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REFLEXIVE ALGEBRAS WITH COMPLETELY
DISTRIBUTIVE SUBSPACE LATTICES

ALAN HOPENWASSER, CECELIA LAURIE and ROBERT MOORE

The structure of a reflexive operator algebra is determined by the properties
of its subspace lattice. One of the nicest properties that a lattice can possess, dis-
tributivity, is automatic for commutative subspace lattices. Consequently, CSL alge-
bras (reflexive algebras whose subspace lattices are commutative) form a tractable
and interesting class of operator algebras. The strongest possible distributive law
permits distribution of the lattice operations over families of arbitrary cardinality.
Complete lattices which satisfy this property are said to be completely distributive
(sce Section 1 for a precise definition). Every complete lattice which is totally ordered
is completely distributive; on the other hand, a complete Boolean algebra is com-
pletely distributive if, and only if, it is atomic. Thus the CSL algebras with com-
pletely distributive subspace lattices form a proper subclass of the CSL algebras
which contains all nest algebras.

A CSL algebra may possess many compact operators (for a nest algebra the
linear span of the rank one operators in the algebra is dense in the ultraweak topo-
logy) or it may possess none (for example, a maximal abelian von Neumann algebra
with no minimal projections). Complete distributivity of the subspace lattice is
intimately related to the presence of compact operators in a CSL algebra. It is
already known, by results of Longstaff [10,11], that if a reflexive algebra has a com-
pletely distributive subspace lattice, then the rank one operators in the algebra
determine the subspace lattice and that if the linear span of the rank one opera-
tors in a reflexive algebra is dense in the algebra, then the subspace lattice is com-
pletely distributive. In this paper we shall show that for a CSL algebra, the Hil-
bert-Schmidt operators in the algebra are ultraweakly dense in the algebra if, and
only if, the subspace lattice is completely distributive.

One immediate corollary of this result is that any completely distributive
commutative subspace lattice is synthetic (as defined in [1]). A much deeper con-
sequence is that, for completely distributive commutative subspace lattices &,
and .%,, the tensor product formula Alg(¥, ® .¥.) = Alg.#,®Alg &, is always
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valid. This formula has been verified for several other classes of reflexive algebras.
For von Neumann algebras, which are precisely the self-adjoint reflexive algebras,
this is a very deep theorem: the Tomita tensor product commutation theorem. For
nest algebras, the tensor product formula was proven in [4). K. Harrison has veri-
fied this formula for the tensor product of a nest algebra with a CSL algebra whose
subspace lattice has finite width [5]. J. Kraus has proven the tensor product for-
mula for CSL-subalgebras of von Neumann algebras when the commutative sub-
space lattices generate totally atomic von Neumann algebras [6]. For general refle-
Xive algebras, or even general CSL algebras, this problem remains a deep open
question.

Section 1 of this paper is devoted to notation and preliminaries. In Section 2
we prove that the Hilbert-Schmidt operators in a CSL algebra are ultraweakly
dense in the algebra if, and only if, the subspace lattice of the algebra is completely
distributive. This is accomplished via a measure theoretic condition on the spectrum
of the lattice which, by a result in {9], is equivalent to the ultraweak density of the
Hilbert-Schmidt operators. As corollaries we obtain the facts that every completely
distributive commutative subspace lattice .# is synthetic and that Alg.¥ -~ 4 is
norm closed, where £ is the set of compact operators.

Section 3 is devoted to tensor products of completely distributive commuta-
tive subspace lattices. Using Theorem 7 of Section 2, we show that the tensor pro-
duct of two such lattices is again completely distributive. The main result of Sec-
tion 3 is the verification of the tensor product formula Alg(¥,®.%,) : Alg X, ®
® Alg &, for completely distributive commutative subspace lattices.

In Section 4 we present, for the convenience of the reader, several examples
of CSL algebras. One of these examples has the (perhaps unexpected) property
that it possesses Hilbert-Schmidt operators but no finite rank operators.

1. NOTATION AND PRELIMINARIES

Throughout this paper all Hilbert spaces are separable. For any family % of
orthogonal projections acting on a Hilbert space J, let Alg.# denote the set of
all bounded linear operators on S which leave invariant each projection in .
Alg & is, in fact, a weakly closed subalgebra of (). For any family .«Z of opera-
tors acting on 4, let Lat./ denote the set of all orthogonal projections which
are invariant under each operator in .. It is easy to see that Lat.e/is a strongly
closed lattice of projections which contains 0 and 7; such a lattice is called a sub-
space lattice. Since Alg % is unchanged if & is replaced by the subspace lattice
which it generates and Lat o/ is unchanged if o7 is replaced by the weakly closed
algebra which it generates, we shall generally consider only subspace lattices and
weakly closed algebras.
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A weakly closed algebra .« is said to be reflexive if o == AlgLat s/. The class
of reflexive algebras is exactly the class of algebras of the form Alg.#. A subspace
lattice which consists of mutually commuting projections is called a commutative
subspace lattice ; the associated reflexive algebra is called a CSL algebra. Reflexive
lattices are defined analogously. Since all commutative subspace lattices are reflexive
{1] and all subspace lattices in this paper will be commutative, reflexivity of lattices
‘will not be an issue for us. A totally ordered subspace lattice is called a nest and
the associated reflexive algebra is a nest algebra.

We shall need to make substantial use of Arveson’s “‘spectral” representation
theorem for commutative subspace lattices. This theorem states that the following
scheme for constructing examples of commutative subspace lattices yields, up to
unitary equivalence, all commutative subspace lattices. Let X be a compact metric
space, let < be a reflexive and transitive relation on X whose graph G is a closed
subset of X' X X, and let m be a finite Borel measure on X. (The relation < will be
referred to as an order even though it need not be anti-symmetric.) A Borel subset
S = X is said to be increasing if xe S and x < y imply y € S. For each Borel subset
S of X let P denote the corresponding orthogonal projection acting on the Hilbert
space # == L?(X,m), ie., Pg is the multiplication operator obtained from the
characteristic function of S. Let Z(X, <, m) = {Pg | S is an increasing Borel subset
of X}. Arveson’s theorem [I, Theorem 1.3.1] asserts that every commutative sub-
space lattice acting on a separable Hilbert space is unitarily equivalent to some
L(X, <, m). .

For Borel subsets of X and the corresponding proiections in £(X, <, m) we
shall use a notation which, although a bit unusual, proves to be very convenient.

In general, Borel subsets of X will be denoted by “hatted” etters, e.g. ]\?, with the
“unhatted” letter, N, denoting the corresponding projection. Of course, N deter-

mines N uniquely, but not vice versa; N determines N only up to a null set. The
following subsets and projections will be of particular use. For each xe X, let
fx ={yeX|x <y} and ﬁx = {ye X |y < x}. These sets are easily seen to be
Borel sets; I, and D, denote the corresponding projections. For all x, I, € ., while
each D, is a projection in the von Neumann algebra generated by .£. It is possible,
though, that I, = 0 for all x € X (and similarly for the D.’s).

Uncountable unions and intersections frequently cause difficulty in measure
theoretic arguments; the problems which arise in the context under study can be
skirted by use of the following proposition. (This result, which is due to Arveson,
is stated in greater generality, viz. in the context of standard partially ordered
spaces, in [1].) '

PRrOPOSITION 1. Let X be a compact metric space and < an order whose graph

is closed. Then there is a sequence EAI, E;, ... of increasing Borel subsets of X such
that x < y if, and only if, Xy (x) < iz ), for all n.
n n
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An abstract complete lattice is said to be completely distribuiive if the fol-
Iowing identity and its dual hold for arbitrary index sets:

AV Ep)= V (A Epx)

« €A JEB oe T B ocA
2 z€4

It is known that every complete chain is completely distributive {2, p. 232] and
that a complete Boolean algebra is completely distributive if, and only if, itis atomic.
When working with subspace lattices, the identity above is often difficult to check.
(It is never necessary to verify both the identity and its dual statement, since the
two are always equivalent.) Fortunately, there is a more tractable characterization
of complete distributivity, due to Longstaff. We need the following definitions:

M_= VINIM &N, Ne%#}, foral Me %,

L.=ANM_MLL Me®}, forall LeZ.

(We use the conventions V@ =-0 and AQD =1, where necessary. We always
assume that each lattice has a 0 and a 1. This yields 0.. = 0 and I, :== 1.) Tt is easy
to see that L < L., for all L € &. Longstaff has proven in [11] that & is compictely
distributive if, and only if, L.= L, for all Le .#. For an extensive discussion of
complete distributivity, see [7].

In this paper, attention is restricted to subspace lattices. We should remark,
first, that the notation M_ is compatible with its conventional meaning in the con-
text of nests: M_ is the immediate predecessor of M if M has an immediate prede-
cessor; otherwise M_ == M. Also, note that Ringrose’s lemma on rank one ope-
rators in a nest algebra extends to general reflexive algebras:

Lemma 2. (Longstaff, [10]). The rank one operator x®y belongs to Alg %
if, and only if, there is a projection M in & such that ye M and x € M=.

Thus, we see that if L = L, for some projection L # I in ¥, then Alg. ¥
contains rank one operators. If L = L, for all Le &, i.e. if & is completely distri-
butive, then, as Longstaff has shown [10], & = Lat #, where Z is the set of rank
one operators in Alg.%#. He has also shown [11] that if the linear span of % (which
is automatically a subalgebra) is dense in Alg.% (in any of the usual topologies),
then .# is completely distributive. In the next section we will prove that, for com-
mutative subspace lattices, complete distributivity is equivalent to density of the
Hilbert-Schmidt operators in Alg.¥ (in any of the weak, strong, ultraweak or
ultrastrong topologies).

In Section 3 it will be convenient to use the notion of a slice algebra, or Fubini
algebra, as introduced by Tomiyama in [12]. For any Hilbert space ., #(.#)..
denotes the predual of %(s#), i.e. the space of ultraweakly continuous linear func-
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tionals on B(). If ¢ € B(H), and Te B(H ®HA'), we can define a linear func-
tional f, ;- on B(X'), by

fo 1) = (@®Y) (T), for all Y € B(X),.

This is a bounded linear functional on #(X)., so there is an operator in %(X'),
which we call R,(T), such that

Jo (W) = W(R,(T)), for all e (A )y .

Similarly, for each ¥ in #(A"), we can define an element L,(T) of %B(#) such
that @(Ly(T)) = (ep®@¥) (T), for all ¢e B(H),. Then {R,|¢@c B(H),} and
{Ly\ Y e B(AX),} are families of ultraweakly continuous maps from B(H# @ A
to #(X) and Z(H#) respectively, and

R, % 4@ ) = ¥ o105,

i=1

L, (% 4@8) = ¥ v,
i=1 i =1

If o/ H(#) and B < B(H) are ultraweakly closed algebras containing the iden-
tity 7, define the Fubini algebra & (o, %) by

F(l, B) = {Te BAQK) | R,(T)e B and L(T)e o for all ¢ in B(H),
and ¢ in B(H),}.

Tomiyama introduced Fubini algebras for the purpose of extending the Tomita.
tensor product commutation theorem to contexts broader than that of von Neumann
algebras. For reflexive algebras, Tomiyama’s conjecture, F (&, #) = o @, agrees
with the conjecture natural to reflexive algebras, Alg(¥,®.%,) = Alg X, @Alg Z,.
The authors would like to thank Jon Kraus for drawing Fubini algebras to their
altention.

We conclude this section by stating formally the (obvious) definitions for the
tensor product of weakly closed algebras and of subspace lattices. If &7, and 7,
are weakly closed algebras of operators acting on Hilbert spaces 3, and 5, respec-
tively, then o/;® of, is the weakly closed algebra acting on #,® #, generated by
all elementary tensors T,®T,, where T e &, and T, e o,. If ¥, and #, are sub-
space lattices acting on £, and #, respectivey, then ¥, ® %, is the subspace lat-
tice acting on #;® #’, generated by all elementary tensors of the form P,®P,,
where P, €%, and P,e ¥Z,.

2. DENSITY OF THE HILBERT-SCHMIDT OPERATORS

By virtue of Arveson’s spectral representation theorem, we may assume that
cach commutative subspace lattice is of the form & = Z(X, <, m). In this
section we shall prove that complete distributivity of % is equivalent to a measure
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theoretic statement involving the triple (X, <, m), which in turn is equivalent to
the ultraweak density of the Hilbert-Schmidt operators in Alg.#. First, however,
it will be useful to obtain a set theoretic identification of N_, where N e Z. It would
be desirable to obtain such an identification for N, also; however, some of the
examples given in Section 4 indicate that this may prove difficult to find.

In the following lemma and hereafter, S¢ denotes the complement of Sin X.
Also, the sets _lf,, are the separating family of Borel sets given by Proposition 1.

LEMMA 3. Let Ne ¥ == P(X, <,m). Let N be an increasing Borel subset
of X which corresponds to the projection N. Let

B={xim N a19>0} = (x| N & L} = U{E,|m(EEn N) # 0).

Then B is an increasing measurable subset of X and the projection to which it
corresponds is N_ .

Proof. Since 1’\\f><1'§’ N Gis a Borel subset of X X X, every section of JC”X ﬂ\f naG
is measurable. An x-section of N X N N G, defined to be {y;(x, y)ei(\’x]C’ n G},
is clearly equal to N nfx. The function x — m(N N IAx) is a measurable function,
whence B is a measurable set. Let B denote the projection corresponding to B.
To prove that N_ < Bit suffices to show that M < B whenever M € % and N & M.
(Reason: N_ = V{M|N & M}.) Let M be an increasing Borel set correspond-
ing to M. Let xe M. Then ?,_t:]\Zf. Since m(ﬁn AAJ°) > 0, we must have
m(ﬁ’n I°y > 0. Thus xe]é\, i.e. M< B Hence M < B.

It remains to prove that B < N_. It is easy to see that, for any x, ;\ o {EA,, 'x€
€ E‘,,}, whence 7¢ = U {Ef,l x ¢ E,}. Consequently

B={xmini >0} =
:—_{xlm(]\/}ﬂ(U{l’::‘;:«\‘e E) > 0} =
= {x]| m(U{;Vﬂléfﬁl-\‘Eé;}) >0} =

= U {f" im(x’cfﬂ E%) > 0}.

It is routine to verify that a countable union of sets corresponds to the join of the
corresponding projections, hence

B== VIE, m(NnE)>0)=V{E|N £ E,).

But if N & E, then E, < V_, whence B < N_.
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REMARKk. If m{xlm(fx =0} > 0 then & is not completely distributive.
Indeed, let € = {x| m(IAx) = 0} and let C be the projection corresponding to ol
Since (,A‘ is measurable and increasing, C e . Further, from Lemma 3, we have
C<M_, forall M#0. If Le &, then Ly = A{M_|M & L}; so C < Ly, for
all L e #. Thus it suffices to find one projection L e % such that C € L to show
that & is not completely distributive. Let E,, be a separating sequence of increas-
ing Borel sets as in Proposition 1. Suppose that, for all n e N, either m(é n ]zA',,) =0
or m(é’ n E,f) = 0. Since m(é) > 0, it can never occur that both conditions hold.
Let N, = {n | m(Cn E) =0} and Ny = {n | m(C n ES) =0}. Then N, n N, =D
and NyUN; =N.Let C,=UCnE, and ;=\ Cn E. Both m(C) =0

neN, ne N,
and m(é'g) =0. Let 6’0 = (,:”\(CA‘1 U 6’2). Then m(éo) = m(é’)>0. For each ne N,
either 6&1?,, or C"\OQI’::,‘,’. Hence, if x,ye éo then X3 (x) = Xp

L

(»), for all n.

Therefore x < y. In other words, éo ;[:, for each xeCA'O. This yields m(CAo) <
< m(i,\,) = 0, a contradiction. Therefore, there exists n € N such that m(CA' n f,,) >0
and m(a' n Eﬁ) > 0. In other words, E, # 0 and C & E,. Since C < E,., we
have E, # E,. and % is not completely distributive.

It appears to be much more difficult to characterize L, “set theoretically”
than it is to characterize L_. We do have the following tidbit:

LeMMA 4. Let Le ¥ and let L be a corresponding increasing set. Let
2~ = {x]| m(IAx N 13°) =0} = {x| I, < L}. Then [/:~ is an increasing measurable set
and the corresponding projection, L _, is a subprojection of L.

Proof. Tt is clear that IA,~ is increasing and measurable. Now suppose that
Nec¥% and N & L. Let N correspond to N. By Lemma 3, N. corresponds to
{x[m(ﬁﬂf@) >0} ={x|N « L}. For any xe£~, I. < L, whence N &£ I,.
Thus I < {x|N ¢ I} and so L_ < N_. Hence L_ < A{N_|N & L} = L,.

REMARK. It is not necessarily the case that L = L,. An example is given in
Section 4 for which L_ < L, for some L € &#. One can define 2: ={x|I,< L}
and speculate on the relation between L. and L,. Examples will be given in
Section 4 in which L, = L. and in which L, < L.

The set theoretic characterization of N_ leads to the following necessary and
sufficient condition for Alg.# to contain a rank one operator.

LEMMA 5. Alg.%Z contains a rank one operator if, and only if, there exist
meuasurable  sets ﬁ,ﬁgX such that m(/i) > 0, m(ﬁ) >0 and x <y whenever

xeA and yels.

T - 1511
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ReMARK. The latter condition is equivalent to saying that the graph G con-
. A A
tains a non-trivial measurable rectangle, viz. A X B.

Proof. If Alg & contains a rank one operator then there exists a non-zero
projection N e & with N+ # 0. Let 12‘,1 be a sequence of increasing sets which deter-
mines the order, as in Proposition 1. Let J = {n| N« E,}. From the proof of Lemma 3,
N_ corresponds to U {I?,, [neJ}. Let /fz-X\U E‘,,. Then m('/f) > 0, since A cor-

neJ
responds to NL. Let B =N\ U {Nn Ef,]n ¢J}. When n¢J, N<E, hence
m(]Q n EA,°,) =: 0. Since N\J is countable, m(’ﬁ) = m(]\/;) > 0. Nowlet xe A and
ye B be arbitrary. If neJ, then x ¢ E, and Xp(x) =0 < Xa (). If n¢J, then

ve B, and X3 (x) < 1 = %z (). Thus x < y, as desired.
n ! n

For the converse, suppose sets A and B are given with m(/f) > 0, m(ﬁ) >0
and AxB = G. Let A and B be the projections corresponding to A and B. Then
A # 0 and B # 0. It is sufficient to show that any operator T satisfying T - BTA
must lie in Alg.#. Let Le ¥ and suppose T = BTA. If AL =0 then T clearly
leaves L invariant. If AL # 0 and if L is an increasing set corresponding to L,
then Ln A # @. Since Lis increasing, it follows that Bel. Thus B< L and T
leaves L invariant. Thus we see that Te Alg & and the proof is completed by tak-
ing any rank one operator T which satisfies T = BTA.

The following lemma will also prove useful.

LEMMA 6. For every xe X, D, nl.- = 0.

Proof. Since I.- corresponds to B — {»l m(l, n f;) >0} = {y|I £}
it suffices to show that ISX nB=0. But, if ye ﬁx then y < x, whence I:gfy,
$O f)x nB=a.

We now turn to the Hilbert-Schmidt operators in Alg.%, where, as usual,
& == £(X, <, m)acts on the Hilbert space s = L% X, m). Every Hilbert-Schmidt
operator T, in #(#) can be expressed as an integral operator with respect
to a kernel function f which is an element of L3 X x X, mxm). There is a simple
necessary and sufficient condition for T, to lie in Alg.#: f must have support on the
graph G of the order < ([I, Proposition 1.6.G]). From this it follows that there exists
a Hilbert-Schmidt operator in Alg. if, and only if, m X m(G) > 0. The main result
of this section is the following lattice theoretic characterization of the CSL alge-
bras in which the Hilbert-Schmidt operators are ultraweakly dense.

THEOREM 7. Let & = ¥ (X, <, m) be a commutative subspace lattice. The
Jfollowing are equivalent:
(i) The Hilbert-Schmidt operators in Alg.¥ are ultraweakly dense in Alg.%L.
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@) If Ais any Borel subset of X for which m(/i\) > 0 then mX m(/ll\ X AN G) >0.
(i) & is completely distributive.

Proof. The equivalence of (i) and (ii) has been proven in [9]. In fact, a slight-
ly stronger result is proven: (ii) may be replaced by the same statement in which

it is further assumed that A corresponds to a projection of the form P — Q, where
P, Qe ¥ and Q < P. (Such a projection is called an interval.) We shall use this
variation in proving the equivalence of (ii) and (iii).

To prove that (ii) implies (iii), assume that % is not completely distributive.
Then there is a projection Me ¥ such that M # M,. Consequently, M < M,.

Let M and A?* be increasing Borel subsets of X which correspond to M and M,
and which satisfy Mc Afl Let A =A¢I* N M. The hypothesis assures that
m(/f) > 0. Let AA1 = {xe/fl I. < M} and Ay = /i\\/fl Then at least one of A,
and AA2 has positive measure; the proof that (ii) implies (iii) will be complete if
we show that m><m(A.Ai>< ﬁi N G) =0 for both i=1 and i = 2.

For any measurable subset B <X, m><m(§><)§ N G) can, by Fubini’s theo-
rem, be obtained by integrating the measure of the sections of Bx B ngG.
The x and y sections of BxBnG are given by

{yI(x,y)eﬁxEnG}:Enf;, for xe B
and

{xl(x,y)eﬁxf?ﬂG}:finﬁy, foryel}.
So, ‘

m><m(§><§ nG)= Sm(l} n ?x)dm(x) =
I3

= Sm(é n IA)y)dm(y).
B

In particular,
mxm(A, X A, n G) =Sm(21 n L)dm(x).
¥
But, for eacl: xe AAI, I. < M, hence mifv nAMC) = 0. Since AA1 gM\C, m(AA1 n ]:) =0
for all x e A4;, and therefore mxm(A, X A, n G) = 0. Similarly,
mXm(Ayx A, 0 G) :Sm(/?2 n D,)dm(y).

Ay
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Now, for yeﬁg, I, & M. Since M, = A{N_-|N & M} we have M, < I,-. But
As < My, so that A, < I,- and hence 4,AD, < (I,-) AD,=0, by Lemma 6.
Therefore m(ﬁ2 n ﬁy) =0 forall ye AA2 and anl(AI;X/i\g nG) =0.

It remains to prove that (iii) implies (ii). Assume that there exists a Borel set
A< X such that m(ﬁ) > 0 and mxrn(/foAn G) = 0. We may, by the remarks in
the first paragraph of the proof, assume further that A corresponds to an interval
P — Q, where P,Qc % and Q < P. Let P and é be increasing Borel sets corres-
ponding to P and Q such that @ c P If necessary, adjust A by a set of measure 0

sothat 4 — ﬁ\é Let 4y = {x€ A ! m(;l n I;) == 0}. Since 0 = mxnz(/’{\x/(;ﬂ G)in=
= Sm(ﬁ n ?,) dm(x), we see that ITI(/I\AI;) = 0. Thus AA0 also corresponds

a
toP— Q. If xe 20 then xe P and so 7x§1A’, since P is increasing. But 0:
= m(l: n ,;1\0) = m(IAx n éc). By Lemma 4, P — Q € Q,, from which it follows
that P < Q,. Since Q < P, we have Q # Q. and .Z is not completely distributive.

Thus (iit) implies (ii).

REMARK. Trivial modifications of the proof of Theorem 3.2 in [9] show that
if the Hilbert-Schmidt operators in Alg.% are dense in Alg.# in any of the usual
topologies, then condition (ii) in Theorem 7 is satisfied. Thus if the Hilbert-Schmidt
operators are dense in any of the usual topologies, they are ultraweakly dense and .&
is completely distributive. On the other hand, if the Hilbert-Schmidt operators in
Alg % are dense in Alg.? in the ultraweak topology they are also dense in the
ultrastrong topology. (Convex sets have the same closures in the ultraweak and
ultrastrong topologies.) From this, of course, it follows that they are also dense
in the strong and the weak operator topologies. Thus we see that density of the
Hilbert-Schmidt operators in any one of these topologies is equivalent to density
in any other.

REMARK. M. S. Lambrou has recently obtained an interesting result about
the rank one operators in Alg.¥ where £ is a completely distributive subspace
Jattice on an arbitrary normed linear space X. He proves in [8] that complete
distributivity of & is equivalent to the following condition: for each x¢€ X,
Ac Alg % and ¢ > 0 there is an operator F equal to a finite sum of rank one ope-
rators of Alg.¥ such that ||Ax — Fx" < e This condition is somewhat weaker
than the strong density of the linear span of the rank one operators of Alg.#.
Lambrou also gives an example of a (non-commutative) subspace lattice % which
is not completely distributive but for which the finite rank operators in Alg.¥ are
strongly dense in Alg.%. This example shows, of course, that conditions (i) and
(iii) in Theorem 7 are not equivalent in general.
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It is pointed out in [9] that if condition (ii) is satisfied then Alg¥ 4 4 is
norm closed, where ¢ is the set of compact operators on L2(X, m). Hence we have
the following corollary.

CoROLLARY 8. If &% is a completely distributive commutative subspace lattice
then Alg ¥ + A is norm closed.

This should be compared with § 5 in [4], where it is proven that Alg.¥ + A&
is closed whenever & has finite width.

A reflexive lattice & is defined to be synthetic (in [1]) if the only ultraweakly
closed algebra o/ satisfying &/ N &* = (Lat &7)’ and Lat & = % is the algebra
Alg #. (Here, #' denotes the commutant of B.) Theorem 7 also yields the follow-
ing corollary.

COROLLARY 9. If & is a completely distributive commutative subspace lattice,
then £ is synthetic.

Proof. Theorem 2.2.11 in [1] asserts that % is synthetic if, and only if, the
pseudo-integral operators in Alg.% are ultraweakly dense in Alg.#. (The reader
is referred to {1] for the definition of pseudo-integral operators.) When % is com-
pletely distributive, the Hilbert-Schmidt operators in Alg.¥ are ultraweakly dense
in Alg%. Not every Hilbert-Schmidt operator is a pseudo-integral operator;
but every Hilbert-Schmidt operator with a bounded kernel is pseudo-integral.
Since the Hilbert-Schmidt operators with bounded kernel in Alg % are ultraweakly
dense in Alg.# whenever the full set of Hilbert-Schmidt operators in Alg.% is
dense, we see that the pseudo-integral operators are ultraweakly dense and %
is synthetic.

3. TENSOR PRODUCTS

The main result in this section is the verification of the formula Alg(%,® %,) =
= Alg £, ®@Alg ¥, whenever ¥, and &, are completely distributive commutative
subspace lattices. The first step in this direction is a proof that if %, and &, are
completely distributive, then so is %, ®%,. A related theorem has been proven
by K. Harrison [5] — if A/ is a nest and % is a (not necessarily commutative) com-
pletely distributive subspace lattice, then #/®.% is completely distributive. Both
Harrison’s theorem and our theorem generalize a result in [4] which states that
the tensor product of a finite number of nests is completely distributive.

THEOREM 10. If ¥, and L, are completely distributive commutative subspace
lattices, then £ \® L, is completely distributive.

Proof. As usual, represent &, as L(X;, <, my) and F,as L(X,, <,my). It
is proven in [4] that ¥, ®.%, is represented by Z(X; X X,, <, n, Xm,), where < is
the product ordering, viz. (xy, X,) < ()5, y») if, and only if, x, € y; and x, < y,.
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Let G; denote the graph of (X;, <) and G denote the graph of the product order.
Let X == X; XX, and m = n; X m,.

Choose an arbitrary Borel subset 4= X. (We drop the “-symbol, since it is
no longer useful.) Let £ = AX A n G and assume that m x m(E) = 0. By Theorem 7,
we need only show that m(4) = 0.

Let X X;xX; (with the measure m = myxm,) and view XXX as
Xl,\':YXX.“,. For X = (xy, Xy) let Ex denote the ¥-section of E, viz.

E~= {(71‘ 7)€ X1 XXz | (2, X, Ze)‘-:E} =

= {(21, Z‘Z) € Xl XX‘...’ l (213 x‘:) € A, (xl, Zg) € A and (217 ,\’2) < (_\'1, 22)1 =
={zeX|(z, ;) ed 7, S x}xX{z€A|(xy,2) € A, Xy < 2,) =
= [A,‘2 n D,¢1]><[Ax1 N 1,,2].

(Ax’. denotes the x;-section of A4. As earlier, D, = {yeX;|y < x,} and I, -
= {y€ Xy | x, < y}.) Fubini’s theorem implies that m, X my(Ez) = 0, for m-almost
all ¥ in X. Hence either my(Ax, N Dy ) = 0, or my(Ax 1) =0, for almost all
(X1, xa) e X.
Set

B = {(x}, x2) | my (Axs n Dxl) = 0}
and

C= {(.\”l, Xs) | "72(1‘1.\-l n 1"2) =: 0}.

Then X; X X, \(B U C) has m-measure zero. We shall show that m(4 n B) =0
and m(A n C) == 0; this immediately yields m(4) = 0 and thus will complete the
proof.

If xe(4n B)x,» then (x, x») € A N B< B and m, (4. n D,)-=0. Consequently,
my((4 0 B)x, N D) =0, for all xe (4 n B), . rlence,

ny Xmy((A n B)xgx(A n B),(2 n Gy == S m((An B)x2 N D)dmy(x): 0.

A0B),

The complete distributivity of ., implies that »,((4 nB)xz) =: 0, for all x;€ X,
(Theorem 7). Thus m(AnB)=mXm(ANB)=0;, mAnC)=-0 can be
shown in a similar way.

We now turn attention to the tensor product formula: Alg(%,®.%,) =
= Alg £, ®Alg ¥,. We have defined the tensor product of two weakly closed
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algebras to be the weak closure of the algebraic tensor product. In one of the pro-
positions below, some of the algebras invoived are assumed to be ultraweakly
closed, rather than weakly closed. In this context, the tensor products should be
interpreted as ultraweak closures, rather than weak closures. In fact, a close reading
of the proofs below reveals that one could define Alg ., ®Alg.%, to be the ultra-
weak closure of the algebraic tensor product and still obtain the formula Alg %, ®
®Alg Y, = Alg(¥,®L,). In particular, for completely distributive lattices, the
ultraweak closure of the algebraic tensor product of Alg.#, and Alg.?, is auto-
matically weakly closed. We do not know if this happens for all (commutative) sub-
space lattices or if this refinement will prove useful.

Let # and A" be separable Hilbert spaces. Let {e;}7., and {f;}3%., be ortho-
normal bases for # and %" respectively. Define £;;€ #(#) as the rank one ope-
rator E;;h = (h, e;)e; and F;;€ B(A') by F;k = (k, f))f;- Any operator Te Z(H# @ X')
has the infinite matrix representation

(o] oo
T= Y, T,;®F; (or T=Y, Ei,-@Sij),
hj=1 iy j==1
with convergence in the ultraweak topology. From this observation it is straight-
forward to check that, for any subspace lattice %, on #, Alg X, QAB(A) =
= Alg(Z,®1y). (£1®1, is the subspace lattice on # ® A generated by {PRL, | Pe
€ #,}.) Similarly, for any subspace lattice %, on X, #B(H) ® Alg L,=
= Alg(I, ® .&¢,). Putting these facts together we have

[Alg2, @ B(A)] N [B(A)RAIg L] = Alg(Z, ® £»).

Thus the tensor product formula may be reduced to the equation:
Alg ¥, ® Alg Z, = |Alg £, ® B(H)) n[B(H) ® AlgLs).

In the next proposition we show the validity of the analogous statement with
operator algebras replaced by Hilbert spaces. This is then exploited to yield similar
results for the Hilbert-Schmidt operators in CSL algebras. For the special case
when the Hilbert-Schmidt operators are ultraweakly dense, viz. when the lattices
are completely distributive, this yields the tensor product formula.

ProproSITION 11. Let o and A" be Hilbert spaces. Let U <H and ¥ <A be
subspaces. Then URA N H QY = URY .

Proof. Let {e;}ier be a basis for % and {¢;};c; be a basis for #*. Let {f;}jes
be a basis for ¥" and {f;}jes be a basis for ¥'L. Then {¢,;®f;, ¢;®f;, e;Qf}, e;Qf;}
forms a basis for # ® A while {e;®f;} forms a basis for #®¥". It is obvious that
A®7Y is contained in ¥®A N H® Y. The reverse containment is almost
equally clear: for each xe #®H4 NH# ® V", the representation of x in terms of
basis vectors involves only the basis vectors e;®f;. This proves the proposition.
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For the remainder of this section we shall employ the notation of a Fubini
algebra and the notation described in Section 2. In particular, for ultraweakly
closed algebras &/ € B(#') and # < B(A),

F(A, B) = {Te BAHARN)|R(T)e B, L(T)e o, for all p € B(H)s, Y € B(H)s)-

The next proposition, combined with the comments preceding Proposition 11,
shows that, for reflexive algebras o/ and 4, the tensor product formula has the equi-
valent formulation: F(&7, %) = S RH.

ProrosITION 12. Let o c H(H) and B < B(H) be ultraweakly closed algebras
which contain 1. Then F (o, B) =[A QB(H)] 0 [B(H#)RF).

Proof. Since the R, and L, are ultraweakly continuous, it is clear from the
definitions that [/ @B(HA)) N [B(H)RB) S F (4, #). It is also clear from the

o«
definition that F(, B) = F(AL, BA)) 0 F(B(H), B). Let T = Y T,®F;
i1
be in F(&Z, B(X)). Fix k, I and let y € A(A),. be defined by Y(X) = tr(XE,),
where tr is the usual trace on #(%"). Then L,(T) =: T,;. Hence T, e o/, for all
k, ! and therefore Te L QRB(H'). Thus F(oZ, B(H)) S AL RQRB(H); F(B(H), B) <
C B(A)R®P is shown similarly.

We now recall some properties of the algebra of Hilbert-Schmidt operators
on a Hilbert space. For a separable Hilbert space 52, let €, () denote the Hilbert-
-Schmidt operators on . For A, Be €,5(3#), define (A4, B) - tr (B*4). With the
inner product (-, - », €»() is a Hilbert space. For A € €y(#), we will write |4y
for (A4, AYY2

We shall make frequent use of the fact that convergence in the -
implies operator norm convergence, which in turn implies ultraweak convergence.
For example, if 7 is an ultraweakly closed subalgebra of #(s#), then 7 N Co(H)
is closed in the j-|ls norm. Thus we can consider &7 N %.(3#) as a closed subspace
of the Hilbert space %.(#). In the next proposition, ¥(#)@%s(#") denotes the
subalgebra of A(# @A) which is generated by elementary tensors S ® 7 with
Se%y#) and Te @o(#) and is closed in the ii-|l; norm on ¥HH & #). In es-
sence, %o H)RGo(A) is the Hilbert space tensor product of €,(3#) and o).

's norm

PROPOSITION 13, C(H RH) = Co H) R Co(H).

Proof. Let {e;} and {f;} be orthonormal bases for s and ., respectively.
Let E;; € Z(#) and F;;€ %(A") be matrix units as before. Then {E;;} is a basis for
@) and {F;;} is a basis for €a(). Hence {E;;®F,} is a basis for %x(#)®
®%s(A). On the other hand, the orthonormal basis of %,(#®) consisting
of the matrix units which correspond to the basis {¢,®f;} of #®A is also
{E;;®F,,}. The proposition is now immediate.
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LEMMA 14. Let Te G A RX), 9 B(H )y and y € B(H ). Then R (T)eCo(A')
and L,(T) € Co(H).

Proof. Let T=Y, T;;® F;; and let T, = Y, T;;®F;. Since [|T]ii=
ije 1 inj=1
== Y, |IT;;Ii3, we see that T'e €(#®A") implies that each T;; € () and also
i1

that {|{7, —- T}l,—0 as n— oo. Thus R,(T,) — R,(T) ultraweakly. Now
RAT)=Y, o(Ti))F;)) is in F(A). Hence to show that R,(T)e €o(H), we

g1
need only show that {R,(T,)} is Cauchy in the Hilbert-Schmidt norm. For this it
suffices to show that the sequence of numbers {ip(T;)|} is square summable. Since

@ is a bounded linear functional,

Y 0T )E < llolp 3, 1T, < Yol 3 17418 = ligl? IT1E < oo.

ij=1 hj=1 ij=—1

A similar argument shows that L,(T) € €,(5).

Let o, == & N Co(H#) and B, = BN CAH). As before, ® denotes the
[l norm closure in @o(# ®.4) of the algebraic tensor product, i.e. the Hilbert
space tensor product.

LEMMA- 15.
[ZQB(A)) N CAHRKH) = A, QCoH)
[B(A)YRB] N Co H RNA) == Co( H)R B

Proof. Tt is clear that o/,®%(H) S[LRB(A)] N Go(H &H) since Hilbert-
-Schmidt convergence implies ultraweak convergence.

Let T= Y, 7;;®F;bein[/ @H(A )] n C(# @) and let T,= ¥, T,@F;;

i, ji=1 i je=1
Just as before, T,—7 in Hilbert-Schmidt norm and each T7; € &,. Consequently, each
', is a sum of elementary tensors in o/, @%,(#"). Since T, — T in Hilbert-Schmidt

norm, Te o ,@Co(A). Thus [ RB(A) N CoH @A) = A, RCs(H); the other
inequality is verified in the same way.

THEOREM 16. F (A, BYN CoAH RA) = [ L RB] N Co(H RHA).
Proof. Since (A, B) =[ARQB(ANN[AB(#)RH)], Lemma 15 yields

T (s, BN Go(H @A) = [ :,BCoAA)] 11 [6(H) BB,
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Let o7 S Co(5#) and B, = Go(H') be considered as closed subspaces of the Hilbert
spaces @o(3f’) and ¥.(A) respectively. By Proposition 11 we have,

[,52{2@(62(){)] n [%)2(%)—(’_9-«@2] = -dz—@e@e,

where each side is considered as a closed subspace of the Hilbert space
CAH)YRECAH) = Co(H RA). Since

QB = [ 0 C(HNBH N Go(H)]| S (A RH) 1 Co(H ON),

we obtain F(, B) N G A QA ) S[HA QBN CAH# @A), The reverse inequality
is obvious.

THEOREM 17. Let L\ SB(H) and L.SHB(A) be completely distributive
commutative subspace lattices. Then

Alg(Z,®%,) = Alg £, ®AIg L.

Proof. First note that Alg(¥%,0%,) = F(Alg ¥,, Alg &,), since both are
equal to [Alg Z,® B(H)]n [B(H)RAlgZ,). Therefore Theorem 16 yields

Alg (2, ® L) N GoH @A) = (Alg £, @ Alg L) n Co(H ® X).

By Theorem 10, %,®.%, is completely distributive, hence Alg(¥%,®%,) N
N C(H @A) is ultraweakly dense in Alg(¥L,®.%,). But we have Alg(¥,®.%.) n
NCAH @A) Alg £, ®AIgY,, so Alg(L,®L;) <Alg? ®Alg.L,. The reverse
containment is automatic and the theorem is proven.

4. EXAMPLES

In this section we point out several examples of commutative subspace lat-
tices. The first three examples, already familiar in the literature, are presented to
illustrate the concept of complete distributivity. The fourth example is the most
interesting: it yields a CSL algebra which possesses Hilbert-Schmidt operators
but no finite rank operators. The fifth example is a variation on the fourth which
illustrates the difficulty of finding a set theoretic characterization of L,. Each example
is presented by specifying the ingredients X, <, m in the spectral representation
F = L(X, <, m).

ExamPLE 1. Let X =]0,1], let m be Lebesgue measure, and let < be the
trivial order: x < y if and only if x = y. Since £ (X, <, m) is a non-atomic Boolean
algebra, it is not completely distributive. For each xe X, I, = 0. From Lemma 3
it is clear that L_ == I for all non-zero L e £(X, <, m). This, in turn, implies that
L. == 1 for all L # 0. Also note that L. = I, for all L # 0 (Lemma 4).
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ExaMpLE 2. Let X = [0,1] X[0,1], let m be Lebesgue measure, and let <
be the product order: (a,b) < (c,d) if, and only if, a < ¢ and b < d. Since
(X, £, m)is the tensor product of two nests, it is completely distributive. (The two
nests are the same: each is the nest constructed from [0,1] with the usual order and
Lebesgue measure.) Each projection [, is of the form P®Q. With the aid of
Lemma 3 it is easy to check that (P®Q)_ = (Pi® QYL

ExampLE 3. This example is taken from [9]. Let X ={0,1]1x[0,1], let < be
the product order as in Example 2, and let m be the sum of two dimensional
Lebesgue measure on the square and one dimensional Lebesgue measure on the dia-
gonal {(x,»)eX|x+y=1}. Let L be the projection in ZL(X, <, m) which
corresponds to {(x, y) € X|{x + y > 1}. From the definition of L. given in Lemma
4, it is clear that L _ corresponds to {(x,y)e Xix+y > 1}. Thus L<L_< L,
and Z(X, <, m) is not completely distributive. It is not hard to see that L =L,
in this example.

The authors would like to thank Tavan Trent for providing the following
example:

ExaMPLE 4. let X =10,1] and let m be Lebesgue measure on X.
Let R={(x,»)|0<x<1/2, 1/2<y<1 and y—xeQ}. R is a subset of
[0,1/2] x[1/2,1] with measure 0. Let K be a compact subset of {0,1/2] x{1/2,1]\R such
that m Xm(K) > 0. A standard construction yields the set K. First, enumerate the
rationals in [1/2,1]. For each rational r, delete from [0,1/2] x [1/2,1] all points whose
distance from the line y = x + r, is less than ¢/2". For suitable ¢, the set that remains
is compact and has positive measure. In particular, K has the property that, for
each x€[0,1/2], both {y|(x,»)eK}nl[l/2, 3/4] and {y!(x,y)eK}n[3/4,1]
have positive measure. Let D = {(x, x) : x € [0,1]} be the diagonal. Let G = KU D.
Since K is a subset of [0,1/2] x[1/2,1], G is the graph of a transitiveand reflexive
relation. Let < be the relation so obtained.

If A and B are any measurable subsets of [0,1] with m(4) > 0 and m(B) > 0
then 4 X B is not a subset of G. Indeed, if A XB<G then clearly A XBcK.
But this means that b — a ¢ Q for all (¢,b)e 4 X B, i.e. (B—A) n Q = . But
if A and B both have positive measure, then B — A contains an interval. This shows
that Alg.Z contains no rank one operator (Lemma 5). By using a result which will
appear elsewhere, one can actually see that Alg.# contains no finite rank opera-
tors. But m X m(G) > 0, so Alg.¥ does contain Hilbert-Schmidt operators.

By Lemma 2, L_ =1 for all L # 0 in Z(X, <, m). Consequently, L, =1
for all L # 0 and Z(X, <, m) is not completely distributive. Now fix L equal to
the projection which corresponds to [3/4,1]. Then L _ corresponds to {x ] m(fXAE):
=0} = (1/2,1]. Thus L < L _ < L, in this example. It is easy to check that L. = L,
in this example (see remark after Lemma 4).
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EXAMPLE 5. (X, <, m) is as in Example 4 except that the graph G is taken
to be G-:KuDuy(0,1/4]x[3/4,1]). Let L be the projection corresponding
to [7/8,1]. One can show that L_ corresponds to [1/2,1], L., corresponds to [1/4,1}
and L.~ I Thus L<L_ < L,<L ~- We omit the details.

First author was partially supported by a grant from the National Science Foundation.

Second author was partially supported by a grant from the Research Grants Committee of the
University of Alabama.
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Added in proof: Laurie and Longstaff [Proc. Amer. Math. Soc., 89(1983), 293-.297}
have shown that the statements (i), (ii), (iii) of Theorem 7 are all equivalent to:

(iv) The algebra generated by the rank one operators in Alg&¥ is ultraweakly dense
in Alg &.
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