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CROSSED PRODUCTS BY LOCALLY UNITARY
AUTOMORPHISM GROUPS AND PRINCIPAL BUNDLES

JOHN PHILLIPS and JAIN RAEBURN

Let 4 be a continuous trace C*-algebra with spectrum 7, and let a:Z —
— AutA be a group consisting of C(T)-automorphisms with generator f = a,.
We proved in [13, Section 2] that there is a cohomology class n(f) in the Cech group
H*(T, Z), which vanishes precisely when f is implemented by a unitary element of
the multiplier algebra &(A4), or, equivalently, when « is implemented by a homomor-
phism u:Z — 9 (A). Elements of H*(T, Z) are associated with isomorphism classes
of principal S'-bundles over T, and in fact the class n(f5) is constructed in [13] as
the transition functions of such a bundle. The starting point of our present work
was the observation that this principal bundle appears naturally as the spectrum of
the crossed product C* algebra A x,Z : the action of St on (4 x,Z)" comes from the
dual action of S*=Z on Ax,Z, and the bundle projection p:(4x,Z)" — Ais
given by sending nx U e (A4 x,Z)" to the (irreducible) representation = of 4. We
shall show here that Theorem 2.1 of [13] is a special case of general theorems which
relate a class of abelian automorphism groups of a type 1 C*-algebra A to locally
trivial principal bundles over A

Let A be a type I C*-algebra, G a locally compact abelian group and «: G —
— Aut 4 a strongly continuous automorphism group. We shall say that a is imple-
mented by u: G — S (A) in the representation n of A if

n(x,(a)) = n(u,au}) for ge G, ac A;

we call « locally unitary if there are maps of G into 81(4) which 1mplementa locally
in A. A theorem of Russell [17] shows that singly generated groups of C(A) -auto-
morphisms of continuous trace C*-algebras are always locally unitary, and we show
in Section 1 that there are other circumstances in which automorphism groups are
automatically locally unitary.

Suppose a: G — Aut A is locally unitary. The dual action & of Gon A %X, G
induces an action of G on (A x,GY", and it is not hard to see that this is free. It
turns out that the irreducible representations of A4 x,G all have the form nx U
for some irreducible representation n of A, and we show that = x U — n defines a
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continuous surjection p of (Ax G)" onto A. Our first main result (Theorem 2.2)
says that the dual action of G and the projection p make (A x,G)" into a locally
trivial principal G-bundle over A. When G = Z and A has continuous trace, the
class of this bundle in H*(T, Z) is the class y(2,) defined in [13] or [17, Section 3.
In this case y(x,) determines «, up to multiplication by inner automorphisms, and
in general, provided Ais Hausdorff, the isomorphism class of the bundle (4 x, G;"
determines « up to exterior equivalence.

After proving these basic results in Section 2, we consider the problem of con-
structing locally umtary groups a: G — Aut A such that the spectrum of (Ax,G)"
is a given principal G-bundle. We prove first that any principal G-bundle over o
locally compact paracompact space T can be realised as the spectrum of
Coo(T, K(H)) x, G for some locally unitary automorphism group o, and with a bit
more work we can replace Coo( T, K) by an arbitrary stable C*-algebra with spectrur:
T. The case G = Z represents a slight generalisation of [13, Theorem 2.11; however,
our results are also interesting from a different viewpoint. If X and Y arc compuct
spaces, then C(X) ® C(Y) is naturally isomorphic to C(Xx Y), and so we cin
regard the C*-algebraic tensor product as an algebraic version of the cartesian
product. In the same spirit, our results show that crossed products by locally unitary
actions can be viewed as an algebraic interpretation of non-triviai principal bundies.
We observe that the algebra in question is always non-commutative — in fact, to
capture all principal bundles we need to assume it is stable and hence homogencous
of infinite degree. These results are all in Section 3, and constitute the main pari
of the paper

In our final section we discuss the possibility of decomposing a continnous
trace C*-algebra whose spectrum is a principai bundle as a crossed product. This
cannot always be done, but the obstruction can be necatly described using the Dix-
mier-Douady class of the algebra.

Many of our results hold with suitable modifications for more general auto-
morphism groups. In particular, for the first part of Section 2 it is only necessary
that the group consist of universally weakly inner (or n-inner) automorphisms. The
results of Section 3 seem to hold for pointwise unitary groups (see SAection i);
just as locally unitary actions by G correspond to locally trivial principal G-bundies,
it seems likely that, at least for discrete G, pointwise unitary actions will correspond
to arbitrary free actions of G. Since our results in this direction are fragmentary,
and the techniques required are substantially different, we plan to discuss tiicn
elsewhere.

We shall assume throughout that our C*-algebras are type I. This is not strictly
necessary as far as Section 2 goes, since it can be shown that locally unitary grouns
always consist of n-inner automorphisms. The proofs would require modificatiox,
though, and we have therefore preferred to stress the analogy between locally unitary
groups and principal bundles in the technically easier type I case.
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NOTATION. Let A be a C*-algebra. We shall denote the group of *-automor-
phisms of 4 by Aut A, the multiplier algebra of 4 by d(4), and the spectrum of
A by A. We shall frequently confuse irreducible representations of A4 with their
class in A. If w is 2 nondegenerate representation of 4 on a Hilbert space H,, we
shall write 7 for its canonical extension to M (4), and if ¢: 4 — B is an isomor-
phism, we write SN (¢p) for its extension to I (4). We denote the algebra of com-
pact operators on a Hilbert space H by K(H), and if # is a continuous field of Hil-
bert spaces we denote by K(5#) the continuous field of elementary C*-algebras asso-
ciated with # and by I',(K(5)) the C*-algebra defined by 4 {3, Section 10}. Our
notation on tensor products is straightforward: we denote the algebraic tensor pro-
duct by A © B and only write 4 @ B if the C*-norm on 4 © B is unique. We say 4
is stable if 4 ® K(H) = A, where H is a separable infinite-dimensional Hilbert
space.

Let G be a locally compact group, and a: G — AutA a strongly continuous
automorphism group. We shall denote the crossed product C#-algebra (see [12])
by 4 x,G, and if (n, U) is a covariant representation of (A4, G, «) we denote the
corresponding representation of 4 x, G by n x U. There is a natural injectioni,: 4 —
— (A4 x,G) defined on the dense subalgebra C (G, A) of 4 x,G by

(ix(@)9)(2) = ap(8), (pi(a))(g) = p(g)xay(a).
If G is abelian, there is an action & of the dual group Gon 4 %, G given by
%,(9)(8) = 12o(g) (1€G, ¢ eCG,A)).

Finally, we denote the sheaf of germs of continuq\us G-valued (respectively, G-va-
fued) functions on a space T by ¥ (respectively, %).

1. LOCALLY UNITARY AUTOMORPHISM GROUPS

Let A be a C*-algebra and o«: G — Aut 4 a strongly continuous automorphism
A
group. We shall say o is pointwise unitary if for each n € 4 there is a (strongly con-
tinuous unitary) representation U of G on H, such that

n(x,(a)) = Uyn(a)UF for all ge G and ae A4;

we say U implements o in the representation n. We call o locally unitary if for each
ne A there is a neighbourhood N of = and a strictly continuous map wu: G — M(A4)
such that, for each p e N, p o v is a representation of G on H, which implements o.

Every locally unitary automorphism group is pointwise unitary (take U=m o u).
A pointwise unitary group «:G — AutA consists of automorphisms «, which
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act trivially on the primitive ideal space Prim A and the spectrum /Ii\, and if A is of
type I, this is equivalent by a theorem of Lance and Elliott [5] to saying that 2 con-
sists of universally weakly inner (or n-inner) automorphisms. In the rest of this
section we shall discuss to what extent the converses of these statements are valid.
The algebra A will always be of type 1.

First of all, we observe that singly generated automorphism groups which tix
Prim A are pointwise unitary. Secondly, when A has continuous trace, m-inner
automorphisms are locally implemented by multipliers ([17, Theorem 3.4]; see
also Lemma 1.4 below). Thus in this case singly generated groups which act tri-
vially on Prim A are locally unitary, and the same result can be used to show that
for other groups G, and A4 with continuous trace, pointwise unitary implics locally
unitary (Proposition 1.1). However, as the succeeding example shows, even discrete
abelian automorphism groups of continuous trace C*-algebras can be pointwise
unitary without being locally unitary.

ProposiTION 1.1. Let A be a continuous trace C*-algebra, let G be a finitely
generated abelian group, and suppose that x: G — Aut A is pointwise unitary. Then
is locally unitary.

Proof. We write G as a sum @ G, of N cyclic groups, n; for the order of G; (we
allow n; == c0), and g, for a generator of G;. Let n € /f, and choose a compact neigh-
bourhood N of = such that A'N is isomorphic to the C*-algebra I'(K(+#)) defined by a

continuous field of Hilbert spaces over N, and such that there is a section & of #
with [&(p)l = 1 for all p € N. By Theorem 3.4 of [17] we can shrink N so that there

are u; € M(A) satisfying
p(2,(a)) = p(u)p(@)p(uf) for 1 <i< N, acA.

Since « is pointwise unitary, there is a representation ¥ of G on H, which imple-
ments «; since p is irreducible we conclude that each p(x;) has the form 4;¥(g;) for
some scalars 7; € S*. It follows immediately that the p(w;) commute, and that, for
those ¢ with »; < co, there are functions u;: N — S* such that

() = wip)l  forpeN.

Lemma 3.5 of [17] shows that for each multiplier m of 4, p — p(im)£(p) is a conti-
nuous section of 37, and so

p = (p(u)E(p) { E(p)) = ui(p)

is continuous. We can thus by shrinking N again assume that each yu; has a conti-
nuous #;th root v;, and that p — v,{p)p(u;) extends to an element u; of M(4). We
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now define u: G - IM(A4) by
- m m mn
"(Z'_J’”igi) = Ut ... u N

Then p o u is a representation of G which implements « for each pe N, and « is
locally unitary. 2

ExampLE 1.2. Let {X;} be a sequence of compact Hausdorff spaces each
homeomorphic to the 2-sphere, and let X be the one point compactification of the
disjoint union of the X;. For each / we choose an automorphism «; of C(X;, K(H))
such that a; is z-inner but not inner — that is, not implemented by a multiplier;
this is possible by Theorem 2.1 of [13] since H*(X;, Z) = Z for alli. We then define,

A= C(X, K(H)) and a: @ Z — AutA by
i=1

a'i'i(f IXD)(x) if xeX;for 1 <i<k

” (ﬁ n,-)(f)(x) -

i=1

k
flx) if xeX\NUX,.
i1

It is easy to see that « is pointwise unitary, but it is not locally unitary near the point
oo € X. For if it were, there would be a neighbourhood N of coanda map u: @ Z —
— (A) such that » implements « in every representation f — f(x) for x € N. Since N
must contain a set of the form {X;:/ > I} this would imply in particular that , is
inner, which is not the case.

There is nothing special about the choice of the X; in this example apart from
the fact that C(X;, K(H)) had outer z-inner automorphisms — we could, for example,
have obtained an example with 4 2-homogeneous by taking X; homeomorphic to
the projective unitary group PU(2), and «; the canonical automorphism of C(PU(2),
I,(C)) given by the identity map of PU(2) into Autd,(C) (see [10, Example d]).

Now suppose that A4 is a separable type 1 C*-algebra, G is separable and

a:G — Aut A induces the trivial action on Prim A :AA. Foreachrne A there is a
multiplier w, of G and an w,-representation U:G — U(H,) such that

n(a(a)) = Un(a)U; foraecd, geG

[19, Theorem 2.6]; we can choose a genuine representation U:G — U(H,) which
implements « in the representation = if and only if the multiplier w, is trivial. Thus
in particular the automorphism group « will be pointwise unitary if the (Moore)
cohomology group H2(G, T) vanishes. This is the case, for example, if G = Ror T.
We can also use some cohomology theory to see that there are groups G, other than
those in Proposition 1.1, for which pointwise unitary implies locally unitary. We
thank the referee for pointing this out to us, and for drawing our attention to [21].
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PROPOSITION 1.3. Let A be a separable continuous trace C*-algebra with spec-
trum T, and let G be a separable compact group. Then every pointwise unitary group
2:G = Aut A is locally unitary. If in addition HXG, T) = 0, then every group x: G —
- Aut A of C(T)-module automorphisms is locally unitcry.

We shali need the foliowing version of [13, Proposition 2.6].

LemMA 1.4, Let A be a C*-algebra with compact spectrum T, and let p ¢ A be
a projection such that w(p) has rank one for all n € T. Then there is a continuous map

VM= {pecAuter)d: ¢(p) —p., < 1} - UM(A)

such that Ady(¢) = ¢ for all p € M.

Proof. We can view 4 as the sections of the field {K(4(2)p(1))} of elementary
C*-algebras defined by the fieid of Hilbert spaces {A(¢)p(t); 1€ T}. Given ¢ ¢ M,
define a field u(¢) e B(A(t)p(1)) by

u)a()p(t)) = @) (Qe(p)()p(1))ie(p)(p(t)!.

As in the proof of {13, Proposition 2.6}, «(¢) is a unitary operator for each te T,
and it is easy to check that f — u(¢) defines an element of &M(A4) (using, for example,
{17, Lemma 3.5]). We then define y{(¢) = u.

Proof of Propesition 1.3. A standard compactness argument using Lemma 1.4

shows that for each 7 € 4 there are 2 compact neighbourhood M of n and a Borel
map u: G — &M(A4) such that u, implements a, in each representation p € M. We
can then define a Borel cocycle w:Gx G — C(M, T) by

E(uguh) = w(gs h)(p)-p—(“gh);

notice that as « is pointwise unitary, the cocycle w(-,-)(p) is trivial for each fixed p.
Let €¥G, T) denote the Polish group of Borel maps: G — T (with maps agreeing
a.e. identified) in the topology of convergence in measure, and let Hom{G, T) denote
the subgroup of continuous homomorphisms. As in the proof of [21, Theorem
2.6], o defines a continuous map of M into the quotient EY(G, T)/Hom(G, T), and
o will continuously trivialise locally if this map has local continucus liftings to
SYG, T). Bowever, as G is compact Hom(G, T) is a discrete subgroup of &€, so
€t — Cl/Hom is a locally trivial fibre bundle and these local liftings always exist. We
can use this trivialisation to adjust u: G — SN (A4) and cut down the neighbourhood
M toensure that u is a.e. a Borel homomorphism of G into USK(4 | M). Then a stan-
dard application cf the closed graph theorem for Bore! homomorphisms implies
that » is equal a.e. to a strictly continuous map of G into USK (4 { M), which also
implements o« over M. Thus « is locally unitary. As C(T)-module automorphisms
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fix AA, the remarks preceding the proposition show that if H*G, T) = 0 every group
of such automorphisms is pointwise unitary, so the second statement follows from
the first. %

Finally, we observe that even if 4 has compact spectrum T and o: G - Aut4
is a locally unitary group consisting of inner automorphisms, it need not follow that
« is unitary. For, as in the proof of Proposition 1.3, there is another obstruction
in H¥G, C(T, T)) which need not vanish even if H¥G, T) = 0 (see [21, proof of
Theorem 2.6 and Example 2.8]). In the next two sections we shall study another
obstruction to solving this problem.

2. THE SPECTRUM OF A CROSSED PRODUCT
BY A LOCALLY UNITARY GROUP

Let 4 be a type I C*-algebra and let a:G — AutA4 be abelian and locally
unitary. We shall prove in this section that (4 x, G)" is a locally trivial principal
fi-bgndle with base A. Our first step, the construction of the bundle mapp: (4 x,G)" -
— A, works equally well for pointwise unitary automorphism groups.

ProPOSITION 2.1. Let A be a type 1 C*-algebra, G a locally compact abelian
group and a:G — Aut A a pointwise unitary automorphism group. Then for each
nx Ue(Ax,G)" the representation n of A is irreducible, and the map p:axU — n
is a continuous surjection of (A x,G)" onto ,:1\, such that

P~ (p(nx U)) = {nxyU:ye ).

Proof. Let nx Ue (A x,G)". Since A4 is type I, each «, is n-inner, and so we
can choose unitary operators M, € n(4)"”" which implement a, in the representation 7.
It follows from the covariance of (n, U) that M} U, € n(4)’. Suppose that E belongs
to the centre n(4)"” n n(A)’ of n(4)”. Then for each ge G

EU, = EM MU, = M,E(M}U,) = M,(MtU,E = U,E,

so that E commutes with the range of U as well as the range of =, and hence belongs
to (nx U) (4 x,G) = Cl. We deduce that = is a factor representation, type I since
A is, and therefore can be realised as p @ 1 acting on H, ® H for some pe;l.
If W:G — U(H,) implements o in the representation p, then each (W, ® 1)*U,
belongs to n(4) =1 ® B(H) and so has the form 1 ® Y,. Using the fact that
W,® 1€ B(H,) ® 1 we see that Y is a representation of G, and because (n, U) =
=(p®1, W® Y) is irreducible ¥ must be too. But G is abelian, so this implies
that H is one-dimensional and = = p is irreducible. The surjectivity of p is auto-
matic since o is pointwise unitary, and the irreducibility of n shows that if zx U

and n x V both belong to (4 x,G)" then U = yV for some y eG.
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Thus it only remains to check the continuity of p. We note first that if (x, U)
is a covariant representation of (4, G) then = can be recovered from nx U as the
restriction of the representation to the subalgebra 4 = i, (4) of M(Ax,G). If J is

an ideal in A, so that N = {r ¢ A:kerm 3 J} is a typical open set in A, then
pUN) = {(nx U):ker (nx U)~ p i,(J)}.

Since this latter set is open in the open subset (4 x,G)" of M(Ax,G)", we
conclude that p is continuous. 73

REMARK. If 4, G, « are as in Proposition 2.1, we shall call the map p of
(A x,G)" onto A defined by p(nx U) = = the restriction map. We justify this by
observing that p(n x U) can be viewed as the restriction of the representation (m x U)~
of M(A x,G) to the subalgebra i,(4) of M(4 x,G).

THEOREM 2.2. Let A be a type 1 C*-algebra, let G be a locally compact abelian
group, and let x: G - Autd be a locally unitary automorplusm group. Then the
restriction map p: (Ax G)" - Aisa locally trivial principal G-bundle relative to
the dual action of G. Moreov er, if o is implemented by u:G — 3W(A) over the open
set N, then

(%, 1) = 7 X 77(w)

is a G-isomorphism of N x G onto p~*(N).

The proof of this theorem consists of localising to an ideal I of 4 where %
is implemented by a unitary and then observing that in this case (Ix,G)" is homeo-
morphic to I x G. We state these well-known facts as separate results since we have
been unable to find a satisfactory reference.

LemMma 2.3. Let Abeatypel C#algebra and x: G — Aut A a pointwise unitary
abelian automorphism group. Let I be an ideal in A, and observe that I is invariant
undesr o

a) The inclusion C(G,I) « C (G, A) induces an isometric embedding i of
Ix, G as an ideal in Ax,G.

b) If we denote by i* and j* the embeddings of (Ix,G)" and I as open subsets
of (Ax,G)" and A respectively (as in [3, 3.2.1),, then i* preserves the action of G
and the following diagram commutes:

(Ix,G)" — s (A%, G)

r p

» v
A i* ~
— A
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Proof. Part (a) is contained in [7, Proposition 12] (and is true for all C*-al-
gebras). The embeddings /* and j* consist of taking the unique extension of [3,
2.10.4]; it is routine to check that the extension E(nx U) of n x U is just E(n) x U,
and the rest is easy.

LEMMA 2.4. Let A be a C¥-algebra, G a locally compact group and suppose
that u: G — IN(A) is a strictly continuous unitary representation of G. Then the map
¢: C(G) © A — C (G, A) defined by ¢(Y,z; ® ;) (8) = Y, z,(g)au¥ extends to an

isomorphism of C* (G) ®m“ A onto Ax,,,G. If G is abelialz and we identify
(C*(G) ® A)" with A x G then the induced homeomorphism @ on spectra is given
by p(mxym(u)) = (m, v).

Proof. That ¢ is an algebraic *-isomorphism is easy to check. It is also easy to
see that commuting pairs of representations of C_(G) and A correspond bijectively
under ¢ with covariant pairs of representations of C,(G, A). Thus ¢ is isometric
and hence extends to an isomorphism of C*(G) ®,,,, 4 onto Ax,,, G. The last
assertion follows from a straightforward computation.

Proof of Theorem 2.2. Let n e 2 and let N be an open neighbourhood of =
such that on & the group o is implemented by a map u: G — M(A). We write [
for the ideal correspondmg to the closed subset A\N of A so that there is a natural
homeomorphism j* of T onto N. Lemma 2.3 implies that p~1() is homeomorphic
to (Ix,G)". A simple approximate identity argument shows that each multiplier
m e IM(A) defines a multiplier m € IN(I), and it is easy to see that g — i, is strictly
continuous. If p € I then p=o | I for some ¢ € N, and p(it,) =0 (u,),s0 g — p(ii,) isa
representation. Further, for @ € I we have

pa,(@)) = o(ey(@) = o(ugai?) = p(ii,aif),

so that all = Adu By the preceding lemma, therefore, (I %, G)" is homeomorphnc
to IxG = NxG and we have proved that p~'(N) is homeomorphic to N x G A
simple check of the results we have used shows that the homeomorphism is given by:

NxG o Ix G = (Ixyz G = I%G)" — p=L(N)
(m,7) > (ml 1, y) > (n| ) x yr(¥) = X y7(u).

A calculation on C_(G, A) shows that the dual action of G on (4 %x,G)" is given by
YpxU)= pxyU; hence our homeomorphism preserves the G-actions and the
theorem follows. %

Let (4, G, o) be as in Theorem 2.2. If {N,} is an open cover of A and u: N; -
- ?TL(A) implements o over N, then on the intersection N;; = N;n N; we have
a G-homeomorphism

Nijxav_)p_l(Nij) - Nin6§
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if we write y;;(n) for the unique character of G with 7(u’) = y,;(n)7 (v}, then this
homeomorphism is given by

@ij0 (m, 7) = (7, 17:;(7)),

so that the y;; are the transition functions of (4 x,G)" — A. (We note that since
¢;; is a homeomorphism the y;; are automatically continuous It could take a bit
of work to prove this directly, especially since the u' are not necessarlly continuous.)
The cocycle {N,, y;;} with values in the sheaf & of continuous G-valued functions
defines a cohomology class {,(x) e H{(X, {9’), and it is routine to verify that ¢,(x)
depends only on « and not on any of the choices we have made. If in particular we
take G = Z, then the y;; take values in §* = i, o(2) belongsto HY(X, &), and hence
we have a class n(x) = 6({(2)) in H*(X, Z). In this case, the y;; depend only on the
multipliers u; € M (4) which locally implement the generator ¢ = o;; when A4 has
continuous trace, y(«) is therefore the class n(¢) defined in [13, Theorem 2.1] and
[17, Section 5].

It is natural to ask what the isomorphism class of the principal G-bundie
P (A%, G) — A (or, equivalently, the cohomology class {,()) tells us about the
group o. The answer appears to be the exterior equivalence class [12, p. 357] of «,
but we have only been able to prove this when the spectrum of A is Hausdorff.

ProrosITION 2.5. Let G be a locally compact abelian group, and suppose that
2, B: G > Aut A are two locally unitary automorphism groups of a type 1 C"-algebra
A. If o and B are extertor equivalent then the Iwo principal G-bundles Dy (A%, G)* -4
and py: (AxzG)> — A are isomorphic. If A is Hausdorff, the converse holds.

Proof. Suppose first that « and § are exterior equivalent, so that there is a
strictly continuous map u: G -~ USN(A) satisfying

(H Uy, = U2, (1) and f, = (Adu)oa, forg, heG.

We define ¢: C (G, A) — C (G, A) by o(x)(g) = x(g)uz. It is unpleasant but rou-
tine to verify that ¢ is a *-homomorphism from the subalgebra of 4 x,G to the sub-
algebra of A x;G, and in fact ¢ is an isomorphism since we can write down its
inverse. If {n, U) is a covariant representation of (4, G, «), then n is a non-dege-
nerate representation of A and therefore extends to a representation 7 of &(4);
it is routine to check that

(2) axU - axn(u)U =(nxU)cp~?

induces a bijection of (4 x,G)" onto (4 x, G)" (the fact that u is an x-cocycle (1)
and the covariance of (x, U) show that m(«)U is a representation of G). A straight-
forward computation now shows that ¢ is isometric, and hence extends to an iso-
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morphism, also denoted ¢, of A x, G onto 4 x; G with @ given by (2). Further calcu-
lations show that

IM(A x,G) —2_, (A x,G)

W

commutes. Thus if z#x U € (4 x,G)", then for ae 4 we have
PoG(rx U))(@) = o(nx U)~(ig(@) = (n x U)~(M(g) ™ o ip(a)) =
= (e x U)~(i,(@)) = p(n x U)(a),

so that p; o ® = p,. We conclude that ¢ is an isomorphism of C?—bundles, and we
have proved the first part of the proposition.

We now suppose that A is Hausdorff, and that (Ax,G)" and (A X, G)* are
isomorphic G-bundles. Let {N;} be an open cover of A and suppose u', v': G — M (A4)
implement o, f§ respectively over NV,; then the transition functions of the correspond-
ing G-bundles are the maps y;;, y;; satisfying

a(w) = yy(mzEw), 7)) =z (Ma’) formeN,;.

We can therefore assume by passing to a subcover that there are maps 2;: N; — G
such that y;; = A7 'y;;4; on N;;. The map (m, g) — 2,(m)(g) is continuous on N;xG,
and we may assume by shrmkmg the N; that each of these extends to a continuous
function ) A x G — C such that fneA 7 «{n, g) # 0 for some g} has compact
closure in A (this uses the fact that Ais Hausdorff) If we set 2§(n) = 2; (7t g), then
g — Af is a continuous map of G into CC(A), and g — ob = Aful, is a strictly conti-
nuous map of g into 9 (A4). It is clear that 7% also implements «, over N, and on

N;; we have

7(7g) = yy(OE@) and  A(ch(@)*) = T(v}(@ah®).

Since :fis Hausdorff, 4 is defined by a continuous field of elementary C*-algebras
over A, and we can define elements of A locally. In particular, for ge G we can
define aw,, w,ae A by the formulas

n(aw,) = n(avi(i})*), n(wee) = n(vi(di)*a) (meNy),

and it is easy to check that this in turn defines a multiplier w, € 9 (4). The map
g W, is strictly continuous locally, and since the elements of 4 vanish at infinity
on A it follows that g — w, is strictly continuous. Routine calculations show that
w is an a-cocycle, and that f, = Adw, o a, for ge G, and we are done.
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Let A be a C*-algebra with Hausdorff spectrum and G a locally compact abe-
lian group. We have now constructed a map {, from the collection LU(G, 4) Aof
locally unitary groups x:G — Aut 4 into the Cech cohomology group H(A, ¥),
and we have shown that {, is an injection modulo exterior equivalence. The main
result of our next section asserts that {, is also surjective when A is stable.

3. THE CONSTRUCTION OF CROSSED PRODUCTS WITH GIVEN SPECTRUM

We have seen that a locally unitary autgmorphism group 2:G — AutAd gives
rise to a principal é—bundlep: (A x,G)* = A. In this section we shall prove that
every principal G-bundle E over a locally compact and paracompact space 7 can
be realised this way for a variety of C*-algebras 4 with spectrum T. All our resuits
depend on the following theorem, which shows that locally unitary actions are
dual to locally trivial bundles in a natural way.

THEOREM 3.1. Let G be a locally compact abelian group, and suppose ihat
g: E > T is a locally trivial principal G-bundle over a locally compact paraconpact
space T. Then t/ze dual action of Gon A= C*(G, E) is locally unitary, and the bundie
pi(A xG)A Ny is isomorphic to q: E — T.

Givensuch a bundle g: E — T, our strategy will be to construct a map S—n.x U
of E into (C*(G, E)x G)* and prove that it is a homeomorphism. We begin by
defining the representations n; of C*(G, E) and lcoking at their properties. For
each £ € E, the representation 7. acts on L2(G) and is given by

(mz)x)(g) = S:(h) (g-O)x(h~g)dh (z e CAG, CAE)), x € LMG)).
G
This is the representation of C*(G, E) induced from the one-dimensicnal represen-

tation f —» f() of C(E) in the sense of Takesaki [19].

LeMMa 3.2, Let ze C¥G, E), x € LXG). Then the map & — a2)x is conti-
nuous.

Proof. 1t is enough to work with x £ C (G) and z of the form g — f(g)y for
[ CAG), ye CAE): we then have to show that

S;y<g-:z)<f=-»- X)(g) — 7g ) f = x)(g) 2 g > 0

G

whenever ¢, —» ¢in E. This follows by a routine compactness argument using the
fact that f= x has compact support. %



CROSSED PRODUCTS BY AUTOMORPHISM GROUPS 227

LemMA 3.3. For each € E, n; is an irreducible representation of C*(G, E).
Two such representations n; and m, are equivalent if and only if G- = G-y, and
every irreducible representation of C*(G, E) is equivalent to one of the form ne. The
map & — n, induces a homeomorphism of T = E[G onto C*(G, E)".

Proof. We observe first that m, = M;xV, where for ye C,(E), x e L*(G)
and /i, g€ G we have

(M (y)x)(h) = y(h-Ox(h), (Vox)(h) = x(g~h).

The kernel of M is the subalgebra Co,( £\G - &) of Co( E) consisting of those functions
which vanish on G-¢, and so it follows from [6, Lemma 1 (ii)] that kern, is the
ideal C*(G, EN\G-£). The same lemma shows that the map ¢, of C,(G, C.(E))
into C,(G, C.(G)) defined by

[:(2)(9))(h) = 2(g)(h-&) (g, heC)

extends to an isomorphism of C*(G, E) onto C*(G, G) with kernel C*(G, ENG-¢).
It is well-known that if M is the representation of C.(G) on L%(G) by multiplication
operators and Vis as above, then M x Vis an isomorphism of C*(G, G) onto K(L%(G))
(see, for example, Lemma 3 of [6]). Simple calculations show that M,xV =
=(M xV)o @, and we deduce that n, is the essentially unique irreducible representa-
tion of C*(G, E) with kernel C*(G, EN\G-¢). Since the G-orbits in E are closed,
[6, Lemma 1 (ii)] shows that every irreducible representation of C*(G, E) has a
kernel of this form, and so the map ¢ — =, gives a bijection of E/G onto C*(G, E).
If M is open in E/G, then, again using Lemma 1 of [6], we see that

CH(G, EY>"\Nh(M) = {[n]:g" (M) NG-¢ = O} =
= {[1:): Co(ENG &) D Coplq~YM))} =
= {[M xV]:kerM; > C(g~(M))} ==
= {[n.]:kern, o C¥(G, g~ X(M))},
which is closed in C*(G, E)*. We conclude that #(M), and hence the map /, is open.

Lemma 3.2 shows that ¢ — [n,] is continuous, and it follows from this that / is
continuous and so a homeomorphism. %

REeMARK. This construction and these results are essentially contained, modulo
some notational differences and separability hypotheses, in Lemma 16 and in the
proof of Theorem 14 of [6].
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Although 7. and =, . are equivalent representations, we can use them to

construct inequivalent covariant repreaentauons of the system (C*(G, E), G 2),
where x denotes the dual action of G. We define U: G — (U(L¥G)) by

(U, x)(g) = 1@)x(g) (xeIXG), gG, yeG);

a routine check shows that each (n;, U) is a covariant representation. To see that
n:Xx U and 7, x U are only equivalent if £ =5, note that # must have the form
g-¢ by Lemma 3.3, and hence the only unitary operators which can intertwine
ne X U and m, x U are scalar multiples of ¥ e U(L*(G)) defined by Wx(h) - - x(hg).
But then

(WU, WEx)(hy = (U, Wex)hg) = y(hg) (W*x) (hg) = 7(2)(U,x) (h),

so if W intertwines n;x U and m, . x U then y(g) =1 for all y¢ G. This implics
that g:==1 and & = 4.

We alm to prove that (<) = n;x U defines a homeomorphism of £ onto
(CH(G, Eyx, G) The following sxmple (and presumably very standard) obser-
vation about fibre bundles will be useful.

Levmva 3.4, Let g: E— X and p: F— Y be two locally trivial principa!
G-bundles and suppose that ¢ E — F is a continous G-equivariant surjection which
induces a homeomorphism :X — Y. Thea ¢ is a homeomorphism.

Proof. It follows easily from s o ¢ = p = ¢ that ¢ is one-to-one, and we therefore
only have to prove that ¢ ~*is continuous. This is a local problem,and since i is a homeo-
morphism we can assume E=Xx G and F = Y XG. Then o(x, g) == (Y (x),.(g))
Since ¢ is equivariant we see that /# (g,g-) == f,(g.)g. for g1, g, € G. Letting g, - ¢
shows that x — /i (e)is continuous and ¢(x, g) = (Y(x), h(e)g). Thus oY1, g): -
=¥, [/lwul(y)((:‘)]_ ¢), and this is continuous since inversion is continuous in the
group G. &3

Proof of Theorem 3.1. We begin by proving that o is locally unitary. Let t, = T,
and suppose that IV is a neighbourhood of #, such that there is a continuous section
{:N—> Eof g: E—> T. We choose a continuous function f:7 — [0,1] such that
J=0off Nand f= 1 on some neighbourhood M of #,. For ze€ C{G, C(F)) and
Y€ G we define

(m,2)(&)) = WM=())f(gln))  where i = h-{(g(m) c E
(zi,) () () = 7(%)=()(fiq(n))  where g =1+ == k-{(q(m):

note that # — /7 and (g, #) — k are continuous since the bundle E — X is trivial over
N. (We are thinking of 7, as the function from G into C(E) defined by

()01 = 8(&)7(nftan)  where 7 = h-L(g(n).)
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If (e E and y e L%(G) then

(me(m,2)y) () = y(I)f(q(E)) (ne(2)y)(g) where g-& = h-{(g(&)).

Since [y(h)| =1 and f(q(&)) €[0,1], it follows that

Ine(m,2)y|l = figE)Im 2yl < liml2)H [Ix1),
so that

lmzllese.ey = sup lp(m,z)| = sup |ins(m,2)|| < |iz]lcec, 5
pECHG, EyN SEE

Thus the map z — m z extends to a bounded linear operator on C*(G, E) of norm
1. Similarly, if y € L*(G) and & € E, then

(rg(zm,)y) (g) = f(a()) (ne(2)y,) (8)

where y, is given by y,(g) = y(k)y(g) where g-& = k-{(q(Z)). Since |iy,li = liyl, we
can deduce as above that z —» zm, extends to C*(G, £) in fact, it is not hard to see
that we have defined a multiplier m, of C*(G, E). We claim that y — m, is the map
of G into M(C*(G, E)) required to prove that « is locally unitary.

If ze C (G, C,(F)), then a standard compactness argument together with
the continuity of # = /-{(q(n)) — h shows that y —» m ,z and y - zm, are conti-
nuous maps of G into LY(G, Cx(E)); this implies that y — m, is strictly continuous.
A simple calculation shows that for £ € g=Y(M), xe L3 G) and g€ G we have

(T(m,)x)(g) = y()x(g) where g-& = h-L(4()),

and it follows easily that y — 7.(m,) is a representation of G. The adjoint m}¥ of
is defined by
(my2)(g)(n) = y(flaim)z(g)(m), n = h-L(g(n))
(zm3)(g)(m) = y(K)fq(m)z(g)(n), &~ '-n=k-L(q(m),

and so for £ € ¢7Y (M), y € L¥(G) we have

m,

(n(m zm?)x) (g) = S?(’h“)z<gl)(g~é)v(k)x(grlg)dgl,

where g-& = h-{(q(&)) and gi'g-& = k-L(g(&)). Since the action of G is free,
this implies k¥ = g7, and

(ns(m,zm})x)(g) = S z(g1) (g &)y(g)x(gr *g) dgy = (m:(2,2)x)(g),

so that m, implements «, in the representation r, for { € ¢~1(M). Since {re:q(&)e M}
is an open set in C*(G, E)* by Lemma 3.3, we deduce that « is locally unitary.

3 - 1733
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As in the earlier discussion, we define ¢:E — (A X, 6)‘ by (&) = mex U
The dual action of G = (é)A on (A4 x é\)” is given by g-(n,xU) = n,xgU, and
it is easy to verify that the unitary operator ¥ on L* G) defined by (Vx) (/) == x(gh)
mtertwmes n.xgU and n,,.x U, so ¢ 1s G-equivariant. Theorem 2.2 shows that
(A x G) is a principal G—bundle over A and Lemma 3.3 shows that ¢ induces a
homeomorphism  of T = E/G onto A so ¢ is surjective, and the result will follow
from Lemma 3.4 if we can show that ¢ is continuous. To do thlSAlt is enough to
prove that if ¢,—¢ then [(m, x U)f]x—[(n. % U)f]x for each fe C (G, 4), x & L*(().
For we C(G) and ze C (G, C,(F)) we denote by w ® z the function 3 — w(y)z
belonging to C,(G, A). A straightforward calculation shows that for e E and
x € L¥(G) we have

[(ryx Ul(w ® 2)]x = 7,(z)[wx],

where W denotes the usual Fourier transform of w. We have already shown in
Lemma 3.2 that n, (2)y — n(2)y for each y € L¥(G), and since elements of the form

w ® z span a dense subspace of Cc(é, A), it follows that ¢ is continuous. This
completes the proof of Theorem 3.1. Z

COROLLARY 3.5. Let G be an infinite locally compact abelian group, let q: E - T
be a locally trivial principal G-bundle over a locally compact paracompact space T,
and let A denote the C*-algebra Co (T, K(L*(G))). Then there is a lowlly unitary
automorphism group o : G — Aut A such that the principal G-bundle p: (A x, (:) - T
is isomorphic to q:E — T.

Proof. Corollary 15 and Theorem 14 of [6] show that there is an isomorphism
@ of C (T, K(L¥G))) onto C*(G, E) such that the induced homeomorphism &" of T’
onto C*(G, E)" is the homeomorphism G-¢ — [n.] of Lemma 3.3. (Note that the
unitary transformation U: L*(G) — L¥G-¢) defined by (Ur)(g-<&) =: 3(g) inter-
twines n; and the representation L. ; constructed in the proof of Theorem 14 in [6].)
This 1somorphlsm carries the dual action of G on C* (G, E), which is locally unitary

by the theorem, into a locally unltary automorph1sm group a: G — AutA. There
is a natural isomorphism & x G of T4 x, G onto C* (G, E) x G and it is routine to
verify that the following diagram commutes:

Ux, & @9 e, E)x 6)"

4 b

A=1——Y __ c%G E).

Since the homeomorphism ¢: E — (C*(G, E) x GA)‘ constructed in Thecrem 2.1
also induces the map G-¢ — [n,] on base spaces, we deduce that ¢~1c (P xG)*
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is a G-preserving homeomorphism of (A4 />\<¢CA7)" onto E which induces the identity
map on I — in other words, ¢ =10 (¢ x G)" is an isomorphism of principal G-bun-
dles over T. %

COROLLARY 3.6. Let G be a separable locally compact abelian group, let H be a
separable infinite-dimensional Hilbert space, and let q: E — T be a locally trivial
principal G-bundle over a locally compact and paracompact space T. Then there is a
locally unitary automorphism group o.: G - Aut4 of the C*-algebra A=Cy(T, K(H))
such that the restriction map p:(A %, a)A — T is G-isomorphic to q: E — T.

Proof. When G is infinite L2(G) is isomorphic to H, so the result follows
from the preceding corollary. So suppose |G| = n is finite. By Theorem 14 of [6]
there is a locally trivial field # of Hilbert spaces of dimension n over T (in other
words,  is a Hermitian vector bundle over T) such that C*(G, E) is isomorphic
to the C*-algebra I'o,(K(5#)) defined by # . It is easy to see that I',,(K(#)) @ K(H)
is isomorphic to I',(K(# ® (X x H))) [13, Lemma 1.11], and #®(X x H) is locally
trivial since 5# is. Hence by [4, Théoréme 1] ® (X X H) is isomorphic to the trivial
field X x H and C#(G, E) ® K(H) is isomorphic to 4 in such a way that the induced
homeomorphism of T = C*(G, E)* onto T = A is the identity. The result now
follows by the reasoning of the previous corollary applied to the tensor product
action f ® id on C*(G, E) ® K{H), where B is the dual action of G on C*(G, E)
and id the trivial action on K(H). Z)

We had to handle the case of a finite group separately because, although [6,
Theorem 14] shows that C*(G, E) = ' (K(s#)) for a locally trivial field # of rank
|G| over E/G, we can only invoke [4, Théoréme 1] to conclude that 5 is trivial if
the fibres are infinite dimensional. As the following example shows, C*(G, E) can
fail to be isomorphic to C(£/G, M,) for n = |G|. In fact, we prove that there is a
principal Z,-bundle ¢: E — T which cannot be realised as the spectrum of a crossed
product of C(E/G, M,). This shows that Corollary 3.5 is not true for finite groups,
and since Theorem 3.1 shows that E is G-isomorphic to (C*(G, E)xG)", it also
shows that C¥(G, E) is not iscmorphic to C(E/G, M,).

Suppose that «:Z, - AutC(T, M,(C)) is locally unitary. Then according
to the remarks following Theorem 2.2, the bundle p: (C(T,M,) x,Z,)" — T defines
a class {(«) in HY(T, Z,) =« HYT, &), which can be described as follows: if {N,} is.
an open cover of T such that «, is implemented over N; by u;: N; —» SU,, then
{(=) is represented by the cocycle {N,, 4;;}, where 4;;: N;; = Z, < S* satisfy 4, u; =
= u;. If we denote by L the line bundle with transition functions 4;;, then this last
statement says that A;;- 1 = uj*u;, so that the bundle nL == L @ ... @ L (n times)

i“js

is trivial, and has total Chern class ¢(nL) = 1. The theory of Chern classes [9]
shows that

c(nL) =c(L)" and c(L)=1 4 cy(L),
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and further that c,(L) is the image of {(%) in H¥T, Z)=~ HY(T, &). Hence the line
bundle L must satisfy

(L+ L)' =1+ nc(L)+ ... +c(Ly'=1 in H¥T, Z).

If we take for T the real projective space RP*, then H*(T, Z) = Z,, and if A is
non-zero in H%(T, Z) then /i generates HY(T, Z) = Z,[8,3.9.6,4.3.1], so (14 )2 # L.
Thus the complex line bundle L over T with ¢,(L) = / cannot arise from a locally
unitary automorphism group of C(7, M,); however, consideration of the exact
sequence in sheaf cohomology induced by the covering map z — z2: St — S shows
that L does come from a principal Z,-bundle. This Z,-bundle over RP? cannot
therefore be realised as the spectrum of a crossed product of C(RP?, M,). (We
thank Shaun Disney for showing us this example; the relevance of the higher Chern
classes was earlier noticed by Paulsen [l 1].)

Thus not every G-bundle £ over T arises as the spectrum of a crossed pro-
duct of C(T, M,) for n = |G,. Provided the base T is compact, however, it is always
possible to realise £ as the spectrum of C(T, M,,) xué for some value of m. The
idea for the proof comes from [15, Lemma 3].

PRrROPOSITION 3.7. Let G be a finite abelian group, and let q: E - T be a prin-
cipal G-bundle over a compact space T. Then there is a positive integer m and a locally
unitary automorphism group o: G — Aut C(T, M, (C)) such that (C(T,M,)x, (A;)"
is G-isomor phic to E.

Proof. As before, we write C%(G, E) = I'(K(s#)) where 3¢ is a Hermitian
vector bundle over T. Let f denote the dual action of G on C*(G, E), so that by
Theorem 3.1 the class {(f) in HY(T, %) is that of E. There are an open cover {N;}
of T, »-isomorphisms ¢;:5# N;— N;x C" and maps u}: N; - U, such that y — ui,
is a homomorphism for each i and

@B (o7 (M) = u () f(uy(1)*  for te N, f: N;—~ M,.

On the intersections we have bundle isomorphisms ¢@;p;j! given by continuous
maps v;;: N;; = U,. Then the class of {(B) in H'(T, %) is defined by {N,, g;;}, where
gij: N’l - G and

vij([)u{"\t)vij(t)::: = g;;(ui(t) for te Ny;.

Let n be a vector bundle satisfying 3# ® n =~ T'x C” for some m(such a bundle
exists by [1, Proposition IX. 4.6]), and suppose # has transition functions w;;: N;; —
so that # @ i has transition functions v;; ® w;;. We define 7,: N;; > U,

- "

"1/"

by tf = ui ® 1; each y — ¢! is a homomorphism and on the intersections we have

[0:(1) ® wi(NI(N[L(O)* ® wi;(1)*] = gi;(N1i(1).
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Thus the 1! define a locally unitary automorphism group é of I'(K(# ® 1)) w}}ose
class {(0) in HYT, %) is just {(B), and hence a locally unitary group «:G —
— Aut C(T, M,) whose class is {(f). This proves the proposition. %

Let G be a separable locally compact abelian group. Corollary 3.6 asserts
that every principal G-bundle over a locally compact paracompact space 7' can be
realised as the spectrum of a crossed product of C (T, K(H)). We now prove that
Co(T, K(H)) can be replaced by any other stable C*-algebra with spectrum T.

THEOREM 3.8. Let A be a stable C¥*-algebra with paracompact spectrum T.
Let G be a separable locally compact abelian group and let q: E — T be a locglly
trivial principal G-bundle. Then there is a locally unitary automorphism group o: G —
— Aut A4 such that the principal G-bundle p:(A %, é)A — Tis isomorphic to E.

In the remarks following the proof of Theorem 2.2 we constructed a map {4
which associated to each « € LU(é, A) the cohomology class {,(«) in HY(T, %) of
the bundle p: (4 x, é)" — T. We shall prove that {, is surjective; since the isomor-
phism class of £ is determined by its class in H(T, %), this will establish the theorem.
Our proof will depend on the special case in Corollary 3.6 and on general proper-
ties of the map (,. In particular, we shall need to know what {, looks like when
A is the central tensor product of two C*-algebras with spectrum 7.

Let A, B, Z be C*-algebras with Z abelian. Suppose that 4 and B are Banach-
-Z-modules where |lazl| < {la|l lizIl, {|bz]] < ||b]| ||z]] and the action of Z commutes
with everything. Let I be the closed ideal in 4 ® , B generated by {af @b —a®
®fb:ac A, beB,fe Z}, where y is some C*#-cross-norm on 4 © B. We denote
the C*-algebra 4 ® , B/l by A ®, , B. When 4 and B have the same Hausdorff
spectrum T, and Z equals either C,(T) or C(T), it is easy to see that the ideal /
of A ® B corresponds to the closed subset of Prim(4 ® B)= T'xT given by
the diagonal 4 = {(¢,¢):t€ T}, so that 4 ey B=A4 Qc,,m B.

We shall need the following lemma, for which we do not have a suitable
reference.

Lemma 3.9. Let A, Z, D be C*-algebras with Z commutative and either A
or D nuclear. Let A be a Z-module and suppose that the span of A-Z is dense in A.
Then the map @ of the algebraic tensor product A ©@ Z © D into A O D defined by
P(a@f®@d)=af ®d induccs an isomorphism of A ® ,(Z @ D) onto A ® D.

Proof. Since |||x||| = max{|x||, [lp(x)[]} is a C*-cross-norm on 4 © Z O D,
we deduce that |||x|]] = [|x|| and ¢ is norm-decreasing; hence ¢ extends to a homo-
morphism of A ® (Z ® D) into A ® D. Since A-Z spans A, the extension is onto
A ® D. Let J be the closed ideal in A ® (Z ® D) generated by elements of the form
g ®(Eg®d)—a®(fg ®d); clearly J < kerp. Now, any xe 4 ® (Z ® D) can
be written as a limit

x = lim Z"la:-' ® (fI ® dp),

N0 j=
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where for each n the supports of the (f7)" are contained in a compact set X, = Z.
Let g, in Z be such that (g,)" = 1 on K, and jig,li = 1. If x € ker ¢, we have

’n” . . ﬂ1"
0= lim ¢ ( Varefi® a;’) —lim ' af? ® d,

n- oo il n-soo [Ty
and therefore we also have

m
n

lim Y, af? ® g, ® di = 0.

n—00 =1
Thus
x=1im(} e/ @f7 @ df — N.aif] ® g, ®d) =
=lim (}.a} ® f/g, ® df — Y}, d/fi ® g, ® dY)
belongs to J. Thus ker¢ = J, and we have proved that ¢ is an iomorphism of
A®(Z ® D)/J onto A ® D. ¥

Now suppose that «: G — Aut A and f: G —» Aut B are locally unitary auto-
morphism groups, where the algebras A, B have Hausdorff spectrum T as above.
It is easy to see that n-inner automorphisms are automatically C(T')-medule auto-
morphisms, so that « and f consist of C(7')-module automorphisms. 1t follows casily
that for each g € G the tensor product automorphism 2, ® i, of A & 8 (which
exists by 20, V.4.22)) preserves the ideal 7, and so defines an automorphism %, & ¢y i,
of A ®¢ry B- We can therefore define an automorphism group « ®cr; f# by

(@ ¢y Bg = %, ®cry By (8€ G).

ProrosiTioN 3.10. Let A, B, T, o and B be as above with T paracompact. Then
o ®ccry B is a locally unitary automorphism group of A @ cry B, and

Laogpy s (2 ®cin B) = Li0%a(B)  in HAT, D).

Proof. We first observe that if J is an ideal in a C*-algebra C, then any multi-
plier m of C preserves J and so defines a multiplier 1, of the quotient C;J. Suppose
that « and [ are implemented over N; by u': G - M (4) and ¢': G — M(B); ve
claim that « ® ¢(ry B is then implemented over N; by wi =[j(u} ® v})];, where j denotes
the canonical embedding of SW(4)@M(B) in M(4®B). Standard approximation
arguments show that g — wi, is strictly continuous, and if t € N, then it is easy to
check that

7, ® p, (i ® vh))) = 7, () ® f,(vh) € B(H(n,) @ E(p,).

From this it follows easily that g — 7, ® p‘,(wi,) is a representation of G, and straight-
forward calculations show that w} implements «, ®c(ry S, in the representation
7, ® p,. This establishes the claim, and we have proved in particular that = ® c.ry 8
is locally unitary. The cohomology classes ¢ ,(«), {5(B) are represented by the cocycles
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{N;, v;} and {N,, x;;} where

(1) = v (@7 (), Pe(vg) = 14 (1)), (v))

for te N;; and ge G. Since

T ® p(wh) = T,(u) ® B(v]) = 145(0) (i (D@, (1) ® pi(t)]
we deduce that the product cocycle represents {(% ®¢(ryf), and the proposition is

v
proved. %

4

LemMA 3.11. Let A be as above and suppose y:A — D is an isomorphism.
Define Auty: LU(G, A) » LU(G, D) by Auty(a), = oa, oy~ Then the fol-
lowing diagram commutes:

LU(G, A) —*> HY(A4, 9)

Aut v/l J(w*

q ~ ~
LU(G, D} —— HY(D,%).

Proof . Ifa e LU(G A) is implemented by u':G — 3M(A) over N;, then Auty(e)
1s implemented over w‘l(N) by M) o u': G — M(D). Note that if ne A then

‘1(7r) o M(Y) = 7. Thus if

wul) = yi;(){(gm(up) for te Ny

ijs

then for Tty = Tt © Yy~te Yy ~Y(N;) we have

o U L (N (W)ud) = T(u) = v,,(1)(g) 7, () =
= 75 W (NN, o (N (P)u,

and {,(Auty(a)) is represented by {12/ N, iy 0 |71} But this is exactly what the
induced map in Cech cohomology does to cocycles.

Proof of Theorem 3.8. Because A is stable, Lemma 3.9 implies that there is
an isomorphism ¥ of 4 ® o1y Coo(T, K(H)) onto A. It follows from Lemma 3.11
that to prove {, surjective it is enough to prove CA@C(T) CooT> K(Hy) SULjective. But

if we denote by id: G — Aut A4 the trivial automorphism group, then Lemma 3.10
shows that for any a € LU(G, Co(T,K(H))) we have

a0 (1) CootT, k(e (id B (@) = {4 (1d) Lepyr, xaan (@) = Leger, xam (%)

Since Corollary 3.6 implies that every class in HY(T, .(2) has this latter form, we
conclude that {, is surjective. This proves the theorem. %2,



236 JOHN PHILLIPS and JIAIN RAEBURN

Let 4 be a C*-algebra with paracompact spectrum. An automorphism group
o:Z — Aut A4 is determined by its generator x,, and « is locally unitary precisely
when %, is locally implemented by multipliers; in this case we say «, is locally inner
and write 2, € LocInn A. The map « — { () of Section 2 now gives a homomor-
phism y from LocInn 4 into H¥XT, Z) = HY(T, &), and n has as kernel the group
Inn A of automorphisms implemented by multipliers. Theorem 3.8 therefore com-
pletes the following generalisation of Theorem 2.1 of [13]:

COROLLARY 3.12. Let A be a C*-algebra with paracompact spectrim T. Then
there is an exact sequence

0 - Innd — LocInn4 -5 H2(T, Z).

If A is stable, then n is surjective.

To see that this includes Theorem 2.1 of [13], we only have to observe that
if A has continuous trace then the locally inner automorphisms are the n-inner
automorphisms by Theorem 3.4 of [17], and hence the C(T')-module automorphisms
by Corollary 1.9 of [13].

4. LOCALLY UNITARY ACTIONS ON CONTINUOUS TRACE C*-ALGEBRAS

We consider here the structure of the crossed product A x,G when 4 has
continuous trace and x is locally unitary. We prove that A x, G has continuous
trace, and we identify the Dixmier-Douady class 6(4 %, G) as the pull-back of
J(A) via the restriction map p: (4 x,G)" = A (for the definition of §(A4), see [3,
Section 10)). This enables us to decide when a given stable continuous trace C*-al-
gebra whose spectrum is a principal bundle can be decomposed as a crossed product.

PROPOSITION 4.]1. Let A be a continuous trace C*-algebra, G a locally compact
abelian group, and x:G — AutA a locally unitary automorphism group. Let
P(Ax,G)" — A be the restriction map. Then A X, G has continuous trace and the induced
homomorphism p* on third Cech cohomology satisfies p“(d(A)) = 6(4 x,G).

Proof. We realize A as the algebra of sections of a field of elementary C*-al-
gebras over T = A and use the notation of [3, Section 10]. Let {T,} be an open cover
of T such that there are maps u': G — 8l(4) implementing x over T; and elements
{p;}, {vi;} of A satisfying

a) p;(1) is a rank one projection for each te T;;

b) v;;(t) is a partial isometry for each z € T;; and

v () ()" = pi(1), vi;(1)*v;;(1) = p(1).
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Then on the intersection T;;, the partial isometries v;;v;;, and v, have the same ini-
tial and range projections, so there are continuous maps p;;: T;; — S* such that
ViV = MyVi- The cocycle {T, y;;} represents an element y(A) of H%(T, &) whose
image 6(A4) in H3(T, Z) is the Dixmier-Douady class of 4. It is independent of any
of the choices we have made. (See [14, Section 2] for this description of 6(A4).)

By Theorem 2.2 the map 4;: (¢, y) — ¢ x yu'(t) is a homeomorphism of T, x G
onto p~*(T;). Let {Y} be an open cover of G by relatively compact sets, and fix
functions f, € L'(G) such that f's =20 andf's =1 on Y, (this is possible by [I86,
Theorem 2.6.1]). For each pair of indices (7, s) we define a function f}; € LNG, A)
by

f5i(8) = pif(g)(ug)* for geG.~
Simple calculations show that if (z, y)e T; x Y, then
hi(t, 1) (f) = (X W (D) (£ = p(OAD) = pi0),

and in particular A,(z, y)(f5;) is a rank one projection. Thus 4 x, G satisfies Fell’s
condition, and since (4 x, G)", being a principal bundle over a Hausdorff space,
is Hausdorff, this is enough to show that A4 x, G has continuous trace [3, 4.5.4].
We now let N; = (T, xY;), and define v(,;, € L*(G, A) by

Vesiyeen(8) = vif(8)(ud)* (g€ G).
As above, if (1, y) e T;x Y,
hi(t, V) (siyey = U.'j(t)fs()’) = v;;(1),

so that on N; n N,; the elements vg;,(,;, are partial isometries. (Note that if we
chose to write A;(¢, y) in the form A;(t, x) for y € Y,, then the irreducibility of ¢
implies that yu/ = yu', so the same answer would result.) It is now clear that on
N, n N,; we have

1t ) (Vsiyeriy Vi) = Pi(t) = h(t, 9)f
hi(t, y)(v(:‘.,;i)(r}')v(si)(rj)) = v;;()*v;;(t) = p;(1).
Since /i,(¢, y) is also in N,; it can be written as h;i(t, x), and then it follows that
hi(ta }’)(fr,) = hj(t’ X)(frj) = pj(t)'

Thus if we deﬁne /l(si)(rj)(qk): Nsi n N,._, n qu - Sl by

Visinr) Viriyaky = A(si)(rj)ak) Visid(gr)
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then the resulting cocycle represents the class 6(4 x, G) in H*((4 x, G)", Z). However,
if me (4 x,G)” belongs to the triple intersection, then putting = in the forms 4;(¢, )
and /4;(¢, ) and applying it to the defining equation for A shows that

Ui (D01 = Zsiyeiyiary (T Valt)-
Thus 2 (iyrjyax) = Hiji o P- This proves that p*(6(4)) = 6(4 x, G), and the result
follows at once. Z|

Lemma 4.2. Let A and B be C*-algebras, G a locally compact group, and
:G — Aut A a strongly continuous automorphism group. Then the map ¢ of
C.(G, A) © B into C (G, A © B) defined by

o(X /i ® b)g) = Lfie) ® b;

extends to an isomorphism of (Ax,G) ®,,..B onto (A @ B) Xu5ia G-

Proof. Straightforward: it is a special case of [18, Proposition 2.4]. Z|

max max

LemMma 4.3. Let A be a stable C#-algebra with spectrum T. Then there
is an isomorphism ¢: A — A ® K(H) such that the induced Hhomeomorphisin
0:T=:(AQ K(H)" —» T is the identity.

Proof. Let p: A» AQ® K(H) be any isomorphism and let ¢ : K(H)— K(H)RK(H)
be any isomorphism. We then define ¢: 4 - 4 ® K(H) to be the composition:

P id@w »oid .
A2 AQKH)—> ARQ(KH)QK(H) = (AR K(H))® K(H)—— A ® K(H).

It is not hard to see that ¢: T = (4 ® K(H))" — T is the identity. N

THEOREM 4.4. Let A be a separable stable continuous trace C""-Aalgebra and G a
separable locally compact abelian group. Suppose that G acts on A in such a way
that g: A — A'G is a locally trivial principal G-bundle. Then the following are equi-
valent :

a) Thereis a stable continuous trace C* -algebra Band a Iocall) umz‘aiv auto-
morphism group 2:G — Aut B such that A =~ B X, G and p(Bx G) — B is G-iso-
morphic to q: Ao A;G.

b) The Dixmier-Douady class 3(A) belongs to the range of the induced
homomorphism

g% HYAIG, Z) » H*(4,Z).

Proof. (a) = (b) follows from Proposition 4.1. Now suppose that 3(4) belongs
to the range of ¢* The Dixmier-Douady theorem [3, 10.8.4] asserts that J gives
a bijection between H3(T, Z) and (isomorphism classes of) locally trivial fields of
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elementary C*-algebras over 7. Since the section algebras of these are precisely
the separable stable continuous trace C*-algebras with spectrum T [13, Proposi-
tion 1.12], we deduce that o classifies these. In particular, there is such an algebra B
with spectrum A/G and q *(6(B)) = d(A). According to Theorem 3.8, there is a
locally unitary action «: G - AutB and a G-equivariant homeomorphism ¢ such
that

Bx, G —2 s A4

l’l lq
identity

=A4/6 2, 416

commutes. Then by Proposition 4.1 we have

3(Bx, G) = p*(8(B)) = (4 > )*(3(B)) = ¢*(5(4)).

If we can prove that B x, G is stable, then, by regarding B x, G as the section algebra
of a field over 4 and applying the Dixmier-Douady theorem, we can deduce that
Bx,G = A. .

So it remains for us to show that Bx,G is stable Lemma 3.3 shows that there
is an isomorphism ¢ : B ® K(H) — B such that @ is the identity, and Lemma 4.2
shows that

(Bx, 6) ® K(H) = (B ® K(H)) Xegia G.
We denote by § the automorphism group Aute(a ® id) of B; since ¢, and hence
also (p)¥, is the identity, Lemma 3.11 implies that {g(B) = (gexen(a ® id).
Now it is quite easy to see that the isomorphism of Lemma 3.9 carries the auto-
morphism group o ® id of B ® K(H) into the group o ®c(ryid acting on

B ®¢(ry Co(T, K(H)), and induces the identity map on spectra. Thus another
application of Lemma 3.11 and one of Theorem 3.10 give

s(B) = (poxun(® ® 1d) = {p o copm k) (% Oc(ryid) = {p(%).

By Proposition 2.5 1he groups o and f are exterior equivalent, and so Bx, G is
isomorphic to B x, G (see the first part of the proof of Proposition 2.5). Thus we have

Bx,G = Bx,G = (B® K(H)) Xugia G = (Bx,G) @ K(H),
and the theorem follows. %,

REMARK. We observe that if the map ¢g* is not injective then there may be
several possible choices for the C*-algebra B; the proof shows that for each of
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these there is a locally unitary automorphism group 2:G — AutB such that
A= Bx, G. However, once we have fixed an algebra B with ¢*(0(B)) = d(A4) the
group « is unique up to exterior equivalence by Proposition 2.5.

ExampLE. Let g: §° —» S? be the Hopf fibration, so that the fibres of ¢ are the
orbits of the action of S* on S? defined by

A-(z,w) == (4z, iw) foriz]=1and z2+ w?=1.

Recall that H3(S2, Z) = 0 and H3(S?, Z) = Z, so the range of the map ¢* is 0. The
only separable stable continuous trace C*-algebra 4 with spectrum S® and vanishing
Dixmier-Douady class is C(S3%, K(H)), and so Theorem 4.4 gives us a decompo-
sition

C(S% K(H)) = C(S% K(H))x,Z.

The automorphism which generates the group = is unique up to perturbation by
inner automorphisms; it is certainly not inner, since then the crossed product wouid
have spectrum $2 x S*. No other stable continuous trace C*-algebra with spectrum
83 can be so decomposed relative to the Hopf fibration.
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