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ABSOLUTE CONTINUITY AND DISJOINTNESS OF STATES
IN C*DYNAMICAL SYSTEMS

FUMIO HIAL

INTRODUCTION

The notions of absolute continuity and disjointness of measures are funda-
mental in the measure theory. These notions and the Radon-Nikodym theorem are
extended in several ways to the noncommutative case on von Neumann algebras or
C*-algebras. In this paper, the absolute continuity and disjointness of states of
C*-algebras are discussed. In Section 1, we consider some types of absolute con-
tinuity of states. For states ¢ and y of a C*-algebra A4, we say that i is absolutely
continuous (resp. quasi-absolutely continuous) with respect to ¢ if the support
(tesp. the central support) of ¥ is contained in that of ¢, where the supports (the
central supports) are taken for the normal extensions of ¢ and i to the von Neumann
algebra induced by a certain representation of 4. Let a C*-dynamical system
(A, G, ©) be given. Forinvariant states ¢ and ¥, it is shown that  is absolutely conti-
nuous with respect to ¢ if and only if i is in the norm closure of the invariant states
dominated by ¢. If 4 is G-abelian, then the absolute continuity of invariant states
is equivalent to that of their maximal representing measures. We show that A is
G-central if and only if the absolute continuity and quasi-absolute continuity are
identical for each invariant states. We also present the relation between the absolute
continuity and the relative entropy of states.

The Kubo-Martin-Schwinger (KMS) condition was introduced to describe
thermodynamical equilibrium states of a quantum system. Combined with the-
Tomita-Takesaki theory [22], the KMS condition has played a vital role in the ana
lysis of operator algebras. The lowest energy states of a quantum system are formu-
lated by ground states which are regarded as limits of KMS states when the inverse
temperature tends to + oco. After the concept of passivity given by Pusz and Woro-
nowicz [19] from the thermodynamical viewpoint, de Canniére [11} introduced the
similar concept of spectral passivity by using the Arveson spectral subspace given
a one-parameter C*-dynamical system. The spectrally passive states contain the



320 FUMIO HIAI

KMS states and ground states. In Section 2, we show that absolutely continuous
states with respect to a KMS (resp. ground, spectrally passive) state are also KMS
(resp. ground, spectrally passive) under some assumptions.

In Section 3, we discuss the notions of disjointness of states and obtain the
results analogous to those in Section 1. In particular, the G-centrality of a C*-dy-
namical system is characterized by conditions on the disjointness of invariant states.
We finally mention the Lebesgue type decompositions of states and some proper-
ties of absolute continuity and disjointness of limit states in norm.

The author would like to express his gratitude to Professor H. Umegaki for
advice and constant encouragement.

1. ABSOLUTE CONTINUITY OF STATES

Let A be a unital C*-algebra and S(4) the set of all states of 4. We denote by
(K4, n,,E,) the cyclic representation of A associated with ¢ € S(4). Each ¢ € S(4)
is uniquely extended to a normal state of the enveloping von Neumann algebra 4%*,
Throughout this paper, the normal extension of ¢ to A** is denoted by ¢ and the
support and the central support of @ are denoted by s(¢) and c(¢), respectively. For
@, Y € S(A), we say that 1 is absolutely continuous with respect to ¢ (and write
¥ < ) if s(¥) < s(@), and y is quasi-absolutely continuous with respect to ¢ (and
write ¥ <) if c(f) < c(¢). Instead of the universal representation, take any repre-
sentation m of 4 such that ¢ and y have the normal extensions ¢ and § to m(4)",
that is, ¢ and { are normal states of n(4)” with ¢ = @on and ¢ = yon. For
example, let 1 = n,@ n, or 1 = n, with p = (¢ + ¥)/2. Let @ be the normal exten-
sion of n to A** (see [23, p. 121]) and s(7) the support of 7. As to the support
s(¢) and the central support c(®) of §, we have s(@) = 7(s(p)) with s(p) < s(7),
so that c(@) = 7(c(p)) with c(@) < s(%). Hence Y < ¢ (resp. ¥ < ¢) if and only
if s(f) < s() (resp. c(f) < c(P)). If @ and ¥ are normal states of a vor Neumann
algebra, then ¥ < ¢ means that ¢(x*x) = 0 implies y(x*x) = 0. There is another
notion of absolute continuity given in [14]. A state y is said to be strongly absolu-
tely continuous with respect to ¢ (we write ¥ <€ o) if limy(aka,)=0 for any se-

quence {a,} in A4 satisfying
lim (p(a;:{an) = lim ‘/’((an - am)*(an - am)) = 0.

We here arrange some rather known characterizations of the above notions
of absolute continuity. For ¢, ¥ € S(4), consider the following conditions:

() ¥ <o;

(i) There exists a positive self-adjoint operator A’ on 3, affiliated with
n,{A)" such that

Y(a) = (n(a)h'é,, WE,), acA;
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(i) ¥ < ¢;
(iv) There exists a positive self-adjoint operator /1 on i, affiliated with n,(4)"”
such that

V(a) = (mol@)hé,, hép», aeAd,
and s(h) < s(@) were s(h) is the support of £ and ¢ is the normal extension of
@ to m(4)';
) ¥ <o;
(vi) m, is quasi-equivalent to a subrepresentation of =,,;
(vii) ¢ has a normal extension to 7,(4)".
Then the following implications hold:

(i) < (ii) = (iii) < (iv) = (v) <> (vi) <> (vii).

See [17, Proposition 4.3] for (v) < (vi), and (v) <« (vii) is easily verified. Obviously
(iii) = (v). Since < ¢ if and only if  has the normal extension i to m,(A)”
and s()) < s(@), (iii) <> (iv) follows from the Radon-Nikodym theorem [22, Theo-
rem 15.1] on the von Neumann algebra s(@)m,(A4)'s(9). (i) < (ii) is shown in[14,
Corollary 2] for states of a Banach %-algebra. (ii) = (iii) is immediate. The state-
ments (ii) and (iv) are the Radon-Nikodym theorems for states of a C*-algebra.

When a C*-dynamical system (A, G, 1) is given where G is a group and 7
is an action of G as x-automorphisms of 4, we denote by S;(4) the set of all
T-invariant states of 4. If ¢ € S;(4), there is a unique unitary representation u, of
G on A, such that u,(g)¢, = £, and

n,p(‘cg(a)) = u{p(g)n(p(a)u(p(g)*’ ac4d, ge G.

For ¢ € S;(4), we denote by F(¢) (resp. F(@)) the face of S(A4) (resp. S¢(A4)) gene-
rated by ¢ which is the set of all y € S{A4) (resp. ¥ € Sg(A4)) dominated by ¢, i.e.
Y < Lo for some 1 > 0.

THeorREM 1.1. Let (A, G, 1) be a C*-dynamical system and ¢, ¥ € Sg(A).
Then the following conditions are equivalent :

i)y <o,

(i1) Y € F(¢) , the norm closure of F(¢);

(i) Y e FG((/))“, the norm closure of Fg(@).

Proof. (iii) => (ii) is trivial.

(ii) = (i). If there is a sequence {,} in F(¢p) satisfying [y, — ¢|| — 0, then
@(x*x) = 0 implies ¥ (x*x) = lim J, (x*x) = 0. Hence we have §y < ¢.

(i) = (iii). Assume ¥ < @, then ¢ and  have the normal extensions ¢ and
J to m,(4)" such that s(if) < s(@). Let e = s(@) which is the projection onto
[m,(A)'E,] and is in u,(G)". Define M = er,(A)"e on o = eH,, o= ¢ | M, y =
=y M, f(g)=wu,(g)e and ?g(x)zﬁ(g)xﬁ(g)* forxe M, g eG. Since &, is a fi-inva-
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riant cyclic and separating vector for M, by [1, Theorems 6 and 11] there exists a
u invariant vector y in the natural positive cone associated with (M, ¢,) such that
a//(x) {xn,n) for all x € M. Let p be the projection onto the fi-invariant vectors in #.
Choosing a sequence {h,} in M’ such that ||f;¢, — nll — 0 and hence {|ph;¢, —

— )| = 0, we define Z-invariant normal states @,, of M by

Yo(x) = lIphiloll =2 Cxphil, , PRiC,>, x€M.

We then have sz,, — ;/\/” — 0. By Kovacs-Sziics theorem [18], there exists acondi-
tional expectation ¢ of M onto M n #(G)' satisfying &(x)p = pxp = pe(x) for all
xe M. For every xe M,, we have
h*pxphy, = e(x) Ph;*phie(x)'® < j{h*phile(x),
so that
Ual(x) < 4, C8(x)Ep5 Cod> = 4uP(X),

where 4, = [ph;¢, | =2lh¥*phyil. Now define states ¥, of A4 by

Vn(a) = n(eny(ale), aeA.
Then
¥a(a) < Apleny(a)e) = Lola), acA,,
and
Ynl(1(@) = Dnler,(g)n (a)uy(g)7e) =

= YT (e, (a)e)) = Yn(a), acA.

Moreover we have I, — ¢l < ll!/;,, — l/’;li — 0 since yY(a) = &(enw(a)e). Thus
(iii) holds. Q.E.D.

THEOREM 1.2. For each ¢ € S(A), the following conditions are equivalent:
(i) ¥ <€ ¢ and Y < @ are identical for every € S(A) ;
(1) &, is separating for m,(A)".

Proof. Let @ be the normal extension of ¢ to n,(A4)". The condition (i) means
that s(ff) < s(§) holds for every normal state ¥ of m,(4)"". This is the case when
s(@) =: 1, that is, &, is separating for m,(4)". Q.E.D.

In the abelian case 4 = C(X) with a compact Hausdorff space X, all the con-
ditions ¥ <€ ¢, ¥ <€ ¢ and Y < ¢ are identical and mean the absolute continuity
of measures on X representing ¢ and ¢.
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Let (4, G, 1) be a C*-dynamical system. 1t is said that 4 is G-abelian if n,(4)' n
Nu,(G) is abelian for every ¢ € S;(4). 1t is known (cf. [10, Theorem 1]) that 4
is G-abelian if and only if S;(A) is a Choquet simplex. In this case, each ¢ € S¢(4)
has a unique maximal representing measure y, on Sg(A) which is the 7,(4)' n
N u,(G)'-orthogonal measure of ¢ (cf. [20, Theorem 3.6] or [8, Proposition 4.3.3}),
and the mapping ¢ —> y, is affine (cf. [8, Corollary 4.1.17]) and isometric, i.e. [l¢p —
— Y|l = {lu, — uyll (cf. [16, IV.4]). A state ¢ € Sg(A) is called to be G-subcentral
if n1,(A) Nu,(G) < m,(4)". 1t is said that 4 is G-central (or (4, G, 1) is quasi-large)
if every ¢ € Sg(A) is G-subcentral. This condition is weaker than some other con-
ditions of asymptotic abelianness (see [10, 13]).

THEOREM 1.3, Let (A4, G, 1) be a C*-dynamical system such that A is G-abe-
lian. Then for each ¢, € Sg(A), the following conditions are equivalent :

Ny <o;

(i) ¥y < @

(i) Ky < Hp-

Proof. (i) = (ii) is valid generally.

(ii) = (iii). If ¥ < ¢, by Theorem 1.1 there is a sequence {{,} in F;(¢) satis-
fying |y, — ¥}l = 0. From the facts mentioned above, each tty,, 1s dominated by
u, and |!u¢,n — uyll = W, — |l = 0. Hence we have y, < p,.

(iif) = (i). Assume pu, < p, and let g = dy,/dp, . Because u, is the m,(4)' n
N u,(G)'-orthogonal measure, there is a *-isomorphism 6 of L®(y,) onto =,(4)'n
Nu,(G)" such that

Oy, > = Sf(w)w(a) duf@), acd, feL®,).
Letting g, = min(g'?, k) for k > 1, we have

Y(a*a) = Sg (w)w(a*a)dp (@) =

=sup Sgk(w)zw(a”za) duy(w) = sup [0(8)me(@)El*,  aeA.

Hence a positive quadratic form g on 5#, with the domain D(g) = n,(A4)¢,, defined by

q(n,(a)l,) = Y(a*a), acA,

is lower semi-continuous on D(g). Therefore g is closable and we have g(n,(a,)¢,) -0
for any sequence {a,} in 4 with ||7,(a,)¢, il = 0 and g(n(a, — a,)&,) — O (see [21,
p. 467]). This shows ¥ < ¢. Q.E.D.
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It seems that the conditions ¥ < ¢ and ¥ < ¢ are different in general.
It is interesting to provide an explicit example showing that ¥ < ¢ does not imply

v <o

THEOREM 1.4. Let (A, G, 1) be a C*-dynamical system. Then the following con-
ditions are equivalent :

(i) ¥ < pandy < ¢ areidentical for every o,y € Sg(A);

(i) A is G-central.

Proof. Let 7: G — Aut(A4%%) be the extension of 1 and e the finite part of

(resp. Z€) the set of 7-invariant elements in 4%% (resp. Z). According to [10, The-
orem 2],4 is G-central if and only if &, = (Z%), holds. We show that &, = (Z9), is
equivalent to the following condition:

(iii) s(e) = c(p)e for every ¢ € S;(4).
If £, =(Z%), holds, then the condition (iii) is easily verified since c(¢) € Z% for
@ € Sg(4). Conversely if (iii) is satisfied, then for any projection p in .#, we have

= V{s(¢): ¢ € Sg(4) with s(¢) < p} =
= (V{c(9): ¢ € S¢(4) with s(¢) < p}e,

and hence p € (Z%),. Thus ., = (Z%), is obtained.

1t now suffices to show that the conditions (i) and (iii) are equivalent. (iii) = (i)
is obvious. Suppose that s(¢) # c(¢)e for some ¢ € S;(A4) and let p = c(@)e — s(¢).
Then we can choose a p e S;(A4) satisfying p(p) > 0. Defining a € S;(4) by
Y{a) = p(pap)!p(p) for a € A, we have s(¥) < p < c(@), so that c(¥f) € c(¢) but
s(¥) Ls(¢), contradicting (i). QED

ExampLE 1.5. Let A be the C%-algebra of nxn complex matrices. Since
A A%% is a factor, it is clear that ¥ < ¢ holds for every ¢, ¥ € S(4). On the other
hand, ¥ < ¢ means that ¥ is dominated by ¢. A C*-dynamical system (4, R, )

is given by o,(a) = ei"fae="*" where /1 is a self-adjoint element in A. Assume that /
n

has the spectral decomposition /s = Y Zipi with 2y < 7, < ... < Z,. Then each
i=1

¢ € Sg(A) is defined by a density matrix commuting with ;. Hence Sr(4) is a Choquet
simplex and A is R-abelian. However 4 is not R-central for n > 2 as we have ¢,
¢ € Sp(A) such that ¢y < ¢ does not hold.

We conclude this section with some notes on the relation between the absolute
continuity and the relative entropy of states. Since Umegaki [25], the relative entropy
in noncommutative systems has been studied by several authors. Araki [3, 4] extend-
ed the notion of relative entropy to the case of normal positive linear functionals
of a von Neumann algebra. Furthermore Uhlmann [24] defined the relative entropy
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of positive linear functionals of an arbitrary -x-algebra. For each normal positive
linear functionals of a von Neumann algebra, the Uhlmann’s relative entropy is
equal to the Araki’s relative entropy (see [15]).

Let @, y € S(A) be given, The relative entropy of v with respect to ¢ is denoted
by S(¥ | ¢). Let y be a positive linear map of A4 into the abelian C*-algebra C(S(4))
of continuous functions on S(A4) defined by (ya)(w) == w(a) for a € 4 and w € S(A4).
For any probability measures ¢t and v on S(4) with the barycenters ¢ and ¥, applying
the monotonicity of relative entropy (cf. [24, Proposition 18]) we have

SWle)=S(veyluoy) <svlw,

where S(v | u) is given by the classical relative entropy:

Slog—jldv if vy,
S(viw = " :
+o0 otherwise.

Suppose that ¥ < 2 for some 2 > 0. Taking probability measures u, v on S(A)
which have the barycenters ¢, y and satisfies v < Au, we have S(y | @) < S(v I w) <
<log. Hence it is seen that if y is dominated by ¢, then S(y¥ \(/)) < -} o0. Since
Sy l ®) =S I @) (cf. [15, Lemma 3.1]), the condition S(y | ¢) < + oo is suffi-
cient for y < ¢. This fact is a stronger version of [2, Lemma 2]. We finally note (cf.
[15, Theorem 3.2]) that if 4 is G-central, then S(y lqo) = S(uy [uq,) for each ¢
Y € S(A) where y,, and py, are as in Theorem 1.3.

2. ABSOLUTE CONTINUITY AND KMS STATES

In this section, let (4, R, «) be a fixed strongly continuous one-parameter
C*-dynamical system. For 0<f <+ 0o, a state ¢ of A is said to be -KM S with
respect to « if for every pair a, b € A there exists a bounded continuous function F
on the strip 0 € Imz < B which is holomorphic in the interior and has boundary
values:

F(t) = ¢(ax,(b)), F(t+if) = o(a,(b)a), teR.

Also ¢ is said to be a ground state with respect to « if

—ip(a*3(a)) 2 0

for all a € D(8) where & is the generator of a. If ¢ is a f-KMS or ground state, then
¢ is a-invariant. A ground state may be called to be (400)-KMS (see [8, Proposi-

8 — c. 1733
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tions 5.3.19, 5.3.23]). On the other hand, a tracial state is regarded as a 0-KMS state.
We denote by K (resp. K,) the set of all f-KMS (resp. ground) states of 4, and by
K, the set of x-invariant tracial states.

Since K, is a weak* closed face of S(A) (cf. [8, Theorem 5.3.37)), it follows
that if ¢ € K, and i < ¢, then y € K,. As for the quasi-absolute continuity, we give :

ExaMPLE 2.1. Let ¢ € K. Then the following conditions are equivalent:
(i) any Y € S(A) with y < ¢ is in K_,;
(i) u,(t) =1 for all re R.

In fact, if u, is trivial, then 7,(6(a)) = 0 for all @ € D(6) and hence any ¥ € S(4)
having the normal extension to n,(4)" is in K. Conversely if (i) holds, then any
vector state Y(a) = {m,(a)y, n) with n € #, is x-invariant, so that u, is trivial by
[5, Lemma 4.1]. Now let ¢ € K, be such that u, is nontrivial. Then there exists a
Y € S(A4) such that Y < ¢ and ¥ ¢ K. In connection with Theorem 1.1, this shows
that the condition ¥ <¢ does not necessarily imply that  is in the weak® closure
of F(o).

THEOREM 2.2. Let (A4, G, 1) be a C*-dynamical system. Assume that ¢ € K
with 0<f <+00 and ¢ is G-subcentral. Then any W € Sg(A4) satisfying Yy <o isin Kp.

Proof. Since ¢ € Ky, ¢, is separating for n,(A4)"". Theorems 1.1 and 1.2 assert

that emn. Hence it is sufficient to show that Y € F(¢) implies ¢ € K. If
¥ € Fg(9), there is a positive operator /4 in m,(A4)' nu,(G) such that y(a) =
= (m(@)hé,, ¢,> for all ae A. Since ¢ is G-subcentral, we get he m,(4)'n
nm,(A4)”. Therefore ¢ € Kj. Q.E.D.

A state ¢ of A is said to be spectrally passive with respect to a if ¢ is a-inva-

riant and
p(a*a) < ¢(aa*)

for all a in the spectral subspace R(— oo, 0) which is the closed subspace spanned by

all elements of the form S f()a,(b) dt with b € 4 and f € L*(R) whose inverse Fourier

transform fA has compact support in (—oc0,0). The notion of spectral passivity was
introduced by de Canniére [11]. He showed that ¢ is spectrally passive if and only if

—i¢p(ad(a) > 0

for all @ == a* € D(8), which is satisfied if ¢ is passive in the sense of Pusz and
Woronowicz [19]. The set of (spectrally) passive states is a weak® closed convex

set containing |_J} Kj. Let (4, G, 1) be a C*-dynamical system such that t commutes
0< g0

with 2. If ¢ € Sz(A) is G-subcentral and spectrally passive, then ¢ is in the weak*

closed convex hull of |_) Xj (cf. [7, Theorem 5]).

0<B<ge
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THEOREM 2.3. Let A be separable and © be a strongly continuous action of a
locally compact separable group G commuting with o. Assume that A is G-central
and has at most one t-invariant tracial state. If ¢ € Sg(A) is spectrally passive, then
any € S;(A) with Y < ¢ is spectrally passive.

Proof. Let u, and v, be the unitary representations of G and R, respectively,
on ¥, associated with ¢. From Theorems 1.1 and 1.4, it may be assumed that
¥ € Fg(@). We first suppose that ¢ is further a-invariant. There then exists a posi-
tive operator h in m,(A4) Nuy(G) 0 v,(R) such that Y(a) = {(n,(a)i,, E,> for
all a € A. Since h e n,(A4)' nn,(A4)", it follows as in the proof of [7, Theorem 5]
that

(mp(@*a)hi,, &) < (m(aa*)hé,, &,>

for all a € R(—oo, 0). Thus ¥ is spectrally passive. In this case, we have used only
the condition of ¢ being G-subcentral.

We now assume all the conditions in the theorem and prove that each y € Fs(p)
is a-invariant. To do this, it suffices to show that

(*) 7(A) N7 (A)" 0 u(G) < v,(R).

Since A is G-central, 4 is also G x R-central. Let u be the 7,(4)' nu,(G)' n v,(R)-
-orthogonal measure of ¢, which is a unique maximal measure on Sg«r(4) represent-
ing @. By the separability assumptions, we obtain the spatial decomposition of
#,, n,, &,) as follows:

253
#, =S #,du(@),

2]
T =S 7 du(w),

3]
:, =S £o du(w).

Moreover u, and v, are decomposable by

D
Uolg) = S ua(g)du(w), g€,

vo(t) = Se vo()du(w), reR.
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It is shown in the proof of [7, Theorem 5] that p is supported by | K;. IfwcK;
0gp<0
with 0 < f < oo, then

To(A)' N 1o(4)” = vo(RY

(cf. [8, Propositions 5.3.28, 5.3.19]). If ® € Ky 0 Sexr(A), then w is the unique t-inva-
riant tracial state. Hence it is seen from the G-centrality of A that o is G-ergodic, so
that

o(A) Nuy,(G) = C1.
Therefore we have

To(A)' 0 7o(A4)" Nul,(G) < vu(R)
for p-almost all w. This implies the desired inclusion (x). Q.E.D.

EXAMPLE 2.4. The C*-algebra A of a d-dimensional quantum lattice system
(see [8, Section 6.2.1]) is asymptotic abelian under the action T of Z¢ and hence
Z“-central. Let a be the one-parameter automorphism group defined by a transla-
tionally invariant interaction @. Then Theorems 2.2 and 2.3 can be applied since 4
has a unique tracial state. Thus if ¢ is a t-invariant §-KMS (resp. ground, spectraily
passive) state, then any t-invariant state y withy < ¢ is f-KMS (resp. ground, spzc-
trally passive). For KMS states and ground states of quantum lattice systems, see
{8, Theorems 6.2.42, 6.2.58]. :

3. DISJOINTNESS OF STATES

For ¢, € S(4), it is said that ¢ and ¥ are disjoint (denoted by ¢ | ¥) if =,
and m, are disjoint or equivalently if c(¢) Lc(). We call ¢ and  to be orthogonal
(denoted by ¢ L) if s(¢p) Ls(¥), and to be singular (¢ Ay = 0) if s(p) As() == C.
Obviously ¢ § ¥ = @ Ly = ¢ Ay = 0. Itis known (cf. [12, Proposition 12.3.1])
that » Ly ifand onlyif |j@ — ¥|| = @i + |} (= 2). Take any representation
of A such that ¢ and ¢ have the normal extensions ¢ and i to m(A4)"". Then we sez
as in Section 1 that ¢ | ¢ (resp. ¢ Ly, ¢ AY = 0) if and only if c(p) Lc() (resp.
S(@) Ls(B), s(@) As@) = 0).

THEOREM 3.1. Let (A, G, 1) be a C*-dynamical system. For eaclt @,y € Sg{4),
the following conditions are equivalent:

() gAYy =0;

ey TN - "

{ii) Flo¢) nFy) =G,

ceay TZO—XN = h

(ii)) Fo(@) NFe(y) = 0.

Proof. (i) = (ii) follows from Theorem 1.1, and (ii) = (iii) is trivial. Suppose
(iii) and let p = s(@) As(¥) which is 7T-invariant where 7 is the extension
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for ae A. Since é(p) = p, Theorem 1.1 impliés that pe FG((p)n n FG(l//)n, con-
tradicting (iii). Hence p(p) = 0, so that p = Q. Thus (iii) = (i). Q.E.D.

In{8, Definition 4.1.20], ¢ and y are said to be orthogonal if F(¢) n F(y)=0
in our terminology. This definition of orthogonality is somewhat different from ours.

In fact, Theorem 3.1 shows that if ¢ Ay = 0 then ¢ and ¥ are orthogonal in the
sense of [8].

THEOREM 3.2. Let (A, G, 1) be a C*#-dynamical system such that A is G-abe-
lian. Then for each @, € S¢(A), the following conditions are equivalent:

() oLy,

(i) @ Ay =0,

(iii) Fo(@) NFe(y) =9;

(iv) p, and yp, are singular.

Proof. The implications (i) = (ii) = (iii) hold generally.

(iii) = (i). Let p = (¢ -+ ¥)/2 € Sg(A). There then exists an operator / in
n,(A) Nu,(G) with 0 < A < 1 such that

@(@) = 2m(@)hi,, {pds
Y(a) = U (a)(1 — h)E,, &),

for all ae A. If Fg(p) N Fg(¥) = O, then we get /(1 — h) =0 and hence 4 is a
projection in 7,(4)' nu,(G)’". The supports s(¢) and s(if) of the normal extensions @
and ¥ to n,(A)" are the projections onto [r,(4)'h¢,] and [r,(4)' (1 — k)], respec-
tively. By Kovacs-Sziics theorem, we can take a conditional expectation & of 7,(4)’
onto m,(A4) Nu,(G) satisfying

(e(x)E,, &0 =<xE,, &), xem,(4).

Since n,(A) Nu,(G)' is abelian, we have

(xhS,, y(I— 1)) = (1 — Me(y*x)hé,, ¢,> =0

for every x, y € n,(A)". This implies s(¢) L s(}) and thus ¢ 1.

(iii) = (iv). Suppose that p, and p, are not singular. Then there is a proba-
bility measure v on S;(4) dominated by both u, and g, . If p is the barycenter of v,
then it follows that p € Fg(@) 0 Fo(y).

(iv) = (ii). If (ii) is not true, then we obtain a p € S;(A4) such that p € ¢
and p € ¥, so that p,<pu, and p,<p, by Theorem 1.3. This contradicts (iv).

, Q.E.D.

THEOREM 3.3. Let (A, G, 1) be a C*-dynamical system. Then the following
conditions are equivalent :

(1) @ LY implies @ L for every @, € Sg(A);

(i) Fglo) n Fo(¥) = O implies ¢ LY for every @,y € Sg(A);

(iii) A is G-central. :
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Proof. (ii) = (i) is clear. Let e be as in the proof of Theorem 1.4. The G-cen-
trality of A is equivalent to that s(p) = c(@)e holds for every ¢ € Sg(4). If s(@) #
# c(@)e for some ¢ € Sg(4), then we obtain a ¥ € Sg(4) such that c(¥) < clgp)
but s(y) Ls(p) (see the proof of Theorem 1.4). Thus (i) = (iii). Suppose that A
is G-central. Let p = (¢ + )/2 and / be as in the proof of (iii) = (i) in Theorem
3.2.If Fe(9) n Fo(¥) = @, then it follows in this case that / is a central projection
in m,(4)". Therefore c(¢) < h and c(f) < 1 — & for the normal extensions @ and i
to m,(4)", so that ¢ | . Thus (iii) = (ii). Q.E.D.

REMARK 3.4. Assume that 4 is G-central. If ¢ is centrally ergodic (i.e. m,(4)’ N
N n,(4)"” 0 u,(G)' = C1)then ¢ is G-ergodic and so Fg(p) = {¢}. Hence Theorem
3.3 has the corollary that distinct centrally ergodic states of A are disjoint (see [8,
Theorem 4.3.19], [6]). The conditions given in Theorems 1.4 and 3.3 seem to be new
characterizations of G-centrality.

Note that all definitions of absolute continuity and disjointness in this paper
remain valid for any positive linear functionals of 4. We can obtain the Lebzsgue
type decompositions of states. For each ¢, ¥ € S(A), it is immediately seen that
Y has a unique decomposition =, + ¥, where ¥; and ¥, are positive linear func-
tionals of 4 with Y, <¢ and ¥, | ¢. Now let (4, G, 1) be a C*-dynamical system
such that 4 is G-abelian. Then for each ¢, i € S4(A), by using Theorems 1.3, 3.2
and the Le besgue decomposition of u,, with respect to u,, we see that there exist unique
7-invariant positive linear functionals iy, and i, of A such that ¥ = i, < g,
¥ < ¢ and ¥, | o.

Lastly we note some properties of absolute continuity and disjointness of
limit states. According to [17, Theorem 3.2], if {¢,} is a sequence in S(4) with
flo, — @il = 0, then {s(p,)s(@)} and {c(¢,) c(@)} converge strongly to s(¢) and
c(¢), respectively. From these facts, we can easily show the following:

(DLet {y,} be a sequence in S(4) with |y, — i = 0. If ¥, < ¢ (resp.
¥, < ) for all n, then y < ¢ (resp. ¥ < ¢).

(2) Let {¢,} and {y,} be sequences in S(4) with [¢, — ¢! —» 0 and ¥, —
— )l = 0. If 9, LW, (resp. @, § W,) for all n, then @ Ly (resp. ¢ § ¥).
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