC)"’ is weakly closed we have n(a-0,)
n(h-a,) € =(N)". Since @ and b are linearly independent @-0, and b-o, generate
#, . Since A“ contains the transpositions P, it follows that n(#4,) : : =( Py, 5, P,) ©
< n(A%)". Since the 4, generate ¥ it follows n(A¥)"" = (A"

Repeating the argument at the end of the last theorem we find w? is a factor
state of the same type as o.

4. FACTOR STATES OF %% AND 2T AND QUASI-EQUIVALENCE

a0
In this section we analyze when the restriction of a product statew - : &
[ | *

to A7 and NY is a facior state (i.e., it induces a factor representation of Y or WUY).
We classify these factor states asto type and obtain necessary and sufficient conditions
that two such states be quasi-equivalent. We also obtain results for the restrictions
of general factor states to 9{” and YIC.
o
THEOREM 4.1. Suppose o = k®1 Wa, is a product state of W. Then w©” is a fuctor

state if and only if

4.1) i (1 —ai,) =0 or oo.
L--1
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Proof. Suppose @ = @ w, is a product state of A and the sum (4.1) is
k=1

finite and greater than zero. We show A7 is not a factor state following an argument
of [14] and [12]. To this end let

J:n = Z (o-k: — I)
ksl

Let (%, o, fo) be a cyclic *-representation of 27 induced by w’. Let Uy (!) =
= exp(itn(J,,)). We will show that U,(¢) converges strongly to a unitary group U(¢)
in the center of n(AT)”’. Suppose A € AL and = n(A)f,. Then for n>m>r
we have

10— U S = I(Uu()*Ua(t) — DSI? < *ln(K) fI?

where K == J,. — J,. is the generator of the unitary group U, (¢)*U,(?). Then, we
have

NU.(DSf — UnOf}F < rPo(4"K2A) = rPa(47A) o(K?) =

= Po(ard) Y (1 —ab).

k==m+1

Since the sum (4.1) converges the above sum converges to zero as n, m — oo. Since
such vectors f'= n(A4) f, are dense in # the unitaries U,(¢) converge strongly to a
one parameter group U(¢) of unitaries.

Note the unitaries U(¢) are in the center of n(T)" since U(r) n(A) U(t) ~* = n(A)
forall 4 € U and such 7n(4) are strongly dense in n(A7)”". One sees that U(r) # I

since |(fo, U()fo)| = | TI exp(iay.t) (cos(t) + ia,;sin(t))] <1 for 0 <t < mn. Hence,
k-1

w7 is not a factor state.

Suppose the sum (4.1) is zero (so that a, = 4-(0, 0, 1) for all 'k € N). Then
by [14] or [12] w7 is pure and, hence, a factor state.

Next suppose the sum (4.1) is divergent. We show w” is a factor state following
the line of argument in [1]. From [3] it suffices to show that for each A e AT that
I',(4) - 0 as m - co where

T,(A) = sup{|o(4B) — o(Aw(B)|; B € (W) n AT, |B] < 1},

where (A7) is the set of elements of A commuting with AL, . Following [1] we have

F(A) = 3 l0(4E,) — o(A)a(E,)l

k=1
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where the E, are the minimal central projections of UZ, which can be expressed

E, = 1 exp(— ikt - iNt) dt
2n
0
where
1 bird l
Nm = 0(2’.“!) == Z ° (I - ak:)
Kt K2

Using this formula for the E, we find
Fm(A) == Z |“A'
k=1

where «, is the k" Fourier coeficient of the function f(£)P,(?),

Sf(t) = w(4exp(itN,)) — w(A) w(exp(itN,))
and

m

P = T (%) + 0~ a)e.

k:n+1

Summarizing we have I',,(4) = fP,| where jii"; is the sum of the absolute values
of the Fourier coefficients of /.
Note f can have at most » non-zero Fourier coefficients. Furthermore, since
f(0) == 0, we can write f() = (e" —1) g(¢) where g has at most # — 1 non-zero Fourier
coefficients. Note iigl, is finite. Since [hk!; < {7V k", we have
WPl = ll(e" — Dg P,y < ligiy (e — 1) Py,
To show I',(4) = 0 as m — oo it suffices to show ll(e¥ — 1) P, - 0 as m — oo.

Let P, (1) == ¥ o™ Then
k-0
”(ei’ - l)Pmul s E lak-}'l o akl'
k=0

From [1] there is an integer ¢ so that ., > «, for k < g and %,,, < %, for k > q.
1t follows from the telescoping property of the sum that

et — NP,y < 2maxiyy; k=0,...,r].

One easily sees (see [1] for details) that this max tends to zero as in — oo provided
the sum (4.1) diverges. Hence, @7 is a factor state. Done.
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[o0]
LEMMA 4.2. Suppose w = ® W, isa product state of W so that o is a fac-
k=1 .

tor state (i.e., Y, (I — ai,)=0o0r o). Let b, = (0, 0, ay;) for each k e N and w, =
Ko
= @ w, .Suppose Y, a;, + ai, < co. Then o’ ~ 0f and & ~ .
ket Tk K=1

Proof. Suppose @ and w, satisfy the hypothesis of the lemma. Note w] is

a factor state since Y, (1 — b7;) = 0 or co. We have using inequality (2.3)
k=1

o7 — ofll < flo — ool < 2VT=s

where
5= kI_I1 I'(a,, by).

Note I'(ay, b,) > 0for all ke N (I'(a,b) = 0 only if a = —b and |a| = 1). From
Lemma 2.1 we have 1 — I'(q, b,) < |cyl® where ¢, = a, — b, = (ay,, a;,,0). Then
we have

Y A —T(q,b)) < Y, ai, + aiy < oo.
k=1 kX1

Hence, s > 0 and [jo” — o] < |lo — w,|| < 2. Hence, the factor states @ and
@, and " and wf are not disjoint, 50 ® ~ @, and o’ ~ o . Done.

THEOREM 4.3. Suppose w = ® W, isa product state of W and Yy (- ag)=
k=1 k=t

=0 or co. Then o is a factor state and the type of ¥ is given as follows.
o]
CASE 1. aix + ai, = co. Then
ksl

ol is of typelif andonly if ¥, (1 — |ay]) < o0,
k=1
T is not of type 11, ;

' is semi-finite if and only if Y (4 — ) lal? < oo
k=1

o” is of type 1L if and only if '}, (1 — |ayl) a[* = oo.

k=1
o o]
Case 2. Y, a;,. + af, < co. Then,
kot
T is of type L if and only if a, = +(0,0, 1) for each k e N;

(o]
T is of type 11, if and only if Y (@, — )% < oo for some twith—1 <t <1,
k=1
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o0
o' is semi-finite if and only if 'V, (1 — @) (@ ~ 1)* < oo for some t with
F=1
-l <t<1;

w"is of type 1L if and only if ¥, (1 — ai2) (@, — 1)® = oo for all t with
K1
—1l<t<l

Proof. Suppose w = ® w,, is a product state of A and ¥, (1 —ai): -0
k::1 k=1
or co. Then by the previous theorem w7 is a factor state. Let (=, 5, f,) and (=7,

H7, f7) be cyclic “-representations of A and A7 induced by w and w7, respectively.
Suppose we are in Case 1 of the theorem. Then by Theorem 3.4 we have m(/)’+:
= (A", Since fj is cyclic in H#' for n(2N), f;, is cyclic in # for n(AT). By the unique-
ness of the Gelfand-Segal construction it follows that the restriction of n to AU’ is
unitarily equivalent to n7. Hence n(2)’ = n(A’)"" and =T(AT)" are isomorphic von
Neumann algebras. Hence, w and o7 are factor states of the same type. The type of
w follows from [8] (see also {10]). This completes the analysis of Case 1.

Suppose we are in Case 2 of the theorem. Then by Lemma 4.2 we have 7 =~ w}

(o]
where wy = ® w, with b =2 (0,0, a,.). The classification of invariant states has
k1 &

been carried out in [13, Theorem 3.1] and translating their results into our notation
the conclusion for Case 2 follows. Done.

[>>] >
Lemma 4.4, Suppose o, = ® Wa, and W, = @ , arequasi-equivalent pro-
kel k= k

1

duct states of W. Then Y,

k=1

(1 —ai.) < oo if and only if Y, (1 — bi;) < oo.
KT

Proof. Suppose w; and w, satisfy the hypothesis of the theorem and

o0

IE (1 -~ af) < oo. Let ¢, = (0,0,1) if @,. = 0 and ¢, = (0,0, --1) if a,. <O.

01

Let w, == k® o, . We recall from the discussion in Section 2 that w, T ©o if and
e’

=]

only if Y, (1 — I'(a,, ¢,)) < co. We have from equation (2.4) and the fact that
k-1

lep; =1 that

1 — [a, ) =1 — 2712 T Fa+2-V%(a, —a,-c.) ( Vi+ Iakl2 — 11— lak|,)_
7%

Since |1 + |a,| > /2 — (1 — |a)/V2 and V1 + Ja,| — V1 = ja,| <)/2 ia,' we have
1
1 —T(a,¢) <(1— Iakl)/Vz + "2— (la,) — ap-c) <

< (I —lal) + (la;! —a.-¢) <
<l—a,c, <1 —daj..
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Since Y (1 —ai;) < oo by assumption we have Y. (1 — I'(q,, ¢)) < oo and
kil k-1
o0
@, 5 wo- Since w, + w, it follows that @, ~ w,. Hence, Y 1 —r@,, c) <
K=
< oo0. Now, we have
1 — (b, c) =1 — 2721 4 [b,| + 2-V2(b,| — b,-c,)-

,(v1+|bk|—1/1—1bk\ )

2]b,|

Since 2121 4-b,| < 1 — (1 — |b,[)/4 and 1 + [b,| — V1 — |b,| > |b,] we have

1 :
1 =TIy, ¢) = ) (1 — 1bl) + 27%2(1by | — by-cy) 2
> '1"(1 — by + L (bk — b)) ="1"(1 —bc) >
4 4 4
1
> W (I — lbh) = (1/8) (1 — bR,).

Since Y (1 — I'(b;, ;) < oo we have Y,(1 — b%,) < co. Hence, we have shown
K= k=1

(=2 0
that }: (1 — af,) < co implies Y, (1 — b2,) < co. The same argument gives the
k=1 k=1
reversc implication, so we are done.
(o] 0
THEOREM 4.5. Suppose w, = k@l Wq, and o, = k@l @, are product  states

whose restrictions ol and ¥ are factorial. Then the question of whether o and
wj are quasi-equivalent may be determined as follows.

CasE 1. § (1 — a,) = oo, then,
colTk:;« wi if and only if there is a g € T so that @, « w5 °%.
CASE2. ¥ (1 — al) =0, 50 ay = (0,0, 1) for all ke N, then,
wflff;:f of if and only if b, = +(0,0, 1) for all ke N,
,g-‘l e — byl < 00 and kil (@ — by) = 0.
Proof. Suppose w, and w, satisfy the hypothesis of the theorem. We begin

[
with Case 1 (<=). Assume Y, (1 — ;) = oo and thereis a g€ T so that ; — w;
K=

(o]
oa,. Then w; = wy o0, = k(:bl wc, where ¢, = Ryb, for all £k eN. Note b,, = ¢, .
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Since w, + @; and Y (1 —a}) == oo it follows from Lemma 4.4 thatjy; (L -
E=1 e SRS

-— ¢},) : + 00. Since @, + @3 We have Y (1 - I'(a, ¢)) < oo. Hence, I'(a;, ¢,): -
ksl
== 0 for only a finite set Q of ke N. Let d, ==0for ke Q and d, == ¢, fork ¢ Q.

oo fee)
Let w; = ® @, . Clearly, we have Y} (1 = di,) = oo and, thus, by Theorem 4.1
k-1 k kool
of is a factor state. By inequality (2.3) we have
lof — of| < o, — o < 2)1 —
0f —of < oy e <2)T—4
with
(o]

si= [ I'ay,4d) and sy= [f I'(cy, ).
k=1 k=1

Since Y, (1 — I'(a,, d,)) < oo, ¥, (I — I'{c,, d)) < oo and I'(a, d)) > 0,
ko1 fe:=1

I'(c,,d) > 0 for all kN it follows that s; > 0 and s, > 0. Hence, [of — 0] <

< 2 and i'of — w]|| < 2 and since these states are factor states we have ] T !

and wf + ol. Hence, ol ~ wf = wl. Hence, we are done with Case 1 (<=).

Next we deal with Case 2 (<=). To this end we assume that a, = --(0, 0, 1),
b, = 4(0,0,1) forall keN, Y}, a,. — b, < oo and Y, (g, - b;,) = 0. Then
k=1 k=1

it is clear that a finite permutation of the k ¢ N will carry the state w, onto the state
w, (see[12] for further details). Done Case 2 (<=).
Now we prove the implication (=). To this end assume 7 Y wl. Le
{n;, #;, i) and (], 7T, fT) be cyclic “-representations of 2 and U7 induced
by w; and o, respectively, for j==1,2.
We consider Case 1 (=). We will divide this case into four subcases depending
[oe] oo
on whether the sums Y, (ai, + ai) and 5 (bi, + bj,) are A(infinite, infinite),
k:=1 ko1
B (infinite, finite), C(finite, infinite) or D (finite, finite).
We begin with subcase A. Assume we are in subcase A. Then by Theorem
3.4 we have m,(NT)"’ = n,(AW"" and, therefore, =} and the restriction of 7; to AT
are unitarily equivalent via a unitary operator U;from #; to J#7 sothat U;z1(A)U; :
= n(d) for all Ae¥U” and U.f; = fI for i=1,2. Since by assumption
of ¥ ] there is a o-strongly bicontinuous *-isomorphism o of =7(UAT)y’ onto
al(UTY" so that a(nT(4)) = nl(4) for all A AT. We define a o-strongly bi-
continuous “-isomorphism ¢ of m, ()"’ onto 7, ()"’ by the relation
o(my(4) = Usa(Uymy (4) U 1) U, = my(4)
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for all 4 € AT, Note that ¢ is o-strongly bicontinuous so it extends uniquely to
a *-isomorphism of 7,(AT)"" = m;(A)"" onto (AT’ = m(A)".

We will show @(7,(%#,)) = n,(%#,) where we recall 4, is the first (2 X 2)-matrix
algebra in the tensor product for . To this end suppose A €m,(%,;). Then A
commutes with everything in 7,(U”) (recall that 9 is the C*-subalgebra of 2 gene-
rated by the 4, with k 2 2). Since ¢ is a *-isomorphism we have ¢(4) commutes
with everything in ¢ (n,(U”)) = n,(AT). But, by the remark following Theorem 3.4
we have my(UT)" = my(A)”". Hence B = ¢(4) € (A"’ N mo(AY. Now B e my(A)”’
can be uniquely expressed in the form B = i: (ef)’) By; with B € my(A)"' n

i, j=1
2
N n(%,)’ (in fact, B;; = Y] ma(el) an(eg-l,‘))) . Since m,(e¥) e (A’ and Be
k=1
e my(A) we have B;e ny(A) for i ,J =1,2. We also have B;; e m,(%,)’. Since
A, and A generate Q[ we have B;; e m,(U) n my(A)”. Since 11:2(%[)" is a factor

the B;; must be multiples o;; of the identity. Hence, ¢(4) = Z a;ms (eff) €
i, j=1

€ my(%,). Since ¢ is a *-isomorphism we have ¢(m,(4)) = my(B(4)) for 4 € B, and

B a *-automorphism of %,.

We further determine f by noting that o,, € AT and, thus, ¢(m,(0,,)) = 7,(0;,).
Hence, B(0,,) = g,,. Thus, f corresponds to a rotation around the z-axis. Hence
there is a g € T' so that a,(4) = f(4) for A € #,. Recalling from Lemma 3.1 that
the transposition elements P, € AT we have for 4 € 4,,

o(m(PyAPy)) = @(my(Pyy) o(my(A)) o(my(Pyy)) =
= my(Pyy) Matg(A)) mo(Prye) =
= Tp(Pyatg(A4) Pyy) = ”2(%(}) 1A Py,)).

Since Py, %,\Py, = B, we have ¢(m(A)) = nx(a,(A4)) forall 4e %, and all keN
Since the %, generate A we have @(mn,(4)) = m,y(x,(4)) for all 4 <. Since ¢ is
o-strongly bicontinuous it follows that 7, and 7, o a, are quasi-equivalent. Hence,
Wy Wy ° . Done, Case 1 (=), part A.

Next we will show that if o] v ws, then subcase B can not occur. We will
) ko) .
assume @} ¥ ol, ¥ (@ + a})) = co0 and Y, (b}, + bf)) < oo and arrive at a
k=1 k=1

contradiction. Let ¢, = (0,0, b,,) for ke N and w; = ® @c, . By Lemma 4.2 it
follows that ol T ol. Then T < ol. Let (nT,#7, ) be a cyclic *-represen-
tation of AT induced by w]. Since wl - ¥ there is a o-strongly bicontinuous
*_jsomorphism 6 of nZ(AT)”" onto 73 (QIT)" so that §(n7(4)) = n3(A) forall 4 € AT,
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We recall in the argument of Lemma 3.3 we showed that if Z (@i -~ afy): 00

then my(0,,) € m,(UT)”’ by constructing U,(1) € 7,(A) so that U,,(t) - eXp(ltTEl(O'“))
strongly as n — oo. Carrying out the same construction in the representation 7l
we obtain a sequence Uj(f) € n1(2T) which converges strongly to a non-trivial one
parameter group as n — oo. Since 0 is o-strongly bicontinuous O(U(t)) must
converge to a non trivial one parameter unitary group. But this is a contradiction
because if one uses the construction in Lemma 3.3 and calculates for the repre-
sentation 73 induced by wj one sees that O(U.(t)) —» I as n — oo. Hence, if
! v ] then subcase B can not occur. The same argument shows that if col wf

then subcase C can not occur. Done, Case 1 (=), parts B and C.
o0

i T T 2 2
Now we consider subcase D. Assume ay T o and k; (aix + aiy) < oo and
=) R , .
o ’
Z (b, 4- b3) < oo. Let 4, == (0,0, a,,), by =(0,0,5,.), o] =-: ® w, and o}
k<1 ko1 k

o
= ® w, . It follows from Lemma 4.2 that wlT»qv o, o, .~ ), of ~ i’ and
' p
. ~ w4. Hence, w;7 v w,T. Since w] and w; are a-invariant for ge T it fol-
lows from [1] or [13] that w, o~ ;. Since w; v w; and w, ~ w;, we have w, ~ Wy.
Done, Case 1 (=) part D.
Finally, we come to case 2(=). Assume @] ~ w? and a, = (0,0, 1) for

all keN. Then Y (aZ + af,) = 0 < oo. Then by the argument of Case 1 (=
Eo1

subcases B and C, we have Y, (bi: + bf,) < co. We have w? is of type I (in fact,
k=1

{ is pure) so wf must also be type I. Hence, by Theorem 4.2 we must have b, =

=z 4+ (0,0, 1) forall keN. Agam we have a,-invariant states for g € T so it fol.

lows from [1] or [13] or [14] that Z (ay: — b;;) < oo and Z a,. — b, = 0. Done.

Next we consider product states restricted to UC the rotationally invariant

algebra.

LeMMA 4.6, Suppose @ = ® Wa, is a product state of Wand Z ‘ai* < oo.
ke

Then w° is a factor state and w® ~ ¢ where 1 = ® T, is the unique trace state of U,
k=1}

Proof. It follows from [1 1] that the extremal traces of ‘lIG are all of the form
p® with p = ® @y, with b, = b for all ke N. Hence, 7 = ® T, == ® @y with
b, = 0 for all k e N is a factor state of UC.

o0 o0
Suppose ® = ® @, is a product state of € and Y, |g,|* < co. We will show
k==1 k=1

[=-]
o€ is a factor state which is quasi-equivalent to t©. Let w, = k®l w, , Wherea,,=a,
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for k < nand a,;, =0 for k > n. Let
Q, =1 J+ a.0).
k=1

Note that w,(4) = 1(4Q,) for all 4 €A. Let ¢ be the conditional expectation of

A onto AC given by the group averaging map ¢(4) = Sozg(A) du(g) where p is

G
Haar measure on G. Note that ¢(4B) = A@(B) for A ¢ U® and Be Y. Since 7

is ag-invariant we have ©(4) = t(¢(A4)) for 4 € A. Hence, for 4 € AC
0,(A4) = 1(AQ,) = (9(AQ,)) = 1(49(2,)).

Hence, wf(A) = 1(@(Q,)2A¢p(Q,)2) for all 4 € NC so wf is a vector state of the
representation induced by t°. Hence, ¢ v of. We estimate the norm differences

o — w8 for n < m from inequality (2. 3) as follows :
lof — ol < o, — 0.l < 2V1 =5,
where
II (a0
k=n+1
and
1 —I(a,,0)=1— ——V1 +la,| — — V1 — lay!.

Since Vl +x2z2 14+~ —x — —;——xz for —1 < x < litfollowsthatl — I'(q,,0) <
1

?la,,l2 Hence, we have

1 nt
0< ! —5m< Y lgf

kasn-t1

Hence, s,, — 1 as n,m - oo and, thus, ||wS— wS||— 0 as n,m - co. Hence,
G
the states ¢ converge in norm to w® = (® Wa ) - Since w€® is the norm limit

of states w¢ which are vector states of the type II, factor representation induced by
G it follows that w® ~ 79 (in fact, 0® is a vector state of the representation in-

duced by 1°). Done.
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20
THEOREM 4.7. Suppose w — ® W, Isa product state of . Then wC is a factor
k=1

state if and only if
Y (1 —(s-a)%) =:0 or o0
Eol

Jor all unit vectors s € R3. Furthermore, if o° is a factor state its type is given as

Jollows.
0 .

Case 1. Y, (1ai* — (s-a,)*) = oo for all unit vectors s € R®, then,
e

=]
wC is of type 1 if and only if Y (I — a) <oo;
£l

oC is not of type 11;;

<o
w% is semifinite if and only if ¥, (1 — 'a;) ‘a,* < oo.
i

1

o0 o0
Case 2. Y ial*: s 00 and Yy, (lai® — (s-a)?) < oo for a unit vector scR?,
ko ko1

then,
wC is of type L if and only if ¥, (1 — (s-a)*) < oo andsince % is factorial
K1

a, == -5 for all keN;
wC is of type 1L, if and only if Y (s-a,--1)* < oo for some t with ~-1 <
kol

<t<l;
=]
w9 is semifinite if and only if ¥, (1 — (s-a)?) (s- a, — t)* < oo for somet
k=1

with —1l <t < 1.

oo
Case 3. Y] la,f® < oo, then,
k=1
wC is of type I1,.
(Note that @€ is of type III if it is not semi-finite.)
Proof. Suppose © = ® w,, and (w, ¥, fo) and (n° HC, f§) are cyclic
k-1

*.representations of A and A induced by w and w®, respectively.

o0
First let us assume we have the situation of Case 1 so that Y, (la,i® — (s-@,)?) =
k=1

=]
~= oo for all unit vector s eR3. Since 1 > [q,j® we have ¥, (1 -— (s:a,)?) = oo.
K=1

From Corollary 3.7 if follows that m(U¢)” = n(A)"". Hence, f, is cyclic in # for
(A®) and, hence, the restriction of © to AC is unitarily equivalent to =% (by the
uniqueness of the Gelfand-Segal construction). Hence, (%) is *-isomorphic
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to i(AC)"”" = n(W)"". Hence, w’ is a factor state and its type is the same as w. Done,
Case 1.

’ ®
Next we assume we are in the situation of Case 2, so Y, |g,|? = co and
k=1

[ o0
Y (al? — (s-a,)?) < oo for a unit vector s eR3. Since Y, |a;/2 = oo it follows
k-1 k=1

from Theorem 3.6 that m(A®)" = n(x, (AT))” where g € G is such that R, (0,0, )=
=s. Let m, be the restriction of © to o (A7) and let m, act on #, which is the
closed span of {n(o (A7) 'fo} = {m(U°)"’f,}. (Note f, = fy e, is a cyclic vec-
tor for m,.) Note f, is cyclic in #; for n,(U°) so the restriction of m, to A% is
unitarily equivalent to n°. Hence, n%(2%)"’ is *-isomorphic to 7,(AF)"’". Since #,
is an invariant subspace of # for n(a,(AT)) and (o (AT))”" = n(A®)"”’ we have
1 (UC)” = my(or, (AT))"”. Hence, we have'nC(AC)" is *-isomorphic to m(a (AT))".
Now 7,(a,(UT))" is a factor if and only if the restriction of w to a (U7) is a factor
state. And this restriction is a factor state if and only if w o a;'is a factor state
when restricted to A7. Applying Theorem 4.1 we find (w o a; )7 is a factor state if

and only if §1 (I — (s-2,)) = 0 or oo. (Note the condition 37 (a,[2 — (s-a,)%) <
k=1 k=1

o0
< oo implies that Y, (1 — (s"-a,)®) = oo for all unit vectors s’ # =+ s.) Hence,
K=

w® is a factor state if and only if }, (1 — (s-@,)®) = 0 or oo for all unit vectors
k=1

s €R3. To determine the type of w® we note that the type of w® in this case is
the same as the type of the restriction of @ to a, (") which is the same as the type
of (w o 0z M)T. The type of (w o a;%)7 can be determined from Case 2 of Theorem
4.3 by replacing a,, by s-a,. Done, Case 2.

(=]
Finally, we assume we are in the situation of Case 3, so Y, laf? < oo.
ed k=1

Then Y, (1 — (s-@,)?) = oo for all unit vectors seR?® and from Lemma 4.6
k=1

we have o ~ 7% Hence 0 is a factor state of type IT,. Done.

oo [ o]
THEOREM 4.8. Suppose w, = ® wa, and w, = ® w, are product states of
k=1 k=1 &

A so that of and & are factor states. Then the quasi-equivalence of w¢ and ©$
may be determined as follows.

CASE 1. § (1 — (s-a)?) = oo for all unit vectors s €R3, then,
of :J]wg if and only if there is a g € G 50 that @, — wy o0,
CASE 2. i (1 — (s-a,)® = 0 for a unit vector s €R3, then,
wf k;;;lwg if and only if there is a g € G so that Ryb, = + s for all keN

and Y, la, — Rgby| < o0 and 'y, (a, — R,b,) = 0.
K k=1
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Proof. Assume w, and w, satisfy the hypothesis of the theorem. We begin
with Case 1 (<=), so we assume thereis a ge G with w, v @20 and Y (1 —
s
—(s-a;)?) == oo for all unit vectors s eR3, Let ¢, = R.b, for all kcN and w;: -
o0

“Wyex, T @ . Since o, 5 @; we have from the discussion at the end of
ko1

Section 2 that Y, (1 — I'(a,, ¢,)) < co. Hence I'(ay, c,) = 0 for only a finite set
k1
O of keN. Let a;, =aq, for k¢Q and a;=:0 for ke Q. Let 0] = ® W, -
I S} J

Clearly, io (1 — (s-a)*) = oo for all unit vectors s € R%. Hence, (¢ is a factor
state by 'I}tlzaorem 4.7. Since I'(a;,a;) > 0 and I'(a;,c;) > 0 for all kN and
kof_, (1 — I'(a,, a})) < oo and f‘, (1 — I'(a;, ¢,)) < oo we have from inequality 2.3
a;d routine estimates of inﬁknai:tle products that

lof — i<l - off <2

and
¢ — of|l < 0] — w4l < 2.

Hence, of - ¢ and w¢ ~ coa. Hence, wf’ ~ @f - w§. Done, Case 1 (<=).

Next we consider Case 2 (<=). To this end we assume Z (1 —(s-a)?):

for a unit vector s € R® and there is a g € G so that R b, = ;t; s for all k&N

and Z la, — Ryb) < oo and Y, (a, — Ryby) = 0. Let ¢, = Ryb, for k e N and
£

® @, . Then ¢, = b, except for a finite set Q where ¢, = —a,. Since
k=1

Z (ax — ¢) == 0, Q can be divided into two equal sets Q, and Q, so that for
s

keQ,, a,=:5= —c, and for ke Q,, a,= —s= —c,. As we saw in the
discussion in Lemma 3.1, UC contains the transposition elements P,  and, there-
fore, the finite permutation elements. Since 0, and Q, are disjoint finite sets with
the same number of elements there exists a finite permutation which exchanges the
sets @ and Q,. Let U be a unitary element of UC corresponding to such a per-
mutation, e.g. U = P, ,P. j co Py i where @, = (iy,...,1,) and Qs == (j, ...

-5 J)- One sees that for such a umtary oy (UAU- 1) = wy(4) for all 4 cAC

G
Hence wf and w§ are unitarily equivalent. Hence, wf v of = w§. Done, Case

2(<).
Now we consider the implication (=). We assume of ~ w§.Let(n;,H# ;,f:)

be the cyclic “-representations of W induced by w; , fori == 1, 2. Let ¢ be the norm
closure of {m(MC)f;}, let P; be the orthogonal projection of J#; onto H#’{ and let
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(=8, #¢, £ be the cyclic representation of A obtained by restricting =; to A°
and #¢. Note 7€ has a cyclic vector f¢ = f; and is characterized by the state @?.
Since wf v ¢ there is a g-strongly bicontinuous *-isomorphism ¢ of n¥(A€)"’ onto

7S(AC)"”’ so that p(nf(A)) = n§(A) for all A e AC.
Now let us assume Y, |a,2 = co. Then by Lemma 3.5 thereis a sequence
=1

A, € AC of the form

n
A, =21 2 |ak(i)[01 * O kqiy
i=2
with

z, =

lag |2 — oo as n— oo,

I

so that U,(#) = m,(exp(it4,)) converges strongly to V(z) = m(exp (itsy-6,)) where
5, €R® and |y ~tay, — sy as i — oo. Since #¢ < 7, is an invariant subspace
for n,(A°) we have

UZ(t) = nf(exp(itd,)) = U ()P, = VO(1) = V()P

strongly as n — oo.
Since V(m) = —I we have U%(n) - —I strongly as n — oco. Since ¢ is o-
strongly bicontinuous and the US(n) are unitary we have

@(U{(m)) = o(nf(exp(ind,))) = n§(exp(ind,)) » —1
strongly as n — co. Now we have

Re(fS, (I — ng(exp(ind,))) /$) = Rewy(I — exp(ind,)) < ;— Roy(AZ) =

1 o 7 a9
= "2_‘7T2 (|Cn|2 +Z; " Z |ak(i)|“(3 - 2b1'bk(i1 — lbk(i)lz)) <
i=2

< % 7ot + 3(Z,)
where

n
— 71
Chn— Zn Z [ak(i)[ bl:(i) .

i=2

Since the above expression approaches 2 as n — co and Z, — co, we have for
each ¢ > 0

1
— |2 > 2 —¢
2
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for n sufficiently large. Hence, !c,| = n~/2 for n sufficiently large. On the other hand
we have from the Schwarz inequality

el < Z71 Y, layl b} < Z7PZYPY0R = (X,[Z,)M*
i=9
where

n

== Z :bk(i)lz'

Since |¢,|2 2 =~ for n sufficiently large we have Y, > n~1Z, for n sufficiently large.
Hence, Y, — oo as n— oo.

o0 0
We have shown that ¢ ~ of and Y ia.> = co imply that Y, 15, = co.
= h

Now consider the sequence of vector pairs {(!a, 12+ 1by.i,!%) 7%briiy» Braiyi *brciyy
where we set the second vector equal to zero if b, = 0. These vector pairs lie in
a compact set, so by the argument of the first part of Lemma 3.5 there is a subsequence
i — p(i) of the original subsequence i — k(i) so that

bpi| 7 bpiy > 52 and  (la -3 b

& I’(l)] -L !bp(l)l p(l)

as i > oo and Y] |b,;)|* = co. The argument which showed Y, > Z,/n for n

H
sufficiently large can be applied to this new subsequence i — p(i) to show that A
can not be zero or one (in fact, we will see that 1 =2-Y2). In summary we
have a subsequence i — p(i) so that

-1 ] =1
Iap(l)- ap(i) - 8y :bp(i)-‘ bp(i) = Sa
and

iap(i)s/ibp(i)i == Ml — A%~

as i —» oo. Now we redefine A, as

A = Z ! Z lap\!)-a.l ap(n

ez 2

with
Z,= i |@p iy 2.
i==g
Repeating the calculations of Lemma 3.5 we have
7, (exp(it4,)) — my(exp(its, - 0y))

To(exp(itA,)) — my(explitse- 0y))
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strongly as n — co. Since #¢ < #; and the #¢ are invariant under the action of
7, (AC) we have strong convergence on #F, for i = 1, 2. Since ¢ is a-strongly bi-
continuous and ¢(nf(4)) = n§(4) for all 4 € AC we have

o(my(exp(its, - 0,)) Py) = ma(exp(itrsy- 0,))Ps.

And since ¢ is an isomorphism we have r =1 and ¢(m,(s,-6))Py) = my(s2-0,)Ps.
Let g, € G be chosen so that Ry (0,0,1) = s; for i = 1,2. We claim

(my(tg (A)Py) = mo(eg (A)P, for all A e U,

Since AC is a -invariant this relation holds for all 4 € AC. And since

P(m(%g, (01))P1) = @(mi(sy01)Py) = my(s2-0) Py = m(0tg (03:)) P2

this relation holds for g,,. Since from Lemma 3.1 we have that o,, and U generate
AT and since ¢ is a *-isomorphism it follows that

0 (m(as (A)P) = malas (ADPy  for all A € AT,

Now A — m,(ag (4))P; are cyclic representations of AT induced by (w,-oozgi)T

for i = 1,2. Since ¢ is o-strongly bicontinuous it follows that these two represen-

tations are quasi-equivalent. Hence, (w; oo )" = (@, o #g)”. Applying Theorem
(o] v o]

4.5 to the product states w; o Ay = ® g (a,'(=R;1 'a,) and w, o g, = k® Ws,

k=1

=1

(b, = R;'b,) the conclusion of the theorem follows.
2 Yk

o0
We have proven the implication (=) assuming Y, |a,|? = co. Now we assume
k=1

o0 00 o0
Y laul? < co. We showed earlier that ¢ ~ ¢ and Y, |g;2 = coimply Y |b/*=
K1 =1 Pres)
== co. The same argument with the states w, and w, interchanged shows that

o0 (o] o0
g ~ w§ andkz,l b, |2 = ooimplies/; la,|2 = co. Hence, if kz;llaklz < co (and by

assumption wf?wg) we have Y, |b]2 < co. Then by Lemma 4.6 we have

0f ~ 1% and w§ ~ 6. Hence, v ~ wf. Done.
q q q

We now prove some results concerning general factor states of 9.

THEOREM 4.9. Suppose w, and w, are factor states of U so that ol and wl
are factor states of T. Suppose wy(c,,)? + ,(0,,)? does not tend to zero as k — oo.
Then of ~ o} if and only if thereisag e T so that w, v W2,

Proof. Suppose w, and w, satisfy the hypothesis of the theorem. Suppose
there is a ge T so that w, T Wy = Wy 0 &, Let wy = (1/2) (w, + w3). We have that
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@y 18 a factor state and |jo; — ] = ljo; — wyl| =-—2<[|a)1 — o3| < 1. Since

& w; it follows (see [9], Theorem 2.7) that w; and w; are asymptotically equal

so w,(g;) — wi(a;) = 0 as k — co. Hence, wy(0;) = w,(0,) and wo(o,)? - - @y(oy,)*
does not tend to zero as k — co. Hence, it follows from Theorem 3.8 that w! is
a factor state. Since {lo] — o]} < {jo; — @]l < 1 <2 and |joi" — of} < jioi ~
= @ll < | <2 we have of ~ wf and ;" 3 wf. Since wi" = ol we have of o~

Now we assume o ~ of. Let (1], #7, f]) be cyclic representations of
AT induced by w?, for i =1, 2. Since wT ~ ¥ there is a 6-weakly bicontinuous

isomorphism ¢ of n](AT)”" onto n1(AT)"’ so that @(n1(A)) == nl(4) for A € AT. Re-
calling the argument of Theorem 3.8 there are elements 4, € AT so that 77(A4,)
converge weakly to a non-zero limit (corresponding to the appropriate restriction
of m(ef)). Then @(nT(4,)) = nl(4,) must weakly converge to a non-zero limit
as k — oo. But if wy(0y,)* + wy(0,,)* — 0 as k — oo one sees from the calculations
of Theorem 3.8 that n(4,) — 0 weakly as » — co. Hence, wy(6},)* + ws(0;,)*
does not tend to zero as k — co. Hence, by Theorem 3.8 we have m,(UAT)”:=
== n,(U)"’ where =, is as cyclic representation of U induced by ,;, fori=1,2.
Now repeating the arguments of Theorem 4.5 Case 1 (=) part A we find there is
a geT so that w, + @2 . Done.

THEOREM 4.10. Suppose w, and w, are factor states of U so that of and wf
are factor states of °. Suppose the sequence of vectors w,(c,) has at least two linearly
independent accumulation points. Then % - w8 if and only if thereis age G so

that @, + @3 0 0.

Proof. The proof of the theorem is the same as the proof of the previous
theorem except here one makes use of Theorem 3.9 instead of Theorem 3.8.

Work supported in part by grants from the National Science Foundation.
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