J. OPFRATOR THEORY © Copyright by NcrEsT, 1984

ORBITS OF THE UNIT SPHERE OF <(#, %)
UNDER SYMPLECTIC TRANSFORMATIONS

N. J. YOUNG

1. INTRODUCTION

The set of all biholomorphic transformations of the open unit disc of the
complex plane onto itself comprises the mappings

Z—u
z:lﬁ
?(2) N

- oz

where |¢| < 1 and |A| = 1. These mappings play an important role in the multi-
plicative theory of analytic functions, and it is not surprising that their analogues
are prominent in the extension of this theory to more general domains. One domain
for which there is a rich theory is the unit ball 4 of the space #(#, ") of all bounded
linear operators from 5 to 2", with the operator norm, where J#, ¢ are Hilbert
spaces. We say that ¥:4 — 4 is biholomorphic if it is Fréchet differentiable
on 4 and has a Fréchet differentiable inverse ¥-1: 4 — 4. It then transpires (see [4])
that every biholomorphic mapping of 4 onto itself is of the form Lo® where
L is a linear isometry on Z(#, ") and @ is a symplectic transformation — that is,
a mapping of the form

1) O(X) = (AX + B)(CX + D)~*

where A€ L(X), Be L(H,H), Ce L(H,H), De L(#) (we write L(#) for
L(H#, #)) and

A B! A¥ —C*
@ e o - J

¢ D —B*  D*
These 2X 2 matrices of operators represent elements of Z(” @ ) in an obvious
way. The relation (2) is precisely what is needed to ensure that the linear frac-

tional transformation @ be defined throughout 4 and map A into itself: see [10].
The set of all transformations @ defined by (1) and (2) is a group. It can also be
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described as the connected component of the identity in the group of all biholo-
morphic transformations of the identity under a certain natural topology [10].

Symplectic transformations arise in many other ways too. A seminal paper
by C. L. Siegel [12] inaugurated the study in a number-theoretic spirit of the
geometry of the unit ball of the symmetric # X # matrices under this group. They
occur naturally in the theory of spaces with indefinite inner product (Krein spaces:
see [8]) and hence also in sundry interpolation and approximation problems which
are closely connected with Krein spaces (see [1, 2]). They turn up in the theorv of
electrical circuits: specifically, they correspond to the insertion of lossless match-
ing circuits between a power source and a load [9). J. W. Helton [6] has given
a beautiful solution using symplectic geometry of the problem of matching impe-
dances over a wide bandwidth. V. Ptik and the author [11] used symplectic trans-
formations of shifts to exhibit extremals for a certain maximum problem for
matrices.

In studying the action of symplectic transformations on canonical models
of contractions and intertwining dilations, I have encountered the problem of
orbits of the symplectic transformations. Now this group acts transitively on 4;
Siegel [12] showed this for the symmetric #Xn matrices, and his proof extends
directly to the most general domains [5]. However, it is a consequence of condition
(2) that the formula (1) for #(X) makes sense when /[X|| == 1, and so we may regard
the symplectic transformations as acting on the closed unit ball 4 of L(o#, ), and
indeed much interest attaches to the orbits of operators which lie irredeemably on the
unit sphere — notably shifts and projections. It is the purpose of this paper to
characterize the orbits of A under the symplectic group.

There are two identities which play a vital role: if @ is defined by (1) and (2)
then (see [5])

[ — O(X):P(X) = (CX -+ DY*~YI — X*X)(CX + D)=,

&)
I — &(X)D(X)* = (XB* + A*) "I — XX*)XB* + A¥)*~1,

In order that X and Y lie in the same orbit it is thus necessary that I — X*X, I — XX*
be congruent to I — Y*Y, I — YY* respectively (we say that Hermitian operators
M, N on # are congruent if there exists P invertible in #(#’) such that M =: P*VP).
One can hardly resist guessing that these conditions are also sufficient, and this is
very nearly true. There is just one recalcitrant class of operators for which it fails:
we shall call Xe L(#, A") essentially unitary if both I — X*X and I-- XX+ are
compact operators. The orbit of an essentially unitary operator X is characte-
rized by the congruence class of I — X*X and I — XX* and by the Fredholm index
ind X; for any other operator the two congruence classes alone characterize the orbit.

We assume throughout that s and # are separable (but not necessarily
infinite-dimensional) Hilbert spaces.
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In Section 2 we perform a little algebraic manipulation to write symplectic
transformations in a different way. The characterization of orbits, Theorem 1,
and most of its proof is in Section 3: there is just one delicate point left over to
Section 4. We need to answer the question: given Te Z(#), ||T|| <1, does there
exist a unitary U such that U — T is invertible? This too has a neat answer. Yes,
unless T is a compact perturbation of a non-unitary isometry or co-isometry
(Theorem 3). Section 5 gives an example which shows that the index really is needed
for essentially unitary operators. Finally, Section 6 characterizes those opera-
tors which lie in the orbit of a partial isometry.

We shall call an element of Z(#, #) of norm no greater than 1 a
contraction.

2. REARRANGEMENT OF SYMPLECTIC TRANSFORMATIONS

In manipulating scalar linear fractional transformations it is sometimes con-
venient to rewrite them:

- b b d—b
az +a be z

-;z—i—d d d cz+d

A similar thing can be done for the symplectic transformation (1). Since D is inver-
tible, we can write for any contraction Xe L(#,4),

&(X) =(AX + B)(CX + D) ! =
= BD-' — (BD'C — A)X(I -+ D-'CX)-D~L
Let us introduce the notation
4 ¥ (X)=F— EX(I+ GX)™H

where p is the 2 X2 matrix of operators

5) p— [(E; f{]

Hete Ec L(A), Fe L(H, H), Ge L(H,H) and He L (#), so that p is the

matrix of an operator on " @ 3. Then & == ¥, when

(6)

_[BDIC—A BD™?
P [ D-'C D |
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A rather messy calculation shows that condition (2) implies that p is unitary (this
fact is widely known — see for example {2, 6]; it seems to be traditional to leave
the calculation to the reader). Conversely, if p in (5) is unitary and H is invertible
then ¥, is a symplectic transformation. Indeed, if we let

D [A B] _ [FH“G—E FH‘l]

C D H-'G H-!

then it may be verified that (2) is satisfied, so that &(X) = (4X + B)}(CX + D)~
is symplectic, and that ¢ = ¥,.

If p is unitary but H is not invertible then the transformation ¥, defined by
{4) is clearly not symplectic. ¥ ,(X) is still defined as long as || X| < 1, but it may
not be when [ X|| = 1; that is, 7 4- GX need not be invertible. ¥ ,(X) can still be
given a natural interpretation in the finite-dimensional case, but in general it
cannot: see [7].

Let us establish the congruence relations (3) in the ¥ notation.

LeEmMMA 1. Let
p= [E F]
G H
be the matrix of an operator on # @ H and let X € L(#, ) be such that I 4+ GX
is invertible in L(H).
() If p*p = I then
I— Y (X)*Y,(X)= H*(I + X*G*)"'(I — X*X)(I + GX)™'H;
(i) if pp* =1 then
I — Y, (XOY,(X)* = E(I 4+ XG)~*(I — XX*)I + G*X*)"1E*.
Proof (ii)). We have, since pp* =1,
EE*%  FF* =1,
GG* + HH* = I,

EG* = —FH*, GE*= — HF*.
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Hence
I—¥Y,(X)Y¥,(X)* =1 —{F— EX(I + GX)"'H}{F* — H*(I + X*G*)"1X*E*} =

= [ — FF* 4+ EX(I + GX)"*HF* + FH*(I + X*G*)~1X*E* —
— EX(I + GX)'HH*(I + X*G*)-1 X*E* = '
= EE* — EG*(I + X*G*)"\X*E* — EX(I + GX)~\GE* —
— E(I + XG) ' XHH*X*(I + G*X*)~1E* =
= E(I + XG)~[(I + XG)(I + G*X*) — (I + XG)G*X* —
— XG(I + G*X*) — XHH*X*|(I + G*X*)~1E* =
= E(I + XG)™[1 + X(— GG* — HH¥)X*|(I + G*X*)-1E* =
= E(I + XG)~\(I — XX*)(I + G*X*)~1E*,

To prove (i) note that ¥,(X)* = ¥ (X*) where

H* F*
v = .
= 1)
If p*p = I then vv* = I. On applying (ii) with p replaced by v and X replaced
by X* we obtain (i).

3. CHARACTERIZATION OF ORBITS

In view of the foregoing discussion we can re-state our problem as follows:
given contractions X, Ye L(#, X), find a unitary p on 4 @, with invertible
(2,2) entry (i.e. compression of p to ), such that ¥,(X) = Y. It turns out that deriv-
ing a suitable p entails solving a sort of quadratic equation in operators, and this
can be achieved by the traditional process of “completing the square’.

THEOREM 1. Let X, Y€ L(#, A") be contractions. There exists a symplectic
transformation @ such that $(X) = Y if and only if

() I — X*X,I— XX* are congruent to I — Y*Y,I — YY* respectively, and

(i) if X is essentially unitary then

ind X=ind Y.

Note that if X is essentially unitary then, by (i), Y is also, hence X and ¥
are both Fredholm, so that ind X and ind Y are defined.
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It will be helpful to distinguish various sorts of operators typographicaily;
accordingly we shall continue to denote operators from ¢ or 4 to # or % by
Roman capitals and elements of L (" @€#) by small Greek letters, while operators
from " @ to H or 4 will be denoted by small Roman letters. For consistency
we denote the identity operator on 7 @3 by 1 henceforth.

LeMMA 2. Let X,Ye L(H,X) be conrractions and let Pe L(H) be inver-
tible and satisfy

(8) I_ YY:‘ P.«(I_ XX)P
Define operators p, E, F, G and H by

E F
(9 P ] == 26 y(,/f@yf
) p [G gl )
where
(10) py - [ b*M]e LA @H),
_— myny—1'2 y
an - [(1 - XPPEXDTE XPM) Ly @,
— MP*X* M|

b == [Y::: P:::]:'/[@c# -—)jf,
M == (bb*)712 = (Y*Y = P*P)~4% = (I + P*X*XP) 1% e L(A)

and ve L(A DA, H) is a partial isometry with initial space Kerb.
Then pp* =-1 and

Y= F— EXP,
(12)
H = (I + GX)P.

Note that if I+ GX is invertible then the last two equations yield
Y=:-F— EX(I+ GX) H,

that is, ¥ ,(X) = Y. Notc also that, since P is invertible, Kerb and #" have the same
dimension, so that there does exist a partial isometry ve L (A @, #') with iritial
space Ker b (that is, an operator which is isometric on Kerb and zero on (Kerdj*).

We denote by ¢ the Hermitian projection in Z(# @) with range Kerb.
1t is elementary that, for ve L(H @, A'), v is a partial isometry with initial
space Ker b if and only if v%v = o.
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If there is a unitary p such that ¥, (X) = Y then, by Lemma 1 (i) we have
I— Y*Y=H*I+ X*G*)"YI — X*X)(I 4+ GX)'H.
Comparison with Lemma 1 suggests we try putting
P =+ GX)H,

in which case we have

Y = F— EXP.

We can think of these two relations as expressing two of the unknown operators
{F and H)in terms of the other two (£ and G) and the known operators X, ¥ and P.
The condition pp* = 1 then gives us an equation for £ and G which we can solve.

Proof of Lemma 2. Let E, G be operators and let F, H be given by

F= Y-+ EXP,
H=({I+ GX)P.
Then
a3 - [E Y—{—EXP]:[O Y] N [E][I X7l
G P+ GXP 0 P G

Let us write

w=|[E* G*: A DK —~>A,
so that (13) becomes
(14) p=[0 b*¥] +w*I XP].
‘With this choice of p, pp* = 1 is equivalent to
wi(I 4 XPP*X*)w + w*XPb -+ b*P*X*w + b*b = 1.

To complete the square in this quadratic equation for w let us define
ze L(H @A, H) by

2= (I + XPP*X*)2 + (I + XPP*X*)~12 XPb.

12 — 1511
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The equation becomes
2%z = 1 — b*b + b*P*X*(I + XPP*X*)-1XPb —
=1 — b*[I — P*X¥(I + XPP*X*)"1XPlh =
== 1 — b¥[I — (I + P*X*XP) P X*XPlb =
=1— b + P*X*XP)~lh=
=1 — b¥(bb¥)~1b.

Write 7 = b*(bb*)~%b. Clearly n* =n and =n*=-m, so that = is a Hermitian
projection. Furthermore

Kern = Ker[(bb*) ~V/2b]*(bb*) ~1/2p =
= Ker (bb*)~1/2b = Kerb.

Hence 1 — = is the orthogonal projection on Kerb; thatis, 1 — 1 = ¢.
We have shown that, if p is given by (13), the equation pp* ==1 is equi-
valent to

z*z = o.

The general solution of this is z = v, where ve L(H @, ) is a partial isometry
with initial space Kerb. In terms of w this becomes

w = — (I+ XPP*X*)"1XPb + (I -+ XPP*X*)~12p =

= — XP(I + P*X*XP)~b + (I + XPP3X*)~1/2p,

Hence
w* = — B*M2P*X* + v¥(] + XPP*X*)-172,
From (14),
p =[w* b*+ woXP].
Now
b* + wiXP = b*(I — M3*P*X*XP) + v*(I + XPP*X*)-12XP =
= b*M?2 + v*XPM.
Hence

(15)  p = [—b*M2P*X* ++ v*(I + XPP*X*)~12 b*M? + v*XPM] = pyp,.

We have shown that, subject to the relations (12), pp* = 1 is actually equivalent
to p = p,p. for some choice of partial isometry » with initial space Kerb.



ORBITS OF THE UNIT SPHERE OF 2(¢, x) 179

There is a converse to Lemma 2.

LeMMA 2c. Let X, Ye £(#, A) be contractions and let ¥, be a symplectic
transformation such that ¥, (X) = Y. Then p = p,p,, where p, and p, are given by
(10) and (11), for some invertible operator P € L () satisfying

(16) I— Y*Y = P*(I — X*X)P

and some partial isometry ve L(A @ H#,X) with initial space Ker[Y* P*].

Proof. Let E, F, G and H be as in (9), and let
P =+ GX)'H.

Then (12) is satisfied, and so, by Lemma 1, is (16). It follows from the above proof
(see the final sentence) that p = p,p, for some choice of v.

LeMMA 3. The operator p described in Lemma 2 is unitary if and only if the
partial isometry v: A @ H — A is surjective.

Proof. As the reader may verify, p, is unitary. Since we already know that
pp* = 1, it follows that p is unitary if and only if p¥p, = 1. Now

p¥p __[ vv*  vb*M ] . [vv* 0]
YU Mbo* Meb*M o 1)

since bv* = 0. Thus p is unitary if and only if vv* = I,; since v is a partial
isometry, vv* is the projection with range equal to Rangev, and so vv* = 1 if and

only if v is surjective.
Note that v is surjective if and only if v*: ¢ — % @+ is an isometry with

range Kerb.

Our search for a symplectic transformation & such that- &(X) = Y will be
completed if we can choose the isometry v* in such a way that H, the (2,2) entry
of p above, is invertible, for then ¥, is symplectic, I-- GX is invertible and
¥,(X) = Y. This invertibility condition is the most delicate part of the construction,
and as the statement of Theorem 1 indicates, it can only be satisfied subject to a
further hypothesis.

Incidentally, one might ask whether a unitary p could be found such that
Y(X)=1%, irrespective of the invertibility of H. The p constructed above will do
provided I 4 GX is invertible, but in view of (12) the invertibility of I+ GX is
in this case equivalent to that of H, so we cannot obtain any more than is stated in
Theorem 1.
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To enable us to write down H let us put
v=[V, Vil X @3 - .
Then A in Lemma 2 is given by (¢f. (15))
H=PM?®+ Vi XPM =
= PM*+ VEXP(I + P*X*XPY*M*: =
== [I 4+ VE(I + XPP*X*)12X]PM?2.

Since PM?* is invertible we deduce:

LemMA 4. If p is as in Lemina 2 then ¥, is a symplectic transformatioi if and
oaly if the partial isometry v == [V, V] is suriective onto 3 and is such that

(17) Ly + Vi(I 4- XPP#X*)12X
is invertible.

LiMMA 5. The partial isometries v: #' @ H# — A, with initial space Kerb
which satisfy the conditions of Lemma 4 are precisely the operators of the formn

(18) v=U*{ + YPIP*-1Y*)"12[] — YP-1]
wheire U is a unitary operator on I such that I — TU is invertible, where

(19) T — (I + XPP*X*\3XP*-1Y*([ - YP-1P#-1y%)-1i2,

~ Proof. Suppose v*: A - A @A is an isometry with range Kerb. Then
bv* = 0, which is to say Y*¥V§ 4 P*Vy = 0. Thus

(20) ve== I — YPY,
and the relation vv* == I is equivalent to
V + YP-1P5-1Y5) V¥ = ]
that is, ({ + YP-LP*-1Y*)U2) is an isometry: let us call it U. Then, from (20),
(1) v = US([ 4 YP-IP=-1Y*)-1] . YP-1).
Now Kerd == {(k, — P#*-1Y*k): ke A}, so that the projection of Kerd onto ¥

is the whole of J". On the other hand (21) shows that the projection onto % of
Range v* is

(I 4- YP-p#-ly®)-42Range U.
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This shows that Range v* is the whole of Kerb if and only if U is surjective, or in

other words, U is unitary.
From (21),

Vy = — U*(I 4 YP-1P*-1y®)-y2yp-1,
Condition (17) in Lemma 4 is thus equivalent to the invertibility of
I — P#=1Y#(] -+ YP=1P#-1Y¥)~120(] 4+ XPP*X*)/2X.
Since I + AB is invertible if and only if 7+ B4 is invertible, whenever 4, B are

operators for which AB and BA are both defined, condition (17) is equivalent to
the invertibility of I — TU.

LEMMA 6. The operator T of Lemma 5 is a contraction on A", and
I — TT* = (I 4 XPP*X*YW¥(] — XX*¥XI + XPP*X*)12,
I—T#T = (I + YPP*-1Y*V(] — YY*)(I + YP-1P*-1Y*¥)l/2,
Proof. Let N = (I 4+ XPP*X*)1/2. Then
N-ITTH*N-1 = XP*-1Y*(I + YP-1P*-1Y*)-1YP-1X* =
= X(I 4 P*-1Y*YP-Y)-1P*-1Y*YP-1X* =
= X[l — (I + P*-1Y*YP-)IX* =
= XX* — XP(P*P + Y*Y) 1P*X* =
= XX* — XP(I + P*X*XP) " P*X* =
= XX* — (I + XPP*X*)"1XPP*X* =
= XX* — [[ — (I + XPP*X*)™1] =

= XX* — I+ N2
Hence

N-YI — TT*)N-1 =TI — XX¥,
and so

I — TT* = N(I — XX*)N,

as required. It follows at once that I — TT% > 0, that is, T is a contraction.
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To prove the second identity let L = (I + YP-1P*-1Y*)Y/2 Then
L-*= (I + YP*P*-1y¥)-1 =
= [ — YP-IP#-1Y*(] L YP-1ps-1y®)-1=
= [ — YP-Y([ + PE-1Y*YP-1)-1ps-1y* —

=1 — Y(bb")-1Y*.

LATHTLt =
= (I 4 YP-1P==1Y*)-LYP-1X*(I 4 XPP*X*)XP*-1Y*(I 4+ YP-IP*-1¥%)~1 =
= Y(P*P + Y*¥)'P*X*(I + XPP*X*)XP(P*P + Y*¥)'Y* =
= Y(bb¥)~X(I + P*X*XP)P*X*XP(bb*)~1Y* =
= Y(bb*)=1 bb¥(bb* — D)(bb*)1Y* =

= Y[I — (bb*)~-1Y*.
Thus
LY I—-T*T)L'=1—YY*

We defer to the next section a characterization of those contractions T such
that 7 — TU is invertible for some unitary U. Assuming this result (Theorem 3) we
can conclude the proof of Theorem 1.

Suppose, then, that X, Y e £ (#,4) are contractions and that Pe L(#)
is invertible and satisfies

I—Y*Y = P*(I— X*X)P.

Suppose also that / — YY* is congruent to I — XX* and that condition (ii) of the
the theorem holds: that is, either

(a) X is not essentially unitary, or
(b) X is essentially unitary and

indX =indY.

In case (a) either ] — X*X or ] — XX* is not compact; by vittue of symmetry
we may suppose I — XX* not compact.

Let T be as in Lemma 5; we wish to show that there is a unitary U on %~
such that I — TU is invertible. Lemma 4 tells us that T is a contraction, and The-
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orem 3 ensures that there does exist U with the desired properties unless T is a
compact perturbation of a non-unitary isometry or co-isometry V, say.

Suppose that T is a compact perturbation of some such V. Then either
I~ TT* or I — T*T is compact. By Lemma 6 I — TT* I— T*T are congruent
to [ — XX*, I — YY* respectively, and since the latter two operators are supposed
congruent, / -- TT# and I — T*T are congruent to each other, and hence are both
compact, as also are [ — XX# and | — YY*. This excludes alternative (a) aboves
and so we can assume that X and Y are essentially unitary. T is Fredholm, and
so therefore is its compact perturbation V. As V is an isometry or co-isometry
but not a unitary, ind V0 and hence ind 7#0. Clearly

indT = ind XP*1Y* = ind X — ind Y,

and so ind Xsind Y, contradicting alternative (b). We infer that T is not a com-
pact perturbation of any such ¥V, and hence there does exist a unitary U on ¢~
such that I — TU is invertible.

Choose such a U. Lemma 5 now shows how to construct a partial isometry v
with the properties described in Lemma 4, and the latter in conjunction with Lemma 2
tells us that if p = p,p, is as stated then ¥, is symplectic (so that H is invertible)
and

Y= F — EXP,

H =+ GX)P.
Since both H and P are invertible, I 4+ GX is too and we may eliminate P to obtaiu

Y=F— EX(I+ GX)~'H,
ie. W (X) =Y.

To prove the converse we simply reverse the steps. Suppose that ¥ (X) =Y
for some symplectic transformation ¥,. Let P == (I - GX)~'H, in our usual nota-
tion. Then P is invertible and so, by Lemma 1, the congruence conditions (i) of
Theorem 1 are satisfied. Now suppose X is essentially unitary: to prove (ii) we
must show that ind X = ind Y.

Lemma 2c tells us that p is of the form p =: p,p, for some choice of the par-
tial isometry v and Lemmas 3, 4 and 5 then imply that there exists a unitary U on X
such that J-— TU is invertible for T as in Lemma 5. Lemma 6 shows that T
is essentially unitary. The well-known result of Brown, Douglas and Fillmore [3]
tells us that 7'is a compact perturbation of an isometry or co-isometry S, and that
S is unitary if and only if ind 7= 0. Theorem 3 shows that in the present
instance S must in fact be unitary, and therefore ind T = 0. Consequently

O=ind 7T = ind XP*-1Y* = ind X — ind ¥,

and condition (ii) is established.
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We can extract from the above proof a description of all symplectic trans-
formations & such that &(X) =Y.

THEOREM 2.| Let X, Ye L(H, X)| be contractions [satisfying conditions (i)
and (ii) of Theorem 1. The symplectic transformations ® such that &(X): Y are

precisely those of the form & = ¥, where

, _[ 1 Y] (I + YP-1ps-1y*)=12U 0 [ (I + XPP*X#)-1? XI’M]
o e Gl 4 0 M — MP*X* M)
(18)

where Pe L(H) is an invertible operator such that
I—- Y*Y = P¥(I — X*X)P,
Me P(H) is given by
M == (I 4 P*X*XP)~12
and U is a unitary operator on A such that I — TU is invertible, where

T = (I -+ XPP*X*P2XP*-1Y*(I + YP-1P3-1Y#)=1%,

4. THE INVERTIBILITY OF I--TU

We shali complete the proof of Theorem 1 by establishing the promised charac-
terization. We shall denote the closure of the range of an operator ‘A by #(4)
and the dimension of the kernel of 4 by v(A4).

LemMMA 7. Let A > 0 be a contraction such that A — A® is compact. Then A%
is @ compact perturbation of a Hermitian projection P such that (P} & #(A).

Proof. Let the spectral decomposition of 4 be

A= S/‘.E(d/".).
0,1

For 0 < ¢ < 1/2 we have

i

A — A S (A — 2E@AA) = (c — )E(c, 1 — c)).

i0, 1]
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Since A4 — A® is compact, E([c,1 — c]) is a projection of finite rank. Let
P = E([1/2,1]). Then #(P) = %(A) and, for small ¢ > 0,

A2 —p=\ + \ 22EdY) +

[0,¢) [es 1/2)

+ + (A2 — 1)E(dA).

[1/2,1-¢) {1-¢, 1]

The first and last integrals are operators tending to zero in norm as ¢ | 0, while
the two middle ones are finite-rank operators. Thus 4%/2 — P is compact.

For the following result see [4].

Lemma 8. If M is a Hermitian operator and K is compact on A" then 6(M + K)
contains only countably many non-real points.

THEOREM 3. The following are equivalent for any contraction T on A :

(i) there is no unitary U such that I — TU is invertible ;

(ii) T — TT*T is compact and v(T))#WT5¥) for every compact perturbation
T, of T:

(iii) T is a compact perturbation of an isometry or co-isometry which is not
unitary.

Proof. (1) = (ii). Suppose there is a compact perturbation 7y = T'+- K of T
such that w(T) = v(77). We have

= V(T1*Tl)1/2
where V: A(T7) — #4(T,) is unitary. Since
dim Z(THY = W(T) == v(T}) = dim RZ(Ty)*,

V extends to a unitary operator on #. Let U =: — V*: then — UT, = (T¥T,)"?,
and hence

I— AUT =TI+ XM -+ K),

where M > 0 and K] is compact, for any A€ C. Now ¢(M -+ K,) contains only
countably many points off the real axis. Hence there| exists A suchl that |i| = 1
and —A¢o(M + K;). Then AU is unitary and I — AUT is invertible: thus also
I — T(AU) is invertible.

Alternatively, suppose that 7' — TT*T is not compact. We shall construct
a unitary U such that 7— TU is invertible.
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Step 1. There is an infinite-dimensional subspace E of #£(T¥), invariant
under T#T, such that ||T|E|| < 1.
Let P be the Hermitian projection on .Z(T%) and let

[— T*T = \ JE(dA)

{0, 1

be the spectral decomposition. E({1}) is the projection onto the eigenspace of
I — T*T corresponding to the eigenvalue 1, i.e. onto Ker 77T =~ Ker T, and hence
E({1})=1I-P.

As ¢ 0,

(19) S AE(dR) - S GER) = I — T°T — (I — P) = P — T*T"

1) 0,1

in norm. Now P — T#T is not compact. To see this observe that T% .~ T*TT% : :
= (T — IT*T)* is not compact, and hence (I — T*T){#(T*) is not compact.
P — T%*T is the orthogonal direct sum of (/ — T*T)#(T*) and the zero operator
on KerT.

It follows that P — T*T is not a norm limit of finite rank operators, and so,
from (19), there exists ¢ > 0 such that E([c, 1)) is the projection onto a space E of
infinite dimension. E is invariant under 77, and for x€ E,

(I — T*T)x, x) = c(x, x),

so that {TiE. < (1 —¢) < L.

Step 2. Polar decomposition of T.
T = V(T*T)?

where V: A(T*) > #(T) is unitary. Let F = E% and let the restrictions of T*T to
the reducing subspaces F, E be M2, N? respectively, where M, N > 0. By Step 1,
INji< 1. And T:== V(M @® N).

Step 3. Construction of U.

For x e VF define Ux to be —V*x. This defines U: VF — F as a unitary
operator. It can be extended to a unitary operator on S provided that

dlln(VF_)J' = din] F.L - dlmE = o0,
Now
(VE): = Vo=3(FY) = V3X(E),
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and since V*|2%(T) is unitary into Z(T*) 2 E, it follows that dim(VF)' > dim E =oo.
Hence U does extend to a unitary on 4.

"Step 4. Conclusion.
Consider x = f e, fe F, ec E.

UTx = UV(M@®N)(f + e) =

— UV(MS + Ne).

o

Here Mfe F, Nee E. Since UVy = —y for ye F we have
UTx = — Mf+ UVNe,

where |[UVN| < 1. Thus, with respect to the orthogonal decomposition
A = F@ E, ] — UT has a matrix of the form

l:l—}—M % ]
0 14 N,

where M > 0 and ||NV,|] < 1. It follows that 7 — UT is invertible.

(ii) = (iii). Assume (ii). TT* — (TT*)? is compact, and so, by Lemma 7,
here is a Hermitian projection P onto a subspace of Z#(T) such that

(TT:{:)]/‘.] = P + K’
with K compact. Now
T = (TT*\2v

where V is a partial isometry, isometric from %(7*) onto %(T), zero on KerT.
Then
T = PV 4 KV.

Since #(P) =2 A(T) = #(V), $ = PV is a partial isometry. Thus 7T is a compact
perturbation of the partial isometry S, and since alse S is a compact perturbation
of T, we have by hypothesis v(S) 3 v(S*).

If v(S) < v(S*) then v(S) is finite. Pick an isometry J: Ker S — Z(S)*: we
can do this since the latter space has dimension v(S*) > v(S). Note that £(J) is not
the whole of #(S)L. J is compact, and so the operator

V= S|(KerS)* & J

on A& is a compact perturbation of S, and hence of 7. V is an isometry and Z(V)
is a proper subset of 4", so V is not unitary.
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If, on the other hand, v(S) > v(S*) we can apply the above reasoning to S*
to deduce that T is a compact perturbation of a non-unitary co-isometry.

(iii) = (i). Suppose that (iii) is true but (i) is false: that is, T is a compact
perturbation of a non-unitary isometry or co-isomety S, but I — TU is invertible
for some unitary U. By passing to T¥ if necessary we can suppose that S is a co-isc-

metry. Then we have
IT* = I =+ K,

(K; denotes a compact operator throughout). Then
[ —TU=TT*—TU+ K; =

= TU(U:::T::: _ I) + K2
and hence
T = (I'_‘ TU)(I—— TU):Z:_lU:'-‘ + K3.

This shows that T is a compact perturbation of an invertible operator, and the
same is therefore true of S. This makes S a co-isometry which is Fredholm of index
0, that is, a unitary, contrary to hypothesis. Hence (iii) = (i).

We note that, for operators T having closed range, the property w(T") # v(T%)
tis preserved under compact perturbations. If v(7) and »(7T%) are both finite
this follows from the invariance of the Fredholm index, while w(T): :co and
v(T%) < oo if and only if T has a right inverse but no left inverse modulo the
compact operators. Hence, for operators with closed range, we can replace con-
dition (ii) in Theorem 3 by (ii') T — TT*T is compact and v(T)# v(T™).

In general, however, (ii) and (ii') are different: it is easy to write down a com-
pact weighted shift 7 for which v(T)# +(7%), while for the compact perturbation
T, =0 of T, v(T7) = v(Ty).

5. AN EXAMPLE

The orbits of the unit sphere are characterized in Theorem 1 by the con-
gruence} condition (i) and, in the exceptional case of essentially unitary operators,
the index condition (ii). It is just conceivable that for these very special operators
the index condition might be a consequence of the congruence condition, in which
case we could omit condition (ii) altogether from the /statement of the theorem.
In fact this is not the case, as the following example shows.

Let # = o and let (e, be an orthonormal basis of #. Let o, = | (1 — 2-%),
n=1,2, ..., and let X be the backward shift with weights x, — that is,

Xel = 0,

Xe, = o,_1€6,_,, n=2,3,...
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Let .
Y = diag{1/}2, 2 —ad)"V2, 2 —ad)7',. .},

in a self-explanatory notation. X and Y are compact perturbations on the back-
ward shift and the identity operator respectively, and we have

indX=1, ind¥=0.

However, the congruence conditions (i) do hold.
Y#-1Y"1e= Y2 = diag{2,2 — o}, 2 —a}, ...} = 2I — X*X,
so that
I—X#*X = Y* Y-l — [= YV*- Y] — Y*Y)Y1.
Moreover
I — XX* =diag{l —oaf, 1 —a3 ...},

I— ¥Yy* =diag |’ =% 1= 1
42— 22—

The ratio of the nth diagonal entries in these two diagonal operators is always
non-zero, and tends to 1/2 as n — oo. Thus 7 — XX* is congruent to 1 — YY*,

It is rather strange that, for Fredholm operators X which are not unitary
modulo the compacts, ind X is not relevant to the orbit of X.

6. THE ORBIT OF A PARTIAL ISOMETRY

It is natural to ask about the orbits of shifts and projections: these are both
ypes of partial isometries, which are the appropriate entities to consider in the
context of L(#, A).

Let us call a contraction Xe Z(H#, A a shriek operator if it is the ortho-
gonal direct sum of an isometry and a strict contraction (i.e. an operator of norm
less than 1). It is elementary to show that the following are equivalent for a con-
traction X:

(i) X is a shriek operator;

(ii) 1 is not in the closure of o(X*X)\{1};

(iii) I — X*X has closed range. ‘

Condition (ii) explains the sensational terminology: the spectrum of X*X looks.
like an exclamation mark on its side (typically).

THEOREM 4. Let X e L (H, A') be a contraction. The orbit of X under the
symplectic transformations contains a partial isometry if and only if X is a shriek
operator.
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This characterization was obtained by Yu. M. Smulian [13]: we show how
it follows from our result.

Proof. (=). Let the orbit of X contain a partial isometry Y. 1 — Y*Y is a
Hermitian projection and so has closed range. I — X*X, being congruent to I -- Y*Y,
also has closed range.

(==). Let X be a shriek operator. X acts as an isometry on Ker(/ — X*X) and
as a strict contraction on its orthogonal complement, (I — X*X). X clearly maps
Ker(I — X*X) into Ker(J — XX*), and in fact the mapping is onto, for if
ye€Ker(I — XX*) then x = X%y e Ker(/ — X*X) and Xx = y. Thus X == X; @ X,
where X is a unitary mapping from Ker(I — X*X) onto Ker(l — XX*), and X, is
a strict contraction from #Z(f — X*X) into #(I — XX*).

Let Y -- X; @ O. Then Y is a partial isometry, and we havc

I—X*X=0@(— XXy,

{20)
I—Y*Y=0@I1
and hence
I— Y*Y = P*(I— X*X)P
where

P=1@ (I— X;X,)~12
is invertible in £(s). Likewise
I—-YY*= QU — XX*Q*

where Q = I ® (I — X,X5)~2. Thus the congruence conditions (i) of Theorem 1
are satisfied.

Now suppose /— X*X is compact. Since I— X;X, is invertible, (20)
shows that Z(I — X*X) and hence also #(I — XX*) are finite-dimensional. Thus Y is
a perturbation of the Fredholm operator X by a finite rank operator, and so
ind Y == ind X. Condition (ii) of Theorem 1 is satisfied, and so Y lies in the
orbit of X.

In conclusion let us note the position in the finite-dimensional case. If either
of 3¢ or ¢ has finite dimension then every contraction X lies in the orbit of a par-
tial isometry since o(X*“X) is finite. In this case, moreover, condition (ii) of Theorem
1 is automatically satisfied: if both of ## and " have finite dimension then all ope-
ratorsin Z(#, #) have the same index, while if only one space is finite-dimensional
then no member of Z(#, A') is essentially unitary. It follows that the orbit of X
18 determined by the congruence classes of J — X*X and I — XX¥, and it is not
hard to see that these depend only on the multiplicity with which 1 is a singular
value of X. Thus, if

n = min{dim #, dimJ#} < oo
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then the closed unit ball of Z (¢, ") splits up into n + 1 orbits under the action

of

is

the symplectic transformations.
An interpretation of these results in terms of the geometry of Krein spaces
given in [14].
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