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TRANSFORMATION GROUP C*-ALGEBRAS WITH
CONTINUOUS TRACE. 11

PAUL S. MUHLY and DANA P. WILLIAMS

1. INTRODUCTION

In this note, G will be a locally compact group acting continuously on a
locally compact Hausdorff space 2. The translate of an x€ 2 by an se G will be
denoted by s-x. The pair (G, ) will be referred to as a transformation group, and
the familiar transformation group C#*-algebra associated with (G, ) [3] will be
denoted by C*(G, Q). Of course, these objects are special cases of C*-dynamical
systems and C%*-crossed products, respectively. The question of when C*(G, Q)
has continuous trace has attracted considerable attention lately and, in a sense,
has been fairly well answered. Nevertheless, a number of related and more delicate
questions remain. Our objective in this note is to contribute to one of these.

In [8], Green found necessary and sufficient conditions for C*(G, Q) to have
continuous trace under the assumption that G is freely acting; i.e., under the
assumption that s-x = x implies s = ¢. To be precise, [8, Theorem 17] asserts that
if G is freely acting and if (G, Q) is second countable, then C*(G, Q) has conti-
nuous trace if and only if compact subsets of @ are wandering in the following
sense: for each compact set K = Q, the set

{seG:sKnK+# 0}

is pre-compact in G. Green actually proved more than this. He showed that when
G is freely acting and when compact subsets of Q are wandering, then C*(G, Q)
is isomorphic to the C*-algebra determined by a continuous field of Hilbert spaces
over the spectrum of C*(G, Q). To say the same thing differently, Green showed
that when G is freely acting and when compact subsets of £ are wandering, then
C*(G, Q) has continuous trace, and furthermore, the Dixmier-Douady invariant of
C*(G, Q) vanishes (cf. [2, 10.9.3)).
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In [14], the second author determined when C*(G, Q) has continuous trace
in a variety of cases without assuming that G is freely acting. His results are some-
what less definitive than Green’s and are more complicated to state in their com-
plete generality. Moreover, when C*(G, Q) has continuous trace the methods of
[14] contain no information about the Dixmier-Douady invariant. One might sus-
pect quite reasonably that for a general transformation group, the problem of
deciding when the Dixmier-Douady invariant vanishes is a formidable one. The
reason, of course, is that at the very least the problem depends upon how the iso-
tropy or stability groups? vary and upon the Dixmier-Douady invariant of the
C*-algebra of each of the stability groups. Our objective in this note, then, is to
investigate the Dixmier-Douady invariant of C¥(G, ) under the hypothesis that G
is abelian. In this case, the group C*-algebras of the stability groups are abelian,
and thus, the Dixmier-Douady invariant always vanishes. On the other hand,
the stability groups may still vary in a quite complicated fashion, and so our inves-
tigation is not without some interest.

Our method of attack is to associate an auxilliary groupoid ¥ with (G, Q)
and to utilize the theory of groupoid C*-algebras developed in [11]. We shall see
that there is a canonical two-cocycle 4 on ¢ with values in T that depends only on
(G, Q). In our main theorem, Theorem 2.3, we show that under certain hypotheses,
C*(G, Q) is isomorphic to C*(¥, 4). (These hypotheses guarantee that C*(G, Q)
has continuous trace and when (G, Q) is second countable, they are also necessary
for C%(G, Q) to have continuous trace.) We shall show too, under these hypotheses,
that if 4 is trivial, then C*(G, Q) is strongly Morita equivalent to Cy(A), where A
is the spectrum of C%(G, Q). This, in turn, shows that the Dixmier-Douady inva-
riant vanishes (cf. [10]). We do not know if there is a converse; i.e., we do not know
if 4 must vanish when C*(G, Q) has continuous trace and the Dixmier-Douady
invariant vanishes. In fact, we do not know if the intervention of 4 is entirely gra-
tuitous. That is, we do not know of any example when C*(G, Q) has continuous
trace and 4 is not trivial. Nevertheless, our result leads to a number of pleasing
corollaries which do not seem to be accessible by other means.

For example, in Lemma 3.2, we show that when there is a continuous cross
section to the canonical map from Q to the space of orbits, /G, then 4 is trivial.
As another example, we show in Proposition 5.2 that 4 is trivial whenever there is

a ‘“‘continuous section to the quotients groups of G which varies continuously
with the stability groups”. Since such a section always exists when the action is
free, our results, together with those in [14], provide a new proof of Theorem 14
in [8] when the group G is abelian.

In the future, we plan to investigate more fully the relation between the grou-
poid cocycle 4 and the Dixmier-Douady invariant for C*(G, §2). It is our opti-

1) Recall that the stability group of a point xeQ is {s€G: s-x: - x}.
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mistic belief that they are intimately related. In any event, we believe that determin-
ing whatever relation there may be is the most piquant problem remaining in
the subject.

2. PRELIMINARIES

Let (G, Q) be a locally compact transformation group. We shall make the
following assumptions throughout:

(2.1) G is abelian.

(2.2) All compact subsets of © are G-wandering in the sense of Definition 2.4
in [14]. That is, if G X Q/~ is the quotient topological space obtained by identi-
fying (s, x) with (z,y) if and only if x =y and s-x:=¢-x, then we assume that,
for any compact set K < Q, the set {(5,x)e GXQ/~ : xe K and sKnK # 0O}
is relatively compact in G X Q/~.

(2.3) The stability groups vary continuously on 2 {14, Definition 2.1].

These conditions imply that C*(G, Q) has continuous trace [14, Theorem 2.7]..
Moreover, if (G, Q) is second countable and G is abelian then (2.2) and (2.3) are
necessary conditions for C*(G, Q) to have continuous trace [14, Theorem 5.1].

We let X denote the space of closed subgroups of G with the Fell topology
[4]. For K€ G, let ay denote a left Haar measure on X such that {a,} are a con-
tinuous choice of measures on X. Recall that such a choice of measures has the:
property that the map

K | 110 1)
x
is continuous on X for every f'e C,(G) [6, p. 908]. For convenience xs_ will be denoted.
by a,, where S, is the Astability group at x.

Similarly, we le;c 2 denote the space of closed subgroups of G. Note that the
map x = St(={o€ G : o(t) =1 if 1€ S,}) is continuous from Q to X in view of
(2.3) and [16]. We fix a continuous choice of measures on 2, {f,.},., and we
denote by f, the measure on Si.

Finally, we let u, be the Haar measure on G/S, normalized so that for
fe C(G)

Sf(s) darg(s) = S Sf(st) dar (1) dp(s)
G

G|S, S,

We remark that the 8, may be chosen so that f, is the measure required in the
Fourier inversion formula for functions of positive type in LY(G/S,, p,); however,,
we shall not need this fact.
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DFHN[T!ON 2.1. Let A denote the quotient topological space obtained from
/G % G by identifying (G-x, p) and (G-y, ) if G-x = G-y and py € St.

It follows from our assumptions, [14, Proposition 2.17], and [15, Theorem
5.3], that A is homeomorphic to C*(G, 2)". In particular, 4 is locally compact Haus-
dorff. The last statement may also be deduced from [14, Lemma 2.3].

To prove our results, we shall want to view C*(G, Q) in a slightly non-stan-
dard way. In particular, we require several quotient spaces.

DEH\IIT[ON 22, Let ¥= GXQXG/~ be the quotient space obtained from
GxQxG by identifying (s, x, p) with (r,3,0) if x=1y, r~%s€ S§,, and poc Si.
The space G X/~ was identified in assumptlon 2.2 and its companion, QxG,
is defined similarly to be the quotient of Q% G obtained by identifying (x, o) w1th
(v, 1) if and only if x = y and dre St.

With our assumptions, and using Lemma 2.3 of [14], these spaces can be
shown to be locally compact, Hausdorff, and each quotient map is open. (Note
that G may be replaced by G in the proof of Lemma 2.3 in [14] without any other
changes.) We shall blur the distinction between points in GXQX@, GXxQ, and
Q%G and their images in the quotient spaces. This should cause no confusion in
context.

Observe that ¥ may be given the structure of a locally compact groupoid.
Two elements, (s, x, p) and (r, y, 6), are composable if and only if p == ¢ and
y =s"1-x. In that case,

(s, x, p) (r, s71-x, p) = (51, x, p).
The inverse of (s, x, p) is (s~%, s~ x, p). The unit space is easily identified with
.QXGA/ ~, and we have a natural Haar system defined as follows: if u - (e, x, p)
then for Fe C (%)

3(F) = S Fis, %, p) du(s):
G/Sx
Property (i) of [11, Definition 1.2.2] is obvious, and property (iii) follows from the
fact that G/S, is an abelian group. Property (ii) is more subtle, but follows from

[14, Proposition 2.18] as follows. Using this proposition, it is possible to find
be C;(£2, G) such that

F(s, x, p) = F(s, x, p) Sb(x, st) do (t),
s

and consequently we find that
A& PN(F) = S F(s, x, p)b(x, 5) dag(s).

G
Since the integrand has compact support on G X(Qx G[~), continuity in (x, p)
is clear.
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Recall that if 4 is a continuous 2-cocycle in Z*%, T) then C(%) admits a
*.algebraic structure defined by

frg(s, x, p) = S S, x, p)g(r="s, r=2x, p)A((r, x, p), (r~'s, r='x, p)) dp(r)

G/'Sx
S8, %, p) = fls™ 571 x, p) A((s, %, p), (7%, 57 1= x, p))-

The completion of C, (%) in the norm || - ||; defined by

|1f|r,:max{(§ug S 765,59 49, sup S A5, s, P)ldux(S)}

GIS, G/Sx

is a Banach *-algebra denoted L/(¥4, A). The enveloping C*-algebra of L/(%, A)
will be denoted C*(%, 4). Recall, too, [11, p. 50] that the isomorphism class of
C*#(9, 4) depends only on the class of 4 in H¥%, T). In particular, when A repre-
sents the trivial element, C*(¥, 4)~ C*(%, 1), which we normally write as simply
C*(%).

In the last section we shall show that there is a continuous function § on
GXQ/~)xG such that

(2.4) 6 has modulus one, and
(2.5) (s, x, pa) = a(8)d(s, x, p) if € St.

Using 6, we can then define a 2-cocycle 4 = 4,0y, on %2 as follows:
let £ = (s, x,p) and = (r,s~1-x, p) and define

A&, ) = (s, x, p)o(r,s~1-x, p) 6(sr, x, p).

Of course, 4 is independent of choice of representatives of ¢ and 5 in (G XQ/~) X G

in view of property (2.5) above.
Our main theorem can now be stated.

THEOREM 2.3. Suppose that (G, Q) satisfies our basic assumptions, 2.1, 2.2
and 2.3. Then C*(G, Q) is isomorphic to C*(%, A) and C*(¥9) is strongly Morita equi-
valent to Cy(A). So, in particular, when A is trivial, C*(G, Q) is isomorphic to the
C*-algebra defined by a continuous field of Hilbert spaces.

We shali take up the proof of Theorem 2.3 in the following sections.

COROLLARY 2.4. In the same situation as the theorem, suppose that (G, Q) is
second countable, that A = A, o) is trivial, that each stability group has infinite index
in G, and that A is a finite dimensional topological space. Then C*(G, ) is iso-
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morphic to Cy(A) @ A", where A is the algebra of compact operators on some infi-
nite dimensional Hilbert space.

Proof. It follows from [i4, Theorem 5.1], [14, Proposition 2.17], and {15,
Lemma 4.15) that every irreducible representation of C*(G, Q) can be realized on
L¥G/S,, u,) for some x. Since L¥(G/S,, u,) is infinite dimensional for each x, C*(G, Q)
is locally trivial (i.e. locally isomorphic to Cy(Y) ® o) [2, 10.9.5]. In particular,
CH(G, Q) is stable (i.e. C*(G, Q) is isomorphic to C%(G, Q) ® ') [9, Proposition
1.12]. However, our main theorem and [I, Theorem 1.2] imply C¥*G, Q) ® &~
is isomorphic to Cy(A) ® 4. QED

Let fe C,(G, Q) and consider the following function on %.

(2.6) ()5, %, p) = 55, %, P) S fist, x) p(t) dag).

N

LemMMA 2.5. (i) »(f) is continuous on 4.
(i) %(f) (5, %, po) = o(In(f) (s, x, p) for 5 € S}.
(ii1) There is a compact subset, K, of G X Q~ such that »(f) (s, x, p) =0
if (s,x)¢ K.
(iv) For every ¢ > 0, there is a compact subset of é, K., such that for every
(5,x)e G X Qf~,
{peG:ix(f)(s x,p) > ¢} S K.St.

The proof of the above lemma requires a “uniform’ version of the
Riemann-Lebesgue Lemma. If fe C(G) and pe G, then define

AH, p) = Sf(t) p(t) day (1),

H
The fact we need is

LEMMA 2.6. For all ¢ > 0, there is a compact subset, K,, of G such that, if
He X, then

{pe G: }f(H, o)l = e} = K.H-

Proof of Lemma 2.5. Parts (ii) and (iii) are immediate. Part (i) follows from

{14, Lemma 2.5].
To verify (iv), let fe C.(G, Q) with suppf € KX C. Notice that

t - F(st, x)
is in C,(S,) with support in s~'Kn S,. Thus, if ge C7(G X Q) with g identically
one on KX C, then

S $(st, %) du,(1)

Sx
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is continuous with compact support on G X Q/~. In particular, o (s~'Kn S,) is
bounded for all (s5,x)e GxQ. It follows that if f, converges to f in the
inductive limit topology on C(G %), then x(f,) converges uniformly to x(f)
on GXQ/~.

On the other hand, sums of the form Y ¢;-y;, with ¢,e C(G) and y; € C,(Q)

are dense in the inductive limit topology on C,(G, 2). Thus, the result follows from

Lemma 2.6 which implies x(¢-i) satisfies (iv) for every ¢ € C,(G) and i € C(Q).

QED

Proof of Lemma 2.6. Let & = {(H,t)e £X G : te H}. Note that & is locally
compact and Hausdorff. One can define a *-algebraic structure on C (&) by

Feg(H, 1) = Sf(H, ) g(H, v=11) doy(v),
H

and

f*(H’ t) =f(H3 t_l)'
Notice that C (%) is a dense subalgebra of Fell’s subgroup C*-algebra [cf. 5], C*(¥).

Let 4 be the quotient topological space obtained from X X G by identifying (H, p)
and (H, x) if py € H-. We claim 4, is homeomorphic to the maximal 1dea] space of
C*(&). In fact, Fe C (&) defines a function on 4, by

A, o) = SF(H, 0p(0) doty ().

H

First we 'show this suﬂ‘ices to prove the lemma. Any f'e C (G) defines an ele-
ment of C (&) by

F(H, 1) = f(?).
Moreover, %’([H, [9)) =_?(H, p), and must vanish at infinity on 4. Since the natural
map of ZX G onto A, is open [14, Lemma 2.3], we are done.
To establish our claim we must introduce still another algebra. Let

Ay == C(Z X G) be viewed as a dense subalgebra of 4 = C(Z) ® CHG)~ Cy(Z X &).
Of course, if Fe A,, then the corresponding function on X X G is defined by

A, p) = SF(H, $) p(s) dag(s).
G

It is easy to see that the natural map of ¥ x G into Prim C*(&), defined by (H, p) —
— Ker Ly, pry, is continuous, where L, oy denotes the obvious irreducible
representation of C*(&). Moreover, this map clearly factors through the quotient,
4. Thus all we need show is that it is open.
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Let #(A) denote the space of closed, two-sided ideals of A equipped with
Fell’s inner hull-kernel topology, cf. [IS5, discussion following Proposition 2.2].
It follows from the continuity of the inducing operation {5, Theorem 4.2] that the
map from Prim C#(¥) to F(A) defined by

Ker L, pimy = Ker M Ind§ (o, H))

is continuous, where M is defined by sending Fe A4, to

(H, 1naG (oI H))
SF(H $) Ind(p H)(s) dals):
G
Now suppose that Ker(L(H ’, 'Hy) converges to Ker(L(H o/ in Prim C*(&).
If we identify ideals of Co(Z ><G) with closed subsets of Zx G in the usual way,
then Ker(M A, IndG(pIH)) corresponds to (H, pHY). Thus, it follows from [l5,
Lemma 2.4] that there is a subnet, {(Hj, pp)} and a,,eHl such that (Hy, py0,)
converges to (M, p) in 2 % G. This shows that the natural map of IXG onto
Prim C*(%) is open as promised. QED
Finally, let 2 = {(x, )€ @XQ:G-x == G-y}. 2 is easily seen to be closed

in @xQ; hence, 2 is locally compact, Hausdorff. We may think of 2 as the prin-
cipal part of the transformation group (G, ©), viewed as a groupoid.

LEMMA 2.7. Given assumptions (2.2) and (2.3), the map, A, from GXQ to #
defined by (s, x) — (x,s-x) is open and defines a homeomorphism, 1, of GX8j~
with 2.

Proof. Note that A factors through G X Qf/~. Thus, it suffices to show that 4
is open as a map on G X Q/~ ([14, Lemma 2.3]). One can deduce this from general
results on groupoids [11, p. 17], but here is a self-contained proof.

Suppose (x,, s,-x,) converges to (x,y) in Z. It will suffice to show that
there is a subnet so that (sp, x;) converges to a (s, x) in G X Q.

Let U and V be compact neighborhoods of x and y respectively, and set
T =: Uy V. Thus we eventually have

(Sg> XDE{(r,)):yeT and sTNT#0O}.

Our conclusion follows since the right hand side is relatively compact in G X Q/~ by
assumption (2.3). QED

3. PROOF OF THEOREM 2.3

Let Coo(%, 4) denote the set of functions on % which satisfy conditions (i) ---
— (iv) of Lemma 2.5. Of course, Co(%, 4) may be viewed as a “-algebra containing
C.(%, 4). We are interested in the following representations of Co(%, 4). For each
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xeQand pe G, let R’ be defined on L¥(G/S,, n,) by

R )g(s) = S 8r, 5%, p) fir, 5%, p) @(r=1-5) dus(r),

G/S,

where '€ Co(¥, 4) and ¢ € L¥G/S,). We then define a pre-C*-norm on C.(¥, 4) by

1/1l, = sup | R/,
xXEN .

peGC

and denote the completion of Coo(¥, 4) by CH ¥, A).

Of course, R} can easily be seen to be equivalent to the regular representation
on O, of C¥¥, 4) (cf. [11, D=finition 2.1.8]), where &, is the point mass at
(x, p). CH%, 4) is the reduced groupoid C*-algebra ([11, Dzfinition 2.2.8]).

Although it is not difficult to show that ¢ is measurewise amenable [11, Defi-
nition 2.3.6], and hence that CX(%, 4) is isomorphic to C*(¥, 4) [11, Proposition
2.3.2], we are able to establish this isomorphism directly in our special circumstances
without much effort.

We shall devote the remainder of the section to showing that the proof of
Theorem 2.3 can be reduced to the following two results.

PROPOSITION 3.1. Assuming (2.1), (2.2), and (2.3) are valid, then C¥%) is
(strongly) Morita equirqlent to Co(A). In particular, the representation of CX9) induc-
ed from point evaluation at (the class of) (x, p) in A is equivalent to R..

Lemma 3.2. Suppose (G, 2) is a locally compact transformation group satis-
Sfying (2.1), (2.2), and (2.3). If in addition there is a continuous cross section for the
orbit space (i.e. for the map Q — QG ), then A, o is trivial in H¥(G, T).

Proof of Theorem 2.3. Note that the map x defined in equation (2.6) defines

a *-homomorphism of C.G, Q) into Cw(¥%, 4). A straightforward computation
shows that, for Fe C,(G, Q),

R.(#(F)) == LYF),

where L is the irreducible representation of C*(G, Q) defined in [15, Lemma 4.14].
In particular, it follows from [14, Proposition 2.17 (iii)] and the above, that »x defines
an injection of C¥*(G, Q) into CX¥%, A).

On the other hand, the wandering hypothesis implies /G is locally compact,
Hausdorff. In particular, there is a natural map, R = Rq, of Cy(R/G) into the
center of M(C¥(¥, A)) defined by

R((p)f(s’ X, p) = (p(GX)f(S, X, p)
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Thus, if L is any irreducible representation of C7(%, 4), then the canonical exten-
sion of L to M(C/(¥, 4)) defines (by restriction) a non-trivial complex homomor-
phism of Cy(22/G). In fact, there is a x, € 2 such that for each ¢ € C,(RQ/G) and
feCJ(9, 1),

LR(9)f) = (G - x)L(f).

Using the fact that the representations R, determine the norm on C*¥, 4) and
the above, we see that the kernel of L contains the ideal in CX¥, 4) generated by
those functions in C¥(¥, 4) which vanish on all (5,x,p)e ¥ with xe G-x, In
fact, L factors through CF(¥,, 4,), where (%,, 4,) is the groupoid and cocycle
associated to the transitive transformation group (G, G- x,). Since the orbit space
is a single point, we may apply Lemma 3.2 and Proposition 3.1 to conclude that
C¥(%,, 4,) is Morita equivalent to Co(p.g'xo). It follows that L must be equivalent
to a R, for some (x, p) € 2X CA?, and that L is a CCR representation,

In summary, C3(¥, 4) is liminal. Moreover, it is not difficult, using the above,
to see that 5(C*(G, Q)) is a “‘rich subalgebra” of C/(%, 4) in the sense of [2, 11.1.1].
Therefore C*(G, Q) and C/(¥, A) are isomorphic by (2, 11.1.4].

Recall that C*(G, Q) may also be viewed as the groupoid C%*-algebra of the
transformation group groupoid %, = (G, @) [11, Example 1.2.5 a)]. It is easy to
see that x is Ll-norm decreasing as a map of LI(%4,) into Cw(%) & LI(¥, 4). In
particular, L/-norm decreasing representations of L(%, A) define L'-norm decreas-
ing representations of L(%4,) which are of course C*norm decreasing represen-
tations. Since C*(G, Q) is isomorphic to C (%, 4), the original representation must
be a ||- |i;-norm decreasing representation of Co(%). Thus, Cj(%, 4) coincides with
C*(%, 4).

Thus, we have shown that C*(G, Q) is isomorphic to C*(¥, 4) = C{(¥, 4).
When 4 is trivial, Proposition 3.1 shows that C*%(G, Q) is strongly Morita equi-
valent to Cy(A); in this case, C*(G, Q) is determined by a continuous field of
Hilbert spaces (cf. [10], Proposition Cl). QED

4. PROOF OF PROPOSITION 3.1

We shall proceed by identifying C; (%) with the imprimitivity algebra of a
Co(A)-rigged space; the proposition then follows immediately [12, Section 6].

Our module is C (2 X é/ ~) and it will be denoted by X. For convenience
let Co(A) be denoted by B. We make the following definitions for # and v in X, f
in C (%), and b in B.

(41) f u(x’ ,0) = JS(rs x, p) u(r—l'xa p) d/-‘x(r)

G/Sx
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{42) <u7 U>.y(S, X p) = u(x, p) v(s”1~x, p)

4.3) u-b(x, p) = u(x, p) b(G- x, p)

(4.4 {u, vyp(G-x, p) = S u(r=-x, pyo(r=*-x, p) dpr).
GIS,

The next set of formulae are verified with straightforward calculations.

(4.5) {fru, D =f*x{u, v)y.
(4.6) {uy v-b>p = (u, v)gb.
.7 U {o,wdg = {u, U)g-w.
(4.8) (v, wyp = (W, v)p.
(4.9) {v,v)p = 0.

PROPOSITION 4.1. X is a B-rigged space.

Proof. 1t is evident from equations (4.6), (4.8), and (4.9) that we need only
establish that Span{{v, vDp:ve X } is dense in Cy(A). Thus, it will suffice to notice
that the natural map of C (22X G/~) to C.(A), defined by sending f to

S fr1-x, p) dus(r)
G/Sx

is onto. This is a consequence of the wandering hypothesis and {14, Lemma 2.18(i)].
QED

Recall that the imprimitivity algebra of X, &%, is that generated by the ope-
rators on X of the form

T, v(W) = uv, w)y.

It now is evident from (4.7) that &% may be identified with a subalgebra (of the
completion in the appropriate norm) of C,(%). Furthermore, we shall show that
the &Z-norm agrees with the ||-||,-norm, and hence &2 may be viewed as a subal-
gebra of C;(%). Towards this end, note that irreducible representations of B are
just the point evaluations. Let (G-x, p)e A be fixed, and consider the represen-
tation of &2, N¥, induced from evaluation at (G-x, p). Of course, N acts on the
completion of X with respect to the inner product

<ll, vy = <u9 v)B(G’x’ p)’
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and

Ne(f = f-u.
Moreover, the map of X into L%(G/S,, u,) defined by
P(u)(s) = u(s-x, p)

is an isometry with respect to {-,->. It is a straightforward matter to check that ¥
defines a unitary which implements and equivalence between N2 and the represen-
tation R% (when restricted to the appropriate subalgebra of C (%)) defined in the
previous section; our claim about norms now follows.

We may complete the proof of Proposition 3.1 by showing that {-,- ), spans
a dense subset of C (%). It will suffice to make several observations.

First, the span of {-,- )¢ is an algebra (an ideal in fact). Secondly, it follows
from LemmaZ 7 that the wandering hypothesis implies that the map from % to
J’xG/~ defined by (s, x, p) = (x,s7-x, p) is a homeomorphism. In particular,
since functions of the form

n

T, 9, p) =2 Y, ul(x, p)oiy, p)

iZ1
with u;, v; € X are dense in the inductive limit topology on C.(2 X G/~), it is evi-

dent that functions of the form

n

fuls, x, p) = Z u(x, p)us~t-x, p)

i=1

are dense in C(%); this completes the proof.

We now turn to the existence of ¢ and the proof of Lemma 3.2,

5. PROOF OF LEMMA 3.2 AND FURTHER EXAMPLES

In this section we show that A is always defined, and exhibit several cases
where 4 must trivialize. Of course, the existence of 4 follows from the next lemma.

LEMMA 51 There always exists a continuous functton S of modulus one on
(GXQ[~ )><G such that, for all se€G,xeQ, peG and o € St, (s, x, po) =
== 0(5)0(s, X, p).

Proof. Let GX X/~ be the quotient of GXZ obtamed by identifying (s, H)
with (¢, K) if and only if H =K and sH == tH; let 2><G/~ be the quotient of

z XG obtained by 1dentify1rAig (H, o) with (K, 1) if and onAly if A= K and Ho -
== H't; finaily, let GX X X G/~ be the quotient of G X X X G obtained by identifying
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(s, H, o) with (¢, K, 7) if and only if H = K, sH = tH, and H'¢ = H*t. As in Defi-
nition 2.2 and the following discussion, it is not hard to show that these spaces are
locally compact and Hausdorff. Moreover, it will clearly suffice to produce a &' of
modulus one on (G><27/~)><G such that

(s, H, po) = a(s)é'(s, H, p),
for each o.e HL. Indeed, given §’, we put
o1, x, p) = 9'(¢, S, p)-

Our reason for replacing 2 by X in the above is to take advantage of the
facts that G X X/~ and X x &/ ~ are paracompact, as we shall show. Unfortunately,
these assertions do not appear to follow from general theory as the open image
of a paracompact space need not be paracompact (however, we know of no example
for which this fails when the image is locally compact, Hausdorff). Fortunately, we
may take advantage of our special situation. Of course, it will suffice to prove our
assertion only for G X Z/~ since ¥ and T are homeomorphic [16].

Let G, be a g-compact open subgroup of G. Also, let I'= G be a set of repre-
sentatives of cosets of G/G,. The family {«G, X Z},e ris a disjoint clopen cover of’
G X X consisting of g-compact sets. Let U, be the saturation of «aG, XX in GX X:

U, = {(ash, H): s€ Gy, he H}.

Since the natural map of G X X onto G X X/~ is open, the U, are open as well as.
a-compact. In fact, if I'y is any subset of I', then
V= U U,
13 FO

is open; we claim V is also closed. Towards this end, let (xo, Hy) € G X Z\V, and
let m, be the natural map of G onto G/H,. Since ny(G,) is an open subgroup of
G/H,, it follows that G/H, is the disjoint union of clopen cosets of 7,(G,). In par-
ticular, the intersection, Vu , of V with {(s, Hp): s € G} is closed. On the other hand
I',c V”o' It follows that there is a function, g € C,(G), such that

§s, H) = Sg(st) de (1)
H
is one at (x,, Hy) and zero on all (s, H,) with se I',. Note that g € C,(G X Z/~)
[14, Lemma 2.5 and proof of Proposition 2.18], and hence, is uniformly continuous

in the sense that for all ¢ > 0, there are neighborhoods A" of e and .# of H, such
that if r~se A& and He.#, then '

|8(s, H) — &(r, H)| <.
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In particular, there ts a neighborhood of H,, .#, such that
8(xo, HY>1/2, and g(s, H) <1/2

if He./l and seT,. This implies that g(s, H) < 1/2 on .# XX n V and that the
complement of ¥ is open.
We may assume that I' is well-ordered. Thus, we can define

U‘; = UG\ U U}.‘
Ale

From the above, the {U,} form a clopen, o-compact cover of GX X/~ ; our asser-
tion about paracompactness follows.

Returning to the proof of the lemma, let 7 be a transversal (which may fail
to be measurable) for the natural map of X x G onto xé/ ~. We claim that it
will suffice to produce, given any compact subset of K of G, a continuous function,
u = uy, whose real part is strictly positive on X x T, and which satisfies (5.1). Then,
since each U, is clopen and g-compact, we can construct a function u, whose real
part is strictly positive on U, X T and such that u, is zero off U,. Thus,

u=Yy u,
(-3

is well defined and nowhere zero on Xxé; the desired function is obtained by
dividing by the modulus. .

Let b = (H,, py) € T be fixed for the moment. We easily find F, e C (XX G)
such that

i S Fy(Ho, poo) o(s) dBa(o) — 1 ) <12
H

for all se K. It follows from [14, Lemma 2.5] that

(s, H, p) — S Fy(H, po)a(s) dBa(c)

HL

is continuous; hence, there are neighborhoods, U, of H, and V¥, of p,, such that
Re (u,(s, H, p)) > 0,

for se K, He Uy, and p € V,,. In fact, by cutting v, down by an appropriate func-
tion in C(GX X 6’/~), we may assume 1, has support in

A={(s,H,po):scK, (HpelU, XV, and ge St}
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Fortunately, since T is a transversal, A N KX T and (KX U, X V) n KX T coincide.
In particular, we may assume without loss of generality that

Re(u,) 20 on KXT,
and

Re(u,) >0 on KXUyXV,.

Now let W, denote the saturation of U, XV, in 2 Xé/ ~. Of course, the col-
lection {W,},er covers QXE?/~. Since ZXG’/~ is paracompact, we may find a
locally finite refinement [13, § 1] of {W,},cr. Thus, by cutting the u, down where
necessary, we may assume that we have a cover, {W,,a}ue,, such that, for any
(H,p)eZ XE?, only finitely many b, are such that w, (s, H, p) # 0. Therefore we
may define :

UK(S, H, p) = ;I uba(s’ H, p). QED

Proof of Lemma 3.2. Let § be as in Lemma 5.1. Furthermore, let y be the
continuous cross section of Q/G to 2 (which we view as a function from Q to £).
Let 0, mapping £ to G X 2/ ~, be the inverse to 1 in Lemma 2.7. We only need to define

8(s, x, p) = 8(0(y(x), %), x, PISO(VX), 71 %), 572 x, p).
Since the 4 defined by S is identically one, it follows that A always represents the
trivial element in H¥¥, T). QED

A
PROPOSITION 5.3. If there is a continuous cross section, ., from QX G/~ to
A
QXG, then A(G,ﬂ) is trivial.

Proof. Let n, denote the projection of £ x G onto its second factor. We define

x(x, p) = my(A(x, p)) - p-

Notice that %(x, p) € Sx, and that

#(x, po) = x(x, p)o
forall xeQ,pe é, and o € S}. In particular we may define
(s, x, p) = #(x, p)(s)-
This 6 yields a trivial 4. QED

We remark that if the action is free, then there always is a cross section,
namely A(x, p) = 1, the trivial character. Thus, when G is abelian, Green’s result
{8, Theorem 14] is a consequence of Theorem 2.3 and the above proposition.
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in

It is also interesting to note that we may apply Theorem 2.3 to Example 5.4
[14]. Since there is an obvious continuous cross section, we conclude that the

algebra constructed there not only has continuous trace, but is defined by a con-
tinuous field of Hilbert spaces.

—
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