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ON THE EXISTENCE OF HYPERINVARIANT SUBSPACES

AHARON ATZMON

0. INTRODUCTION

Throughout this paper, £ will denote an infinite dimensional complex Banach
space and .Z(E) the algebra of all bounded linear operators on E. For an operator
A in Z(E) we shall denote by 4* its adjoint acting on the dual space E%, and by
(A) its commutant, that is, the set of all operators in Z(F) which commute with A.

We recall that a (closed) subspace M < £ is called invariant for an ope-
rator A in Z(E) if Axe M for every x € M. The subspace M is called hyperin-
variant for A, if it is invariant for every operator in (4). We say that M is
not trivial, if M#{0} and M+#E.

In the sequel, we shall denote by N the set of all positive integers, by Z
the set of all integers, by C the set of complex numbers, and by T the unit circle
{ze C:lz| == 1}.

The main result of this paper is a Theorem on the existence of nontrivial
hyperinvariant subspaces for certain operators (Theorem 1.1), which extends
simultaneously the results of Wermer [23], Sz.-Nagy and Foias [22, p. 74], Gellar
and Herrero [13], and a recent result of Beauzamy [2].

In general terms, our main result asserts that if 4 is an operator in £4”(E),
and there exist sequences (X,),cz < £ and (y)pez © E¥ with x50 and y,#0
such that Vre Z

(0‘ ]) AX" = Xp+2 and A*yn = Va1
then under some additional conditions, either A is a multiple of the identity ope-
rator or A has a non trivial hyperinvariant subspace.

An example of such additional conditions (which is a particular case of
Theorem 1.1 (a)) is, that for some integer k > 0

lxall + Ilyail = O(nl*), 1 — oo.

This condition clearly holds, if A4 is invertible, and there exist non zero vectors

xg € E and y, € E* such that
A %ol + 4™ pll = O(In¥), n > too.
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In addition of providing a common principle to the results of [23], [22, p. 74]
and [13], our hypotheses are considerably weaker than theirs, and hold in some
cases in which neither of these results is applicable. One such example (see Section 6)
is the class of Bishop operators considered by A. M. Davie in [7].

The contents of this paper are as follows:

In Section 1 we state our main results and some of their consequences.

In Section 2 we assemble some preliminary results from harmonic analysis
and the theory of analytic vector functions, which are needed in the proof of
Theorem 1.1.

In Section 3 we present the proofs of our main results stated in Section 1.
After proving Theorem 1.1 we deduce from it, by using a theorem of Helson [14,
Theorem 3], the result of Wermer [23]. Then we prove a general Banach space
Lemma which enables us to deduce from Theorem 1.1 the extension of the result
of Sz.-Nagy and Foias [22, p. 74] which is given in [6, p. 134], and also the
following result (which is a particular case of Theorem 1.5):

If E is a Hilbert space and A is an operator in ¥ (E) such that for some vectors

xand y in E,
limsupiA"x! > 0, limsup.A*"pi > 0,

h—=00 R—00
sup A*A"xii < co and sup [A"A*"y|} < oo,
m,neN mneN

then either A is a multiple of the identity operator or A has a non trivial hyperin-
variant subspace.

This result clearly extends the result of {22, p. 74] and does not impose any
conditions on the norms of the operators 4", nc N.

We conclude Section 3 by proving Theorem 3.6 which extends a result of
Beauzamy [2].

In Section 4 we apply the methods of Section 3 to prove some additional
results. One such result (which is a particular case of Theorem 4.1) is the following:

If A is a contraction in L(E) such that the intersection of its spectrum with
the unit circle T is countable, and the sequence (A"),on does not converge strongly
to the zero operator, then A* has an eigenvalue. Consequently, if A is not a mul-
tiple of the identity operator it posseses a non trivial hyperinvariant subspace.

In Section 4 we also extend the results of [I, Theorem 1, and Proposition 6).

[n Section 5 we introduce the class of generalized bilateral weighted shifts
and extend the results of Gellar and Herrero [13] concerning the existence of
non trivial hyperinvariant subspaces for bilateral weighted shifts.

In Section 6 we give some examples, and apply the results of Section 5 to
certain operators on homogeneous Banach spaces on T. We also use these opera-
tors to disprove a conjecture of Gellar [12, p. 543). We conclude with some com-
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ments and problems concerning the existence of invariant subspaces in a certain
class of operators which: contains the Bishop operators.

In considering condition (0.1} we were inspired by the recent paper of
Beauzamy [2], although his conditions and methods are different from ours.

We wish to express our thanks to Professor Bernard Beauzamy for provid-
ing us with preprints of his papers (2] and [3]. We also thank Professor Domingo
Herrero for several comments concerning Section 6.

1. STATEMENT OF MAIN RESULTS

Before stating our main results it will be convenient to introduce the
following:

DEFINITION. A sequence of real numbers (p,),c, such that py =1 and p, 21,
VYne Z, will be called a Beurling sequence if the following conditions hold:

(11) Pu+n < PmPu> Vﬂl, ne Z’
‘ logp
(1.2) = < o
ngl 1 + n?

Similarly we define one sided Beurling sequences (p,)3>., by replacing in the
above definition, Z by N.

We shall also adopt the following convention: We shall say that the sequence
of real numbers (a,),ey 1S dominated by the sequence of real numbers (b,),., if
there exists a constant ¢ > 0 such that

a,<c-b,, YnelZ.
An analogous convention will be used for one sided sequences (a,)°., and ()., .

THEOREM L.1. Let A be an operator in L(E) and assume that there exist
sequences '(x,,),“EZ < £ and (y,),cz = £%, with x,#0 and y,#0, such that (0.1)
holds Y neZ.

Then each of the following conditions implies that either A is a multiple of
the identity operator or A has a non trivial hyperinvariant subspace:

(a) The sequence (||y,|),cz is dominated by a Beurling sequence and

(1.3) X%l = O(nl), n— oo

Jor some integer k = 0.
(b) The sequence (|\x,|)ycy is dominated by a Beurling sequence and

(L.4) l¥all = O(n%), n - 400

for some integer k > 0.
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(c) The sequences (i|X,l)ncz and (||Yull)yez are dominated by Beurling sequences
and the union of the singularity sets of the two analytic vector valued functions G,
and G, defined on C\T by:

0
Y oxo2h oz <
n:=1
(1.5) Gy(2) = |
0
- Z x—n:”—l’ IZ; > 1
n::--00
and
o]
Y vt z < 1
n=1
(1.6) Gofz) = |
0
— Y Ly iE >l
n:=—00

contains more than one point.
(d) x, is not contained in the closed span in E of the set {x,:neZ, n#0},
Yo is not contained in the closed span in E* of the set {y, :ne€Z, n#0}, and

(1.7a) Y L (log*iix,l — log*iiy,i) < oo
neZ 1 + n?

and for some constant b > 0

(1.7b) [ixXal < blixpeali and Dyl < B yial, VYnel

(e) For some integer j

(1.8) infllx, ;Hiy-pi = 0.
nez

Condition (c) calls for some explanations. As we shall see in Section 2, the
assumption that (i x,!j), <z and (}|»,{)),c 4 are dominated by Beurling sequences implies
that the power series defining G, and G, converge absolutely (in the £ norm and E®
norm respectively) in their corresponding domains. Therefore G, and G, are ana-
Iytic vector functions in C\T.

If G is a vector valued analytic function in C\T, then a singular point of G
is a point A e T, which has no neighborhood into which G admits an analytic
continuation.

ReMARK. It follows from (0.1) that (4 -- 2)Gy(z) = x, for z,;#1, and there-
fore if A has the single valued extension property (s.v.e.p.), the singularity set
of G, coincides with ¢,(x,). the local spectrum of x, with respect to 4. (For the
definition of s.v.e.p. and local spectrum see [6, p. 1].) Similarly, if A* has the s.v.e.p.,
the singularity set of G, is o4()). Thus, assuming that the operators 4 and A%
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have the s.v.e.p. (which is no loss of generality in considering the existence of hyper-
invariant subspaces) we see that part (c) of Theorem 1.1 can be formulated as
follows:

(c) The sequences (|| x,!1),cz and (|| ¥,ll),cz are dominated by Beurling sequences
and o0,4(x) Uo.(y,) contains more than one point.

We thank the referee for these observations.

An immediate consequence of Theorem 1.1 is:

THEOREM 1.2. Let A be an invertible operator in ¥(E) and let xye E and
Yo € E* be non zero vectors. If the sequences (A"Xp), ez and (A*"yy), ez satisfy one of
the hypotheses (a) — (e) of Theorem 1.1, then either A is a multiple of the identity
operator or A has a non trivial hyperinvariant subspace.

As we shall see in Section 3, Theorem 1.2 implies the following result of
J. Wermer:

THeOREM 1.3 (Wermer [23]). If A is an invertible operator in L (E) then each
of the following two conditions implies that A satisfies the conclusion of Theorem 1.2:

1.9 147} = O(nf*), n — 4:00

for some integer k = 0.

(1.10) l—°g—”-’-12—” <
ez 1 +n

and the spectrum of A contains more than one point.

REMARKS 1. An important difference between Theorem 1.2 and Theorem 1.3
is the following: The spectral radius formula implies (see Section 2 or [23]) that the
spectrum of an operator which satisfies the hypotheses of Theorem 1.3 is contained
in the unit circle T. Similarly all the other known extensions of Wermer’s Theorem
{cf. [19] or [20, Theorem 6.3]) deal with operators which have a portion of
their spectrum (that is, the intersection of the spectrum with some open set in the
plane) contained in a smooth arc. On the other hand, no such restrictions on the
spectrum are imposed by the hypotheses of Theorem 1.2. This permits for example
an application of Theorem 1.2. to certain weighted shifts whose spectrum consists
of an anulus (such as the one described in Section 6).

2. The second part of Theorem 1.3 was proved by Wermer in [23] under some-
what more restrictive conditions. However as shown in the different proofs of
Wermer’s Theorem given in [6, p. 154] and [1, Section 6], these restrictions are not
needed.

3. Wermer stated in [23] only the existence of non trivial invariant subspace
for A which are also invariant under 4-?, but his proof actually produces hyper-
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invariant subspaces. This fact is explicitely stated and proved in the above men-
tioned proofs in [6] and [1].

As we shall show in Section 3, Theorem 1.1 also implies the following exten-
sion of the result of Sz.-Nagy and Foias [22, p. 74] which is given in [6, p. 134].

THeorEM 1.4 (Colojoard and Foias). Let E be a reflexive Banach space, and

(Padwex an increasing sequence of positive numbers such that

(1.11) limsup 2747 < opk VneN

11— 00 Pm

for some constant ¢ > O and integer k > 0.
Let A be an operator in L(E) such that

(1.12) 14" = O(p,), n->o00

and assume that there exist vectors x € E and y € E* such that

(1.13) limsup'ip;*A"xji > 0
RSO
and
(1.14) limsup|p;t4*"yil > 0.
n—co

Then either A is a multiple of the identity operator or A has a non trivial hyper-
invariant subspace.

REMARKS 1. A simple condition which implies (1.11) with ¢ =: 1 and k == 0 is:

limsup Prt1 oy,

n=co Pn

This holds in the examples: p,:=n/ for some j = 0; p, = exp(n®), for some

0<a<l; p, = exp(-~~—’—l~—~a—), for some 0 < f < oo.

(log(n + 1))F
2. In Section 4 (Theorem 4.5) we extend Theorem 1.4 by showing that the
right hand side of (1.11) can be replaced by Kexp(cn*/?), for some constants K > 0
and ¢ > 0.

If E is a Hilbert space, one can replace condition (1.12) by a weaker
condition which does not impose restrictions on the norms of the operators A”, 7= N.
More precisely we have the following result:

THEOREM 1.5. Let E be a complex Hilbert space and (p,),e @ Sequence witicit
satisfies the hypotheses of Theorem 1.4. Let A be an operator in L(F) and assume
that there exist vectors x € E and y € E* such that (1.13) and (1.14) are satisfied
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and that

(1.15) sup{l|pnip, 1A A x||: m,n € N} < oo
and

(1.16) ' sup{||pmtp; LA A Y| m, n e N} < oo.

Then the conclusion of Theorem 1.4 holds for A.

Evidently, (1.12) implies (1.15) and (1.16) but not conversely. _
Another consequence of Theorem 1.1 is an extension (Theorem 3.6) of the
following result: '

THEOREM 1.6 (Beauzamy [2]). Let A be an operator in ¥(E) such that | || = 1,
and assume that for some vector xe E

117 lim supi] 4"x]| > 0.

H— 00

Suppose that there exists a sequence of vectors (u,) , = E with uy#0 such that
(NunDi2.o is dominated by a (one-sided) Beurling sequence and

(1.18) Au, =u,_y, VYneN.

Then either A is a multiple of the identity operator or A has a non trivial hyper-
invariant subspace.

2. PRELIMINARIES

In this section we assemble some background material from harmonic ana-
lysis and the theory of analytic vector functions which will be needed in the sequel.
Although all of these results are known, some of them do not seem to be readily
available in the literature.

In what follows we shall denote by C(T) the set of all complex continuous
functions on T. For fe C{T) and ne Z we denote by f'(n) the n-th Fourier
coefficient of f that is

2n
fony = = Sf(e")e' e
2n
0

- We shall require the following:

LemMma 2.1, Let (6,),c, be a sequence of real numbers such that 6,21, Vne L
and assume that

(2.1)

loga,

neZ 1 -+ n2‘
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and that for some constant ¢ > 0
(2.2) ¢ 10, < 0,41 S co,, Vnel.

Then for every 0 < a < b < 2n, there exists a function {#0 in C(T) which is sup-
ported by the arc

I'={zeT:a <argz < b}

and which satisfies

(2.3) Y 1fn)io, < co.
nezZ

RemaRrkS 1. Under the additional assumption that (6,),.z is a Beurling
sequence the above result is well known and follows from the Paley-Wiener
Theorem (cf. [6, p. 149], or [8]).

2. Lemma 2.1, even without the assumption (2.2), appears (in equivalent
form) in {13, Lemma 3]. However the proof given there is not correct, since in the
estimates of the Fourier coefficients in [13, p. 180], the third inequality holds only

) 1 . . .

if the sequence (—g;gl—di) (the sequence ¢, in the notation there) is eventually
neN

decreasing. This assumption in conjunction with (2.1) is stronger than (2.2).

We do not know whether or not the conclusion of Lemma 2.1 is true without
assumption (2.2).

Proof of Lemma 2.1. Let B, = logos,, n € Z, and consider the piecewise linear
function ¢ on (---00, 0o) which satisfies ¢(n) == 8, for ne Z.
{t is easy to verify that (2.1) implies that

(2.4) S 0 gy < p

and (2.2) implies that for every —oo <t < oo

(2.5) sup  lp(x -+ t) — o(x). < oo,

—0LX LSO
therefore, it follows from [4, Theorem 1] that there exists a continuous noniden-
tically zero function g on (—oo, co) which is supported by (a, b), whose Fourier
transform g satisfies

(2.6) ig(x): exp(p(x)) dx < co.

éws
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Using the fact that

S(n‘e‘jz 180n — Dlexp(p(n — 1)) dr — S B0 exp(p(x)) dx

we obtain from Fubini’s Theorem and (2.6) that for some 0 < a0 < 1,
@7 Y, 18(n — @)l exp(o(n — ) < oo.

1t follows from (2.5) and the definition of ¢ that there exists a constant 4 > 0 such

that
B.=0m <on—a)+d, Vnelk

and therefore by (2.7)
(2.8) Y, 18(n — a)lo, < oo.

neZ

Let now f be the function in C(T) defined by
f(e¥) =e¥g(r), 0<t<2m

We claim that f has the required properties. Indeed

f(n) ae g(n —0a), VaneZ

and therefore (2.3) follows from (2.8). The assumptions on g imply that f#£0 and
that f is supported by I'. This completes the proof of the lemma.

Throughout the rest of this section p = (p,),o5 Will be a Beur]mg sequence
and A, will denote the set of all functions f in C(T) such that Z | f(n)|p,, < oo.

Since p, > 1, Vne Z, it follows that Y, lf(n), < co for fe Ap, and therefore
neZ

the Fourier series of f converges uniformly on T to f.
It is well known, and easy to verify, that (1.1) implies that, with norm

Ifli= % 1 /e, fe4,,

A, is a Banach algebra with respect to pointwise addition and muitiplication of
functions on T. It is also clear that for every fin A4, the sequence of trigonometric
polynomials
. nooA .
s.(e) = % f(j)e', nmeN

Joeiemn

converges to f in the norm of 4,.
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It is known (cf. [11], p. 128) that (1.1) implies that the limits

R, = lim pl" and R, = limp}”
R— — 0D n->oo

exist. This fact in conjunction with (1.2) implies that R, == R, == 1. Therefore by
(11, p. 130], the maximal ideal space of 4, can be identified in the natural way
with T.

REMARKS |. The fact that R; == R, = 1 implies that, if (x,),c, IS @ sequence
of vectors in a Banach space E and (.x,7), ¢, is dominated by a Beurling sequence
then

limsupix,i** < 1 and limsupi'x,i'" < L.

n—--00 1=+ 00
Consequently the functions G, and G, in (1.5) and (l1.6) are analytic in C*.T.
2. Tt also follows from (1.5) and (1.6) and the previous remark that

lim §G@)i =0, j=1,2

Z oo

and therefore by Liouville’s Theorem (cf. [I5], p. 100) and the fact that x,#0
and »y#0, we see that each of the functions G, and G, has at least one singularity
on T.

By virtue of Lemma 2.1, condition (1.2) implies that the algebra A4, is regular,
that is for every closed set K = T and /€ T\K there exists a function f in A, such
that f(z) =: 0 for ze K and f{4) = 1 (sec also [8] where a more general result
is proved).

For every S in A} (the dual of A)) we set

§(n) o e 8y nel.
A simple computation shows that

i 8y = Y, fmySi—n)
neZ

for every fin A, and S in A43.
Let /3 denote the Banach space of all complex sequences (¢,), e for wiich
the norm

P o
fcl] ==sup - "'
nez P_n

is finite.
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It is easily verified that the mapping
S (StMaezs Sed

establishes an isometric isomorphism between A% and /3.
For every fe A, and Se€ A¥ we shall denote by f-S the element of A7 which
is defined by

(&) S)>=(f8 S, gecA,.

It is easy to verify that V fe 4, and VSe 4
2% » R .
S-Sy =Y fin—=))S(), VneZ.
J

For an ideal I < 4, we shall use the notation
h(ly ={zeT:f(z) =0, Vfel}.

A(I) is called the hull (or co-spectrum) of I

Since the Banach algebra 4, is regular, every element S in 4 has a well
defined support (see [17], p. 230), which is the complement (with respect to T) of
the largest open (in the topology of T) subset U < T, such that {f, S} = 0 for
every function f in 4, whose support is contained in U.

We shall denote the support of S A% by X(S). It is clear that Z(S) is
empty if and only if S =0, and that V fe 4, and V S 4}

2(f-S) = Z(S) n support(f).

[n the sequel we shall require the following:

LeEMMA 2.2. Let S A} and let J be the ideal in A, which consists of all
Sunctions f€ A, such that f-S = 0. Then h(J) = Z(S).

Proof. We show first that h(J) < Z(S). Suppose that Ae T\Z(S), and Jet L
be an open arc on T which contains 4 and is disjoint from Z(S). Let f be a function
in A, which is supported by L, and f(4) == 1. It follows from the definition of Z(S)
that f-S = 0, and therefore fe J. Since f(1) =1 we deduce that A¢Ah(J). This
shows that h(J) < Z(S).

To prove that Z(S) < A(J), consider A< T\A(J). There exists a function f
in A, such that f-8 =0 and f(4) = 1. Let I be an open arc on T, which contains
2, such that |f(2)| = 1/2, VzeI'. Let I be the principal ideal generated (algebra-
ically) in A, by f. It follows from [17, Corollary 5.7, p. 224] that I contains every
function g in 4, which is supported by I'. That is for every such function g, there
exists a function ¢ € 4, such that g = ¢ -f, and therefore, since -5 =0, we have
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that
(& S» =<, f-S> = 0.

This shows that I is disjoint from Z(S), hence A ¢ Z(S). Thus Z(S) < i(J), and
the lemma is proved.

DeriNITION. The Carleman transform of S in A¥ is the function S defined
on C\T by

Y g’(n)z”“, lzi <1
~ n==1
S(z) ==
0 A
— Y Sm:z"t, 2>l

N=>—00

Since the sequence (.§(n)),,eZ is clearly dominated by the Beurling sequence
(P-whaez, it follows (from Remark 1, following the definition of 4,) that S'is well
defined and analytic in C\T.

We shall denote the set of singular points of S by sing(§).
In the proofs of Theorem 1.1 (c) and Theorem 4.1, the following result will

be of fundamental importance:
LEMMA 2.3. For every Sin A*, Z(S) = sing(S).

The idea of this result, in the setting of Fourier transforms (at least for
Beurling sequences of polynomial growth) goes back to the work of T. Carleman

[5, Ch. 1}, (see also [17], p. 179).
For general Beurling sequences this result is essentially contained in [9].
Since it is not explicitely stated there, we include a proof.

Proof of Lemma 2.3. Let Se A%, and consider the ideal J associated with
S as in Lemma 2.2. 1t follows from Lemma 2.2 and [9, Theorem 2.4 and Example
3.1] that sing(S) < X(S), and from Lemma 2.2 and [9, Theorem 8.1 and the exampie

which follows] that Z(S) < sing(§).
1n the proof of Theorem 1.1 we shall also require the following result:

LEMMA 2.4. Let E be a complex Banach space, and let F and G be functions
with values in E and E* respectively, defined and analytic in C\T. Assume that there
exisis an open disc D, with center on T, such that ¥ x€ F and ¥V ye E¥ the complex
functions

z > (F(2),y) and z-{x,G(z)), zeC\T

can be continued analytically into D. Then F and G admit analytic continuations into D.
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Proof. Let D, be an open disc whose closure is contained in D. Remembering,
that a (complex) analytic function which is analytic in a neighborhood of a
closed disc satisfies Lipschitz condition (of order 1) on that disc, we obtain from the
hypotheses that V¥ ye E*

sup{|(F(z2), ¥) — (F(2)), )| 1z — 21| 1 23, 22€ DI\T, z;#2,} < o0.
Therefore by the uniform boundedness principle
sup{|| F(zs) — F(zy)||-12 — 7] ™1 2y, 2z5€ D)\T, z,5:2,} < oo.

Consequently, F is uniformly continuous on D, \T and therefore admits a conti~
nuous extension to D,. Since D, is an arbitrary open disc whose closure is contained
in D, we conclude that F admits a continuous extension to D, which we denote
by F,. From the hypotheses of the lemma it follows that ¥ ye E* the complex
function

z— <F1(Z)> y>’ ze (C\T) U D

is analytic in D, and therefore (see also [15], p. 53) F; is an analytic continuation
of F into D.

A similar argument (see also the proof of Theorem 3.9.1 in [15]) shows that G
also admits an analytic continuation into D.

3. PROOFS OF MAIN RESULTS

We begin by introducing a notation which will be used throughout this section.

Let A be an operator in £(E) and assume that (x,),.z<E and (y,),cz <E*
are sequences such that (0.1) holds.

For functions f and g in C(T) such that

(3.1) 2 fmlix,ll < oo and Y 2]yl < oo
neZ neZ
we shall denote by u(f) and v(g) the vectors in F and E¥, respectively, defined by
u(f) = X fin)x, and v(g) = X (n)y,.
nez nE€Z

Since E and E* are Banach spaces it follows from (3.1) that the series defining u(f)
and v(g) converge in the respective norms.
In the proof of Theorem 1.1 we shall require the following:

LeMMA 3.1. Let A be an operator in £L(E), and let (x,),ez <E and (y,),c7z < E*
be sequences such that (0.1) holds. Assume that f and g are functions in C(T) which
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satisfy (3.1). Then ¥ Be(A)

(3.2) n§Z | o (m)(Bx,, yod' < 00
and
(3.3) (Bu(f), u(g)) =~ "‘GYZng(nXan, Yo-

Thus in particular, if f-g = 0, then
3.9 {Bu(f), v(g))==0, VBe(A).
Proof. We show first that
(3.5) (Bxj, ¥> = (BXjs1» Yo», VBe(A), Vj,keZ.
Assume first that k is a nonnegative in.teger. Then by (0.1)
A¥x;=x;,.,, VjeZ and A%y, = y,.
Therefore VBe (4) and VjeZ
(Bx;, yiy == (Bx;, A%y === (A*Bx;, y,» =
= (BA*x;, o) = (BXj1, Vo).
Suppose next that k is a negative integer. Then by (0.1),
A *x;=x;, VjeZ and A%y, =y,.
Therefore Y Be(A4) and VjeZ
<ij+k’ Yoy = <ij+ks A% Ry =
== <A_kaj+k, Y = <BA_kxj+k’ ¥ = {Bx;, >

Thus (3.5) is proved.
From (3.1) and (3.5) we deduce that VBe (4),

N

Y ADBRICBY s yo)! =¥ )R Bx;, yidl

jkeZ jkeZ
<1BICE 17D - (X 8R! ) < oo

Thus noticing that
fgm) =Y f(Dék), VneZ
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we obtain in particular that (3.2) holds. By changing the order of summation (which
is permitted by virtue of the absolute convergence of the series above) and using
(3.5) once again, we obtain that ¥V Be (4)’

(Bu(f), v(g)) = ,}:Zﬂj)ﬁ(kxzax,-, Y=

=Y ¥ f()EGI(Bx,, yo> = 2 7 2(n)(Bxy, Vo>

neZ jtrk:=n

This completes the proof of the lemma.

In the sequel we shall also need the following:

LeEMMA 3.2. Let A be an operator in L(E) and assume that there exist non
zero vectors u€ E and ve E* such that

(3.6) (Bu, vy =0, YBe(A).

Then A has a non trivial hyperinvariant subspace.

Proof. Let M be the closure in E of the linear manifold {Bu: Be (4)'}. It is
clear that M is a hyperinvariant subspace for 4. M {0} since ue M, -and since
v#0, it follows from (3. 6) that M#E. Thus M is not trivial, and the lemma is
proved.

REMARK. Using the Hahn-Banach Theorem it is easy to show that the
hypotheses of Lemma 3.2 are also necessary for the existence of a non trivial
hyperinvariant subspace for A.

Proof of Theorem 1.1. First we notice that if 4#0 and A4 is not injective,
then ker(A) is a non trivial hyperinvariant subspace for 4, and if A* is not injective
then the closure of the range of 4 is a non trivial hyperinvariant subspace for A.
Thus in what follows we shall assume that 4 and 4* are injective. This assumption,
in conjunction with (0.1) and the hypothesis that x,#0 and y,#0, implies that

3.7 x,#0 and y,#0, VneZ.
Proof of (e). From (3.5) we deduce that
(Bxj, yop ={Bxy1j, y_,0» VBe(4),Vnelk
and therefore V Be (4),
IKBx;, yo)| < |IB llnfll)«,,+,|l y_. M-
Consequently, (1.8) implies that

(3.8) (Bx;,yo> =0, VBe(A).

2 .. 1511
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Since y,#0 and by (3.7) also x;#0, we obtain from (3.8) and Lemma 3.2 that
A has a non trivial hyperinvariant subspace.

Proof of (d). Consider the sequence
o, = max{'x, |, 1}-max{,»,%, 1}, neZ.

It follows from (1.7a) that the sequence (0,),, satisfies (2.1}, and from (0.1) and
(1.7b) we obtain that it also satisfies (2.2) with ¢ = |4}z + 5% + 1.

Let I'y and I, be disjoint open arcs on T. By Lemma 2.1 there exist functions

f#£0 and g#0 in C(T), supported by I'; and I', respectively, such that

Yy !f(n)ian <oco and Y. lg(n) o, < co.

neZ neZ
Noticing that max{jjx,il, ily.li} € 6,, V# € Z, we obtain that (3.1) holds for f and g.
Since I'; and I, are disjoint, f-g == 0, and therefore by Lemma 3.1 also (3.4) holds.
Thus by virtue of Lemma 3.2 the assertion of the theorem will follow, if we show
that #(f)#0 and v(g)s0.

Since x, is not in the closed span of the set {x,:neZ, n#0}, we deduce
from (0.1) that for every negative integer p, x, is not in the closed span of the set
{x,:neZ, n#p}. Since f==0on I',, and f#0, there exists a negative integer g,
such that }'(q)#O (see [17), p. 90, Corollary 3.14). Combining these facts we obtain
that

J@x, # = X, f()x,
neZ
r#£q
and consequently u(f)s0. A similar argument shows that v(g)#0, and the proof
of (d) is complete.

Proof of (¢). Since the product of two Beurling sequences is again a Beurling
sequence which dominates both, we may assume that (jlx,l),cz and (!, ).z are
dominated by the same Beurling sequence p = (p,), ez - Clearly (3.1) holds ¥ f,g € 4,,.
Therefore by virtue of Lemma 3.1 and Lemma 3.2, it suffices to show that there
exist functions f'and g in A,, with disjoint supports, such that u(f)#0 and v(g)+0.

For this consider the two vector functions G, and G, defined by (1.5) and
(1.6). As noted in Section 2, each of these functions has at least one singularity
on T. Therefore the hypotheses of (c) imply that there exist 4, A, € T, 4;#4s.
such that A, is a singular point of G, and 2, is a singular point of G,. By Lemma 2.4
there exist vectors x € E and y € E* such that J, is a singular point of the function

2z (G(2),y), zeC\T

and A, is a singular point of the function

z = {x, Gy(2)), ze C\T.
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Therefore, if S; and S, are the elements in 4% defined by

§imy=<x_,,y> and Sym) =<(x,y.>. VYnel,

we deduce from Lemma 2.3 that 2, € Z(S;) and A, € Z(S),).

Let I'; and I'; be two disjoint open arcs on T such that 4, e [; and A, € I';.
Since 4, € Z(S§)) and A, € Z(S,), there exist functions f and g in 4,, supported by I'y
and I, respectively, such that (f, S;>#0 and (g, S.>#0. But a simple computa-
tion shows that

<f’ Sl> = <ll(f), J’> and <ga S2> == <X, U(g)),

and therefore u(f)#0 and v(g)+#0. This completes the proof of (c).

Proofs of (a) and (b). If the hypotheses of (a) or (b) are satisfied and one of
the functions G; or G,, defined by (1.5) and (1.6), has more than one singularity,
the conclusion of the theorem follows from part (c) (since ((1 + |#])*), . is a Beurling
sequence). Remembering that each of these functions has at least one singu-
larity on T, we see that it suffices to consider the case in which each of them has
exactly one singularity on T.

We shall show first that if G| has a single singularity at 4, € T and (1.3) holds,
then

(3.9) (A — Aol +1xy = 0.

This will prove the assertion, since (3.9) implies that either A = A,I or ker(4 — A,1)
is a non trivial hyperinvariant subspace for A.

It suffices to prove (3.9) in the case that A, = 1, since the general case can be
deduced from this one, by replacing the operator 4 by 1;14 and the sequences
(Xwez and (1,),cz by the sequences (A2x,),c, and (Ahy,),cz. (It is easily verified
that these replacements preserve all the hypotheses.)

Thus we assume that z = 1 is the only singularity of G, and that (1.3) holds,
and we shail show that

(3.10) (A4 — Dk+Ix, =0,

For this we introduce the difference operator 4 defined on sequences (a,)2., = E by
da,=a,—a,_,, neN, and 4dagy = a,.

1f (a,)7.0 = Eand F is the (formal) power series F(z) = % a,z", it is easy to

n==0
prove by induction that

3.11) (I — 2/ = ¥ (4/a)z", VjeN

ne=0

where 4/ denotes the j-th iterate of 4.
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Now if G, has a single singularity at z == 1 and (1.3) holds, then according
to [L5, Theorem 3.12.7, p. 60], G, is a polynomial in (1 — z)~! of degree not
exceeding & (with coefficients in £). Therefore the same is true for the function

H(z) = z71Gy(z7Y), ze C\{l}

and consequently the function p(z) = (1 — z)*+1H(z) is a polynomial in z (with
coefficients in E) of degree at most 4. From (0.1) and the definition of G, we obtain
that

H(z) =Y, (4"x0)z",  jz <1

a==0

and therefore by (3.11)

p@2) = Y, A+ A2,z < L

n—
Since p is a polynomial of degree not exceeding & we conclude that
(3.12) A+ A"N) = 0, Va >k
It is easily verified that
A(A"xg) == A" HA — I)ixy, Vn>j

and therefore (3.10) follows by setting # ==k -- 1 in (3.12). Thus (a) is proved.

A similar argument shows that if G, has a single singularity at 4, € T and
(1.4) holds, then (A% — A )*+1yy :=: 0. Therefore either A == 4,1, or the closure of
the range of A -- 4,11s a non trivial hyperinvariant subspace for 4. This proves (b),
and completes the proof of Theorem 1.1.

Proof of Theorem 1.3. Assume first that A satisfies (1.9). Then for every two
non zero vectors x, € E and y, € E¥, the sequences (A4"Xy),cz and (A*"yy),c,, satisfy
the hypotheses of part (a) of Theorem 1.2 and the assertion follows.

To prove the second part of the theorem, assume that (1.10) is satisfied and
consider the sequence p, == 14", ne Z. It follows from (1.10) and the fact that
dATEEE L TATTA™, Ym,ne Z, that p = (p,),cz IS @ Beurling sequence.

Since Vx e F and Vy e E¥ we have that

[AXY < pixt, and AT S plivi, VneZ

the assertion will follow from part (¢) of Theorem 1.2, once we show that there
exist non zero vectors x,€ E and y, € £¥ such that the union of the singularity
sets of the functions G, and G, associated with the sequences (A"X,),c and
(A" ¥o)nez by (1.5) and (1.6) contains more than one point.
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To show this, let 6(4) denote the spectrum of A and consider the resolvent
R(A4,z) = (A4 — zI)"', ze C\o(A).

Remembering that 6(4) < T by (1.10) (see the remarks in Section 1) we obtain that

R(4,2) =Y A~"2""Y, lzf <1
n=1

and

0
R4, 2)=— Y A" |zl > L.

W=~ 00

Therefore if x e E, and G, is the function associated with the sequence (A"X)nez
by (1.5), we see that

(3.13) Gi(2) = R(4,2)x, Vze C\T.

Assume now that A, € 6(4). By a Theorem of Helson [14, Theorem 3], there exists
a vector x, € E such that the vector function

z—- R(A, 2)xy, |z} <1

has no analytic continuation to any neighborhood of 4,. Clearly x,#0. Therefore
(3.13) implies that 4, is a singular point of the function G, associated with the
sequence (A"Xy),cz by (1.5).

By the hypotheses, o(4) contains more than one point, and therefore there
exists 4, € 6(A4) such that 1, #21,. Remembering that ¢(4) = ¢(A4*), we obtain by
replacing in the above argument 4, and 4 by 1, and A*, that there exists a non
zero vector y, € E*, such that 1, is a singular point of the function G, associated
with the sequence (A*"y;), ez by (1.6). This completes the proof of the theorem.

The link between Theorem 1.1 and Theorems 1.4, 1.5 and 1.6 is established
by means of the following resuits:

Lemma 3.3. Let A be an injective operator in L(E) and assume that there
exists a sequence (w,),.n < E* and a vector x € E such that

(3.14) sup{||A*"w,ll: m,neN, m € n} < oo
and
(3.15) limsup{{A"x, w,>| > 0.

Then there exists a norm bounded sequence (v,)P., = E* with vy#0 such that

(3.16) A*v,=v,_,, VneN.
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If in addition there exists a sequence of positive numbers (q,),en Such that

317 limsupjjA*™+™, 1 < ¢q,, VmeN
n—+oo

then

(3.18) 1A* ey < ¢, VmeNN.

Proof. 1t follows from (3.15) that there exists a number d > 0 and an increas-
ing sequence of integers (i1.),en Such that

(3.19) (x, A"y 3> 8, VkeN.

Since a bounded set in £% is precompact in the w*-topoiogy we obtain from (3.14)
that there exists a subnet (4%7w,), ¢, of (A:":"kw,,k),\,eN {where A is a directed subset of N)
which converges in the w*-topology to some vector v, € E*. It follows from (3.19)
that 1{x, ty)' > J, and therefore 1,#0.

For every ne N consider the subset of E*

V, = {A*"""w,:ye A, y > n}.

By (3.14) V, is bounded and therefore has a w*-limit point v, € £%. Using (3.14)
once again, we sce that the sequence (,)3° o is norm bounded.

From the definition of ¥, and the fact the adjoint of an operator in £(F) is
continuous with respect to the w*-topology of E¥, we deduce that 4%y, == 1y,
YineN and therefore

A=Y A%p, — v,_1) =0, VneN.

Since A% is injective this implies (3.16).
If (3.7) holds, then (3.18) follows directly from the definition of wv,. This
completes the proof of the lemma.

COROLLARY 3.4. Let A be an injective operator in L (E) and assume that there
exists an increasing sequence of positive numbers (p,),cw and a vector x € E such that

3.20) A" = O(p,), n—co
and
(3.21) limsup;|p; 4 x| > 0.

Then there exists a norm bounded sequeice (0,)3°.o = E® with vy#0 such that (3.16)

holds.
If in addition there exists a sequence of positive numbers (q,),cw such that
Pmn

(3.22) lim sup < Gn, VmeN,

R— 0O pn

ther: (3.18) also holds.
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Proof. By the Hahn-Banach Theorem there exists a sequence of unit vectors
(Z)aen = £% such that

(Pr'A"%, z,) = |pz'A'x|, VneN.

Thus (3.20) and (3.21) imply (3.14) ana (3.15) with w, = p;1z,, ne N.
If (3.22) is satisfied, then it is easily seen that (3.17) also holds for the sequence
(Wa)uen- Hence the Corollary follows from Lemma 3.3.

COROLLARY 3.5. Let E be a Hilbert space, A an injective operator in ¥(E), and
(P)nen an increasing sequence of positive numbers which satisfies (3.22) for some

sequence of positive numbers (q,), . Assume that there exists a vector x & E such
that (3.21) holds and that

(3.23) sup{|ipnt p; 1A A x||: my,ne N} < oo.

Then there exists a norm bounded sequence (v,)5%., < E with vy#0 such that (3.16)
and (3.18) hold.

Proof. The Corollary follows from Lemma 3.3, by observing that the assump-
tions imply that the sequence w, = p,24"x, ne N satisfies all the hypotheses of
the lemma.

Proof of Theorem 1.4. By the remarks in the beginning of the proof
of Theorem 1.1, we may assume that A and A* are injective. Thus applying
Corollary 3.4, we deduce from (1.11), (1.12), (1.13), that there exist a norm bounded
sequence (V). = E* with v,#0 such that (3.16) holds and

3.29) [ 4%v]| = O(r*), n— oo.
Consider the sequence (,),cz = E£* defined by
Ya=10_,, n<0; y,=A%v,, nz=0.

It follows from the properties of (v,);%, and (3.24% that (0.1) and (1.4) hold for
the sequence (y,),cz-

Since E is reflexive we obtain by a similar argument, using (1.14), that there
exists a sequence (x,),ez < E with x,%#0 such that (0.1) and (1.3) hold.

Thus A satisfies the hypotheses of part (a) Land part (b)) of Theorem 1.1 and
the desired conclusion follows.

Proof of Theorem 1.5. By an argument similar to that in the proof of
Theorem 1.4 we obtain from the hypotheses and Corollary 3.5 that A satisfies the
hypotheses of part (a) of Theorem 1.1, and the assertion follows.

We conclude this section by proving the following extension of Theorem 1.6.
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THEOREM 3.6. Let A be an operator in L(E) and let (p,)2° ., be an increasing
Beurling sequence which satisfies (1.11) and (1.12). Assume that there exists a vector
x € E such that (1.13) holds, and a sequence (1,)° , = E which satisfies the hypotheses
of Theorem 1.6. Then the conclusion of Theorem 1.6 holds for A.

Proof. Using Corollary 3.4 we obtain from (1.11), (1.12) and (1.13) that there
exists a2 norm bounded sequence (¢,)7 , = E¥ which satisfies (3.16) and (3.18) with
q, == n*, neN,

Consider the sequences (X,),cz < E and (,),cz = E* defined by:

X,==U_,, n< Oq Xy = Anuo, n=0
and
Y= Uy, B < 0; Yp == A:MUO, nz0.

1t follows from the properties of the sequences (u,)Y., and (v,)%.,, and the fact
that (p,)3> o is a Beurling sequence, that the hypotheses of part (b) of Theorem 1.1 are
satisfied for the operator 4 and the sequences (x,),ez and (,),cz- This completes
the proof.

4. ADDITIONAL RESULTS

This section contains some additional results which can be proved by the
methods of the previous section.

We begin with an extension of the result mentioned in the end of the intro-
duction.

THEOREM 4.1. Let F be a complex Banach space and let A be an operator in
L(E) with spectium a(A). Assume that there exists an increasing sequence of positive
numbers (p,),en and a vector x € E, such that conditions (1.11), (1.12) and (1.13) hold.

If a(A) N T is countable, then A* has an eigenvalue, and consequently, either
A is a multiple of the identity operator, or A has a non trivial hyperinvariant subspace.

Proof. First we recall that if 4% has an eigenvalue 2 and A#/7 then the
closure of the range of A — AI'is a non trivial hyperinvariant subspace for A. Thus
the second assertion of the theorem follows from the first.

If A* is not injective then A :=: 0 is an eigenvalue of A*. Thus in what follows
we shall assume that A% is injective. We shall show that in this case 4% has an eigen-
value in T.

As shown in the proof of Theorem 1.4, conditions (1.11), (1.12) and (1.13)
imply by Corollary 3.4 that there exists a sequence (¥,),cz © E* with y,50, such
that (1.4) and the second part of (0.1) hold. Let G, be the function associated by
(1.6) with this sequence.



EXISTENCE OF HYPERINVARIANT SUBSPACES 25

We claim that the singularity set of G, is included in o(4) n T. Using (0.1),
a simple computation with power series shows that

(A* — zDGy(z) =y, VYze C\T
and therefore

4.0 Go(2) = R(A*, 2)y,, Vze C\(TUa(4))
where R(A4%, z) denotes the resolvent of A*. Since
z = R(A%, 2)y,, ze C\a(4%)

is an analytic (E¥ valued) function, we deduce from (4.1) that T\o(4%) is disjoint
from the singularity set of G,, and since g(A4) == g(4*), the claim is proved.
Consequently, since a(4) n T is countable, also the singularity set of G, is
countable, and since it is clearly closed and not empty (see the remarks in Section 2)
it has an isolated point 1. We shall show that 1 is an eigenvalue of A*.
By Lemma 2.4 there exists a vector x’ € F such that 1 is a singular point of
the function

z - (X, Gy2)d, ze C\T.

Consider the Beurling sequence p = ((1 + [n|)¥), ., (where k is the integer in (1.11))
and let S be the element of A¥ defined by

§(n) =<{xy_», nel.
Noticing that by (1.6)
§(Z) = <x’, G2(2)>7 zZ e C\T
we deduce that A sing(g) and therefore by Lemma 2.3, 1 e Z(S).
Let I be an open arc on T which contains A but no other -singular point of

G.. Since A € Z(S) there exists a function f'in A, which is supported by I', such that

{f, Sy #0.
Consider the sequence (}),ez = E* defined by

yo=ro(e""f), neZ;

(we use here the notation introduced in Section 3) that is,

(4.2) yi=Y fin+j)y;, nelZ.

JEZ

From (4.2) and the definition of S we deduce that {x’, y> = {f, ) and remember-
ing that {f, S #0, we conclude that y;#0. Using the fact that (y,),cz satisfies the
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second part of (0.1), we obtain from (4.2) that
4.3) A%y = Yn41, Vnel.

Since ((1 + ‘ni)), o, is a Beurling sequence we obtain that (y;),c, satisfies (1.4).

Let G be the function associated with the sequence (y,),cz by (1.6). We claim
that A is the single singular point of G. For this, consider for every t¢ E the
elements S, and L, of A} defined by

(4.4) §,(n) ={t,y_p, nel
and
(4.5) LA,(n) ={t,y. >, nel. '

It follows from (4.2), (4.4) and (4.5) that

A A~
L(n)=f-8S(n), VneZ, ViekE
and therefore

{4.6) L, =f.85,6 VtckE
Observing that Vie E
Si(z) = {t, Gx(2)}, ze C\T

we deduce that sing(§,) is included in the singularity set of Gy, ¥t € E, and therefore
by Lemma 2.3, 2(S,) is also included in the same set, Vs € E. Since the only singular
point of G, in I' is 4, and f'is supported by I', we infer from (4.6) that

“.7 Y&)yc{}}, VicE
Therefore, noticing that Ve E
Lz) == {t,G(z)), ze C\T

we obtain from (4.7), Lemma 2.3 and Lemma 2.4, that G has no singularity on
TN\{4}. Since y;50, it follows from the remarks in Section 2 that the singularity set
of G is not empty, and consequently G has a single singularity at 2. Consequently,
using (4.3), we conclude as in the proof of part (b) of Theorem 1.1 that
(A7 - AI¥+1yg == 0. Since y;#0, this shows that i is an eigenvalue of 4%, and
the proof 1s complete.

REMARK. 1t follows from [22, p. 79, Corollary 7.9} that if E is a Hilbert space
and A a contraction in #(E) such that limsup!'4"x!i > 0, for some x € E, then

n=00
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the second conclusion of Theorem 4.1 still holds, if the hypothesis that a(4)n T
is countable is replaced by the weaker hypothesis that this set is of measure zero
with respect to Lebesgue measure on T.

Combining the methods of this paper with the methods of {1] we obtain the
following extension of [1, Theorem 1].

THEOREM 4.2. Let E be a complex Banach space and let A be an operator in
Z(E). Assume that there exist sequences (X,),ez < E and (y,),ez < E* with x4#0
and yo#0 such that (0.1) holds. Suppose that (||y,),ez is dominated by a Beurling
sequence and that for some integer k = 0 and constant ¢ > 0

(4.8) f1xall + Nyl = O(*), n— o0
and
(4.9) flx_ull = O(exp(cn'?), n— oo.

Then either A is a multiple of the identity operators or A has a non trivial hyper-
invariant subspace.

Proof. First notice that (4.8) and (4.9) imply that (|| x,|)),c 7 is dominated by a
Beurling sequence, and therefore if the function G,, associated with the sequence
(X)nez by (1.5}, has more than one singularity, then the conclusion of the theorem
follows from part (c¢) of Theorem 1.1. Thus in what follows we shall assume that G,
has a single singularity 4, and as observed in the proof of part (a) of Theorem 1.1,
it suffices to consider the case in which A = 1.

As also noticed in previous proofs, if either 4 or 4™ has an eigenvalue, then
the assertion of the theorem follows. Thus we shall assume in the sequel that
neither of these operators has an eigenvalue. '

We shall show that these assumptions imply that there exist non zero vectors
ue E and ve £% such that

(4.10) (Bu, vy =0, VBe(A),

and by Lemma 3.2, this will imply the conclusion of the theorem.
To prove (4.10), we consider as in [1, Section 2] the Banach algebra B, which

-]
consists of all analytic functions f(z) = Y az2” in the unit disc U= {ze C: [z]| < 1},

n=0

oo

such that ) |a,|(1 + n)* < oo, the latter quantity serving as the norm of fin B,
n=0

(k denotes here the integer in (4.8)). Tt follows from (4.8) that for every function

(o] o0 00

f(z) == Y. a,2"in By, the series ¥, a,x, and Y a,y, converge in the norms of E and
ne0 n=0 n 0

E* respectively, to vectors which we shall denote as in Section 2, by u(f) and v(f).
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It is clear that the mappings

f—ulf), feB. and g— v(g), ge B,

are bounded linear transformations from B, into £ and E* respectively. By the same
argument as in the proof of Lemma 3.1 we obtain that ¥V f, g € B,

(4.11) (Bu(f), v(g)> = {Bxo, t(fg)), VBe(A).
For every ¢ = 0 we denote by f, the analytic function

z-41
f{2)==(z — 1)"expa— -» zel,

z—1

where m - : 2k -~ 3. As noted in [, Section 2], the functions f, arein B;, and for
every b = 0, limf, == f, in the norm of B, .

a-b

We shall show that for some s > 0
(4.12) (BG\(2), t(f)> =20, Vze C\T, VBe(A).

First we show that (4.12) implies (4.10).
Noticing that G,(0) == x_,, and using (0.1) we obtain from (4.12), by replac-
ing B by BA, that

(4.13) (Bxg, t(f)> =0, VBe(A).

Let
2= inf{a > 0:{Bx,, o(,)> == 0, VBe(4)}.

Since limyf, :- f, in the norm of B, , we obtain that

a—g

(4.14) {Bxy, t{f,)> =0, VBec(A4).

Therefore if o(f,)#0, (4.14) implies (4.10) with © =: x, and v == v(f,).

Suppose now that u(f,) == 0. It follows from (0.1) that v(fy) = (A% —- I)"py.
and therefore by the assumption that A* has no eigenvalues, v(fy)5¢0. Consequently,
the assumption that u(f,) =: 0 implies that x > 0.

A similar argument shows that u(f;)#0, and since limu(f,) = - u(f,), there

a—=0

exists a number 0 < f < « such that u(f;)#0. Noticing that Va >0, Vb > 0,

Jlfp(2) = (2 = )" foup(2), zeU

and that by (0.1), for every polynomial p,

u(pf) = p(A¥)e(f), Vfe B,
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we obtain from (4.11) and the assumption that o(/f,) - 0, that .

(4.15) (Bu(fy), o(fop)d = (BA — D)"xo, 0(f)> =0, VBe(d).

Since 0 < « — f < a, it follows from the definition of « that v(f,_,)#0. There-
fore (4.15) implies (4.10) with u == u(f;) and v == v(f,_p).

Thus it remains to prove (4.12). This is accomplished by the methods used
in the proof of [1, Theorem 2], as follows.

First observe that (4.8) implies that

1G(2)I == Oz} — 1)=*=%  Jz|l - 1+

and by estimates which are similar to those used in [I, Lemma 2(a)] we obtain
that (4.9) implies that

1G(2)ll = O(CXp T’:LT) 21—

Z

for some constant d > 0. Therefore since z =: 1 is the only singularity of G;, we
deduce from [1, Lemma 3] that

(4.16) 1Gy(2)]] == O]l — z[)=2%*+V |z} - 14
and }
b
4.17) 1G(2)| = O(exp————f): 2] = 1—
I —z

for some constant b > 0. :
Following [1, Section 1] we denote for every function f which is analytic in U

and every we U by L, f the analytic function in U defined, for ze U\{w}, by

L. [(z) == LZ;__:Z)(_W As noted in [1], for Ve B, and Ywe U, also L, fe B,.

Using (3.2) and comparing Taylor coefficients we obtain V fe B,, and
V¥ Be(A) the identity

(4.18) (BG\(z), v(f)> — f(D)BG2), ¥o) == {Bxo, v(L.f)>, zel.
From this point the proof proceeds exactly as the proof of {I, Theorem 2],

by replacing the estimates (16) and (17) in [1] by the estimates (4.16) and (4.17),
and the identity (5) in [1] by identity (4.18). We omit the details.

RiMarK. The conclusion of Theorem 4.2 also holds if the hypotheses (4.8)
and (4.9) are replaced by the hypotheses

(419) “x-—n” + ”y——nH = O(”k)’ n— oo
and

(4.20) lIxull = O(exp(cn¥/?), n — oco.
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This is proved in the same way as Theorem 4.2 by replacing the mappings /' — o(7),
f& Beand [~ u(f), /< B, by the mappings f ~ u(f), f& B, and [ = #(f), [ B

defined for f(z) = Z a,z" in B, by u'(f) = Z a,x_, and '(f) == 2 a,y_,, and
n=0 n==0
observing that VmeN,

A" (fo) = (I — A)Y"x, and  A¥'(fy) = (I — A%)"y,.
Theorem 4.2 implies the following:

COROLLARY 4.3. Let A be an invertible operator in ¥ (E) and assume that there
exist non zero vectors xg € E and vy € E% such that for some integer k = O and some
constant ¢ > 0,

4.2) A - AT = O(RF), - oo
and
(4.22) TAT "Ny = T A%~ M0 ] = O(exp(cn/®)), n— oo.

Then the conclusion of Theorem 4.1 holds for A.
Proof. It follows from (4.21) and (4.22) that the sequences

X, A"y, neZ and y, - A%y, nel

satisfy the hypotheses of Theorem 4.1.

A particular case of Corollary 4.3 is clearly:

COROLLARY 4.4 ({1, Theorem 1]). Let A be an invertible operator in F(E) and
assume that for some integer k = 0 and constant ¢ > 0

A"l = O@*), n— o0
and
A" == O(exp(cnt?)), n-—> —oo,
Then the conclusion of Theorem 4.2 holds for A.

Finally, we obtain from Theorem 4.2 the following extension of Theorem 1.4
and [I, Proposition 5]:

THEOREM 4.5. The conclusion of Theorem 1.4 holds if condition (1.11) in its
hypotheses is replaced by the weaker condition

(4.23) lim sup&'—t'l < Kexp(en'?), neN

m— 00 m

for some constants ¢ > 0 and K > Q.
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Proof. Using Corollary 3.4 with g, = Kexp(cn*/?), ne N, we obtain from
(4.23) by an obvious modification of the proof of Theorem 1.4 that (0.1), (4.19)
and (4.20) hold for some sequences (X,),ez < E and (y,),cz © E* with x,#0 and
¥0#0. Thus the conclusion of the theorem follows from the remark following the
proof of Theorem 4.2.

5. GENERALIZED BILATERAL WEIGHTED SHIFTS

In this section we apply Theorem 1.1 to obtain an extension of the results.
in [13] concerning the existence of hyperinvariant subspaces for certain bilateral
weighted shifts. We shall consider a larger class of operators, which we call gene-
ralized bilateral weighted shifts. Before defining this class, we recall some definitions.

Let E be a Banach space. A pair of sequences (¢,},c» < E and (e}),c, = E*
is called a biorthogonal system, if

(5']) <e"‘l ] el*l> = 5'",", V’n’ n e Z‘

A sequence (e,), 5 < E is called minimal if there exists a sequence (e}), .z < E* such
that {(e,)ncz, (€})cz} forms a biorthogonal system.

It follows from the Hahn-Banach Theorem that a sequence (e,),cz < E is
minimal if and only if for every jeZ, ¢; is not inthe closed span of the set
{e,;ne Z, nsj).

A minimal sequence (e,),.z = £ is called fundamental if its closed span
coincides with E.

If (e,),c7z = E is a fundamental sequence, there exists a unique sequence
(e¥)nez = E* such that (5.1) holds. We shall call (&), ¢, the dual sequence of (e,),cz-

A sequence (e,),c, < E is called normalized if |le,|| = 1, Yne Z.

DErFINITION. Let E be a complex separable Banach space. An operator 4 in
PL(E) is called a generalized bilateral weighted shift (GBWS) if there exists a fun-
damental sequence (e,),., = E, whose dual sequence (e}),., is norm bounded,
and a sequence of complex numbers (4,),cz such that

(5.2) Ae, = Aenp1, Vnel.
The sequence (J,),e 7 is called the weight sequence of A. Clearly ||1,]| < |4}, Vne Z,
hence (4,),ez € £%(Z).

REMARK. According to a result of Obsepian and Pelczynski (see [18], p. 44)
every infinite dimensional separable Banach space contains a fundamental
normalized sequence whose dual sequence is nerm bounded.

We recall that an operator 4 in Z(E) is called a bilateral weighted shift (BWS)
if there exists a normalized Schauder basis (e,),cz = E, such that (5.2) holds for
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some sequence of complex numbers (4,),.,. For information on bilateral weighted
shifts we refer to [13] and the references given there.

Since the dual sequence of a normalized Schauder basis is norm bounded
(cf. [18], p. 7), every BWS is also a GBWS.

It is not known whether or not every BWS has a non trivial hyperinvariant
subspace. Partial results are proved in [13]. The answer is not known even for
bilateral weighted shifts in a Hilbert space, which are defined with respect to an
orthonormal basis. The main results known for such operators appear in [21].

Remark. Every GBWS clearly has a non trivial invariant subspace. If A
is a GBWS defined with respect to the sequence (e,),.5, then the closed span of
the set {e,:neZ, n > 1} is a non trivial invariant subspace for A.

From Theorem 1.1 we obtain the following results.

THEOREM 5.1. Let A be a GBWS in L(E) with weight sequence (Jp),ey- If
A#Q then each of the following two conditions implies that A has a non trivial
hyperinvariant subspace.

(M
(5.3) inf7,) = 0.

nSZ
(In 4,#0, VwuelZ, and

cc: ] 1 .
(5.4 ) -~;~-—'(! Y, log ;
ti:0

n...0 1 e n2

Y

0

_L.f logiA_ji ') < 00.
v i

Proof. Assume that 4 is defined with respect to the fundamental normalized
sequence (€,),=7. With dual sequence (¢F),c4. Using (5.1) and (5.2) we obtain that

ey, A%e — J,_1ef_ 1> =0, VnelZ, VkelZ
and therefore since (e,),cz is fundamental,
(5.5) A%ef =7, _e%,, Vnel.

If 4; == 0 for some je Z, then A4 is not injective, and therefore if 4#£0, ker(d4) is
a non trivial hyperinvariant subspace for A.

Assume that A,#0, Vue Z and consider the sequence of complex numbers
{%,)sc7 defined by:

n 1 n
2p - by =] 4, neN; a_,==[[AZ), neN,
j 0 jo:1

J

and the sequences (x,),ez < £ and (3),cy © E* defined by

(5.6) X,=o.e,, AeZ; y,=ale*, nelZ.

~h-—ns
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Using (5.2) and (5.5) we obtain that (0.1) holds for 4 and the sequences defined
by (5.6).

Part I of the theorem follows from part (e) of Theorem 1.1, by observing that
the sequences defined by (5.6) satisfy

[%u- 1l ly-nll = |Zalll€asallilexll,  VreZ.

We turn now to the proof of part II.
Noticing that for every complex number a#0

tog al| = log* la] -+ log* H

and remembering that |le,|| =1, VneZ and that |¢f|| < ¢, VneZ for some
constant ¢ > 0, we obtain from (5.6) that

(log™* [Ix,ll + log* |ly.]) <

%

neZ n?

<

! llogla,,l] +loge y, — L

neZ 1 —l" n? neZ 1 + n?

and therefore if (5.3) holds then (1.7a) is also satisfied. By part (I) we may assume
that (5.3) is not satisfied, and it is easily verified that this assumption implies that
(1.7b) holds for some constant & > 0. From (5.1) we see that x; is not contained
in the closed span of the set {x,:neZ, n#0} and that y, is not contained in the

closed span of the set {y,: n€ Z, n#0}. Thus the desired conclusion follows from
part (d) of Theorem 1.1.

COROLLARY 5.2. Let A be a GBWS with weight sequence (A,),cz. If A#0 and

5.7 11 =14l
( ) n§Z 1 + ]n' < o0

then A has a non trivial hyperinvariant subspace.
Proof. If (5.3) holds the assertion follows from part I of Theorem 5.1. Thus

we may assume that inf|1,| > 0. Remembering that (1,),cz € £°(Z), we obtain that
nez .

there exists a constant & > 1 such that

.

A< <d Vnel
Since

JE Lt < <) <o
1 — x| |

3. 1151
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we deduce from (5.7) that

ol 1 oy
Yo (llogiz,i| + logiz_,i}) < o0
A

n=0
) <

<y [(uogv I+ Togla_,) §, 1 fr ]

n-:0

and therefore

Z log|a_|
J=1

N

<5y - (log|4,l| + ogii_,ll) < oo,
nzo 1+ (1og 2,1} + logiz_)

and the assertion follows from part II of Theorem 5.1.

Theorem 5.1 extends the result of {13, Theorem 4], where the existence of
non trivial hyperinvariant subspaces is proved for bilateral weighted shifts which
satisfy certain conditions which are more restrictive than (5.3).

For bilateral weighted shifts which are defined with respect to a rotation inva-
riant basis (see definition in |13}, p. 776), Corollary 5.2 coincides with [13, Corollary 2).

ReMARKS 1. If |2} = 1, Vne Z, then the proof of Corollary 5.2 shows that
conditions (5.3) and (5.7) are equivalent.

2. Condition (5.7) in Corollary 5.2 can be replaced by the more general
condition, that for some constant a = 0

% II; ' al < 0.

() ,,gz 1+ 7

Indeed for a == 0, condition () implies (5.3) and the assertion follows from part I
of Theorem 5.1. If a > 0, the assertion follows from Corollary 5.2 by observing
that (@~'2,),ez is the weight sequence of operator a~'A.

3. If A is a GBWS which is invertible, we obtain from (5.2) that
|4l = 1A7YI"Y, VneZ.

Thus a GBWS (in particular a BWS) which satisfies (5.3) is not invertible. If 4 is a
BWS on a Hilbert space, which is defined with respect to an orthonormal basis,
the converse is also true. That is (5.3) holds if and only if 4 is not invertible (see
[211, Proposition 10). The existence of non trivial hyperinvariant subspaces for
such an operator A was proved (see [21], p. 91 and p. 102) by using the fact that in
this case every element in (4)" is the limit, in the strong operator topology, of a
sequence of polynomials in A. Thus part II of Theorem 5.1 gives an alternate proof
of this fact, which does not use the structure of (4)".
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4. 1f A is a BWS on a Banach space which is defined with respect to an uncon-
ditional normalized basis (see definition in [18], p. 15), then it follows from [18,
Proposition 1.¢.7] that (5.3) holds if and only if A is not invertible. However as
we shall show in Proposition 6.2 this is not true in general even for a BWS which
is defined with respect to a rotation invariant basis. This will disprove the conjec-
ture in [12, p. 543]. (See also the remark following Proposition 6.2.)

5. It is claimed in [I3, p. 772 and p. 777] that if 4 is a non invertible BWS
which is defined with respect to a rotation invariant basis, then every element in
(A)" is the limit, in the strong operator topology, of a sequence of polynomials
in A. But the proof of this claim is not correct, since it is based on the assertion
that it is proved in {12], that every element in (4)’ can be identified with a power
series (in the sense described in [12]). But this fact is proved in [12, Theorem 4(2)}
only for bilateral weighted shifts for which (5.3) holds, and as mentioned in Remark
4, there exist bilateral weighted shifts (even defined with respect to a rotation inva-
riant basis) which are not invertible, but do not satisfy (5.3).

However, as Professor Herrero has shown us, the gap in the proof can be
easily corrected, so that the result remains true also if (5.3) is not satisfied. Conse-
quently, the assertion in the proof of [13, Theorem 4], that every non invertible
BWS which is defined with respect to a rotation invariant basis has a non trivial
hyperinvariant subspace, is correct also if (5.3) does not hold.

6. EXAMPLES, COMMENTS AND PROBLEMS

In this section we give some examples, make some comments and pose some
problems.

We begin with an example of an operator which satisfies the hypotheses of
part (a) of Theorem 1.1 and those of Theorem 1.2 but does not satisfy the hypo-
theses of Theorems 1.3 and 1.4.

Let (1;))72 » be the sequence of integers defined by:
n; = j(j -+ 2), jeven, and n; = (j-+ 1)? jodd,

and consider the sequence (4,),z defined by:

n .
A, =20V for n; <n<nj,, j=01,...,
and
Ay = AT} for n < 0.

Let E be a complex Hilbert space with orthonormal basis (e,),cz, and let £
be the invertible BWS defined on E by

Ae, = Ae,.,, nel.
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Using [21, p. 59 and p. 67] it is easy to see that
(6.1) pA" =2", Vnel

and therefore 4 does not satisfy the hypotheses of Theorems 1.3 and 1.4.

It also follows from {21, Theorem 5] and (6.1) that the spectrum of A con-
sists of the anulus {ze C:27' <!z <2}

A simple computation shows that

A% <1, YneZ and "A*ell < 1, VaeZ

and therefore A satisfies the hypotheses of part (a) of Theorem 1.1 and Theorem 1.2.

Next we consider generalized bilateral weighted shifts which are defined on
some spaces of functions on T.

In what follows B will denote a homogeneous Banach space on T, in the
sense of [17, p. 14], and e, will denote for every n e Z, the function on T defined
by e, (w) -=w", weT.

We shall also assume that e,€ B, YieZ and that, Jle,flz=:1, VneZ,
and also that V fe Band Vae€Z, ¢,f€ B and jie,fliz = |ifis.

Since || fils = iifli,21,> f€ B, the sequence of linear functionals e}, neZ
defined on B by

{frety=fm), feB

are in B*, and (e}l =1, Vae Z.

It is clear that {(e,),cz»(€}).cz} is @ biorthogonal system, and according to
{17, p. 15, Theorem 2.12], (e,), <z is a fundamental sequence in B.

Examples of spaces which satisfy all the above conditions are the spaces
C(T) and L(T) for 1 £ p < co. The sequence (e,),cz 1S a Schauder basis in L?(T)
for 1 < p < oo but not in LYT) and C(T) (see [17], Chapter II).

In the rest of this section the term generalized bilateral weighted shift on B
will mean a GBWS which is defined with respect to the sequence (e,),cz -

It follows easily from the hypotheses on B, that the generalized bilateral
weighted shifts on B are the operators of the form ¥-P, where V' is the isometry
defined on B by

6.2) Vi=e,f, feB

and P is a Fourier multiplier on B, that is an operator in #(B) such that for some
sequence of complex numbers (p,),cz

}/’}(n) = p,,f(n), Vnel, feB.

The weight sequence of V- P is clearly (p,)nez -
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Let M(T) denote the space of all (complex) Borel measures on T. It is known
(see [17], p- 39) that every measure 4 € M(T) defines a Fourier multiplier P on B by

(6.3) Pf=puxf, feB

where p xf denotes the convolution of p with f. The sequence (p,), -, Which corres-
ponds to this multiplier is given by p, = Ji(n), ne Z, where Ji(n) denotes the n-th
Fourier-Stieltjes coefficient of u.

From these remarks we see that every measure u € M(T) defines on B a
GBWS A4 which is given by

(6.4) Af = e(uxf), [eB.
The weight sequence of this shift is clearly (i(n)),cz -

An immediate consequence of Theorem 5.1 and Corollary 5.2 is:

THEOREM 6.1. Let u be a measure in M(T), u#0, and consider the operator A
defined on B by (6.4). Each of the following two conditions implies that A has a non
trivial hyperinvariant subspace:

6.5 A= 1] ¢ oo
( ) n§Z 1 + ‘nl =
(6.6) inf|fi(n)] = 0.

neZ

It is known that every Fourier multiplier on the spaces L}T) and C(T) is
of the form (6.3) for some measure u € M(T) (cf. [10], Section 16.32). Consequently
the géneralized bilateral weighted shifts on these spaces are exactly the operators
of the form (6.4).

It is well known and easily verified, that the Fourier multipliers on L*(T)
can be identified (in the obvious way) with £°°(Z) (see [10, Section 16.1.2(4)]). This
corresponds to the simple known fact that a sequence of complex numbers (4,),c4
is the weight sequence of a BWS on a Hilbert space, which is defined with respect
to an orthonormal basis, if and only if (4,),<z € £<(Z). On the other hand no charac-
terization is known for the multipliers on the spaces L?(T) for 1 < p < oo, p#2.
Partial results can be found in [10, Section 16.4).

R. Gellar conjectured in {12, p. 543] that if 4 is a BWS on a Banach space,
with weight sequence (4,),c and

m+n Yn m+n 1n
R, = lim (sup I ujl) , R2=lim(inf I 1/1,.1)

noo \MEZ ;. liny1q n—0 \meZ ;i1

(as noted in [12] these limits always exist) then the spectrum of A is the set
{ze C: R, < |z| < R}
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Noticing that R, = 0 if and only if inf }A, = 0, we see that the truth of the
zeZ
conjecture would imply thatif inf j4,, > O then A is invertible. Thus the conjecture
nez

is disproved by the following:

PROPOSITION 6.2. If' 1 < p < 2, there exists a BWS A on L*T) whose weight
sequence (7,),cq consists of real numbers such that 1, > 1, VaneZ, but A is not
invertible.

Proof. Let 1 < p < 2 be fixed. According to a theorem of Igari[16, Theorem 6],
there exists a measure u € M(T) whose Fourier-Stieltjes coefficients are real and
satisfy fi(n) > 1, such that the Fourier multiplier defined on L#(T) by (6.3) is not
invertible. Consider the BWS A4 on L?(T) defined by (6.9) with this measure. Since
the operator V (defined by (6.2)) is invertible, it follows that 4 is not invertible, and
the Proposition is proved.

REMARKS. 1) After a first draft of the paper was circulated, Professor Herrero
informed us that Gellar's conjecture was also disproved by R. Gellar and R. Silber
in Proc. Amer. Math. Soc., 61(1976), 225—226. Their example relies on a Banach
space introduced by Nakano, and is somewhat less ““natural’” than the example
in Proposition 6.2.

2) The basis (e,),cz in L?(T) for 1 < p <2, is clearly rotation invariant accord-
ing to the definition in [13, p. 776]. This is also the case in the example of Gellar
and Silber.

It is natural to consider the more general class of operators on the spaces
L?(T), 1 < p < oo, which is obtained by replacing the function e, in (6.4) by an arbi-
trary L®(T) function. That is, for every function ¢ € L*(T), and every measure
p€ M(T), one can consider the operator 4 on L*(T), ! € p < oo, defined by

(6.7) Af = o(u=f), [feLT).

For these operators the existence of non trivial invariant subspaces is not known
in general even when u is the unit point mass concentrated at some we T. In this
case the corresponding operators are given by

(6.8 Af = ¢@-f,, felLXT)

where f,(z):=fw™'z), zeT.

In the special case that @(e) == ¢ for 0 < ¢ < 2n and p == 2, the operators
defined by (6.8) are called Bishop operators (see {20]). A. M. Davie [7] proved that
for all w belonging to a certain subset of T of measure 1, the corresponding Bishop
operator possesses a non trivial hyperinvariant subspace. Using the techniques of [7]
(especially in the proofs of Lemma 2 and Lemma 3 there) one can show that thesc
operators satisfy the hypotheses of part (¢) of Theorem 1.1.
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It would be interesting to find conditions on ¢ and p, in addition to those
given by Davie in [7] and by Theorem 6.1 of the present paper, which imply
that the operators defined by (6.7) possess non trivial invariant (or hyperinvariant)
subspaces. One such condition is that u is absolutely continuous, or for p =2,
more generally, that lim j(n) = 0. It is easy to show that, in this case, the operator

n— 400

given by (6.7) is compact for every ¢ € L*(T). Therefore by the well know result
of Lomonosov (cf. [20], p. 158), these operators have non trivial hyperinvariant
subspaces (if £#0 and ¢ #0).

We conclude with the following:

PROBLEM. Lev ¢ = e, 4 e_;. Does the operator, defined by (6.8) with this
function ¢, have a non trivial invariant subspace for every we T?

This problem is of some interest in view of the fact that one can show that
if w is not a rooth of unity, then the two operators given by (6.8) with ¢ = e_, and
@ = e, respectively, do not possess a common non trivial invariant subspace.

REFERENCES

1. ArzMON, A., Operators which are annihilated by analytic functions and invariant subspaces,
Acta Math., 144(1980), 27 —-63.

2. Beauzamy, B., Sous-espaces invariants de type fonctionnel, Acta Math., 144(1980), 65—82.

3. BeauzAaMmy, B., Sous-espaces invariants dans les espaces de Banach: Quelques résultats posi-
tifs, Seéminaire d’Analyse Fonctionnelle. Ecole Polytechnique, 1978—1979, Exposé
No. XIII.

4. BEURLING, A.; MaLLiaviN, P., The Fourier transforms of measures with compact support,
Acta Math., 107(1962), 291--309.

5. CARLEMAN, T., L’intégrale de Fourier et questions qui s’y rattachent, Almqvist and Wiksel,
Uppsala, 1944,

6. CoL0JOARA, 1.; Foias, C., Theory of generalized spectral operators, Gordon and Breach, New
York, 1968.

7. Davige, A. M., Invariant subspaces for Bishop operators, Bull. London Math. Soc., 6(1974),
343348,

8. DomaR, Y., Harmonic analysis based on certain commutative Banach algebras, Acta Math.,
96(1956), 1—66.

9. DoMAR, Y., On the analytic transform of bounded linear functionals on certain Banach alge-
bras, Studia Math., 53(1975), 203 —224.

10. Epwarps, R. E., Fourier series, a modern introduction, vol. II, Reinhart and Winston, New

York, 1967.

11. GeLFanD, I. M.; Raxov, D. A.; Suiov, G. E., Commutative normed rings, Chelsea, New
York, 1964.

12. GELLAR, R., Operators commuting with a weighted shift, Proc. Amer. Math. Soc., 23(1969),
538—545.

13. GeLLARr, R.; HErRrRERO, D., Hyperinvariant subspaces of bilateral weighted shifts. Indiana
Univ. Math. J., 23(1974), 771—790.



40

14.
15.
16.
17.
18.
19.
20.
. SHIELDs, A. L., Weighted shift operators and analytic function theory, in Topics in operator

22,

23.

AHARON ATZMON

Herson, H., Boundedness from measure theory, linear operators and approximation,
Proceedings of the Conference held at Oberwolfach, August 14—22, 1971, 129—137.

Hiceg, E.; PriLies, R. S., Functional analysis and semigroups, A.M.S. Colloquium Publica-
tions, Vol. 31, Providence, 1957.

Icary, S., Functions of L? multipliers, Tohoku Marth. J., 23(1969), 304—320.

KATZNELSON, Y., An introduction to harmonic analysis, Dover, New York, 1976.

LINDENSTRAUSS, J.; TZAFRIRI, L., Classical Banach spaces. 1. Sequence spaces, Springer-Verlag,
New York, 1977.

Liusic, Ju.; Macaty, V. 1., On operators with a separable spectrum, Amer. Math. Soc. Transl.,
5(1957), 67~114,

RaDiavi, H.; ROSENTHAL, P., Invariant subspaces, Springer-Verlag, New York, 1973.

theory, Mathematical surveys No. 13, pp. 51—128, A.M.S. Providence, Rhode
Island, 1974.

Sz.-NagGY, B.; Foias, C., Aualyse harmonique des opérateurs de espace de Hilbert, Acade-
miai Kiado, Budapest, 1967.

WERMER, J., The existence of invariant subspaces, Duke. Math. J., 19(1952), 615~ 622,

AHARON ATZMON
Department of Mathematics,
University of Michigan,
Ann Arbor, MI 48109,
U.S.A.

. Permanent address:
Technion — I.1.T., Haifa,
Israel.

Received April 21, 1981; revised December 20, 1982,




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [445.039 677.480]
>> setpagedevice


