TOMITA-TAKESAKI THEORY FOR JORDAN ALGEBRAS

UFFE HAAGERUP and HARALD HANCHE-OLSEN

1. INTRODUCTION

The present paper is an attempt to generalize the Tomita-Takesaki Theory to JBW-algebras, the Jordan algebra analogues of W^* -algebras (cf. [19]). If \mathcal{M} is a W^* -algebra and φ is a normal faithful state on \mathcal{M} , it is not possible to distinguish σ_t^{φ} and σ_{-t}^{φ} , solely in terms of the Jordan product $x \circ y = \frac{1}{2}(xy + yx)$. Indeed if one computes the modular automorphism group of φ considered as a state on the opposite algebra $\mathcal{M}^{\circ p}$ (i.e. the vector space \mathcal{M} equipped with the product $(x, y) \to yx$) one gets σ_{-t}^{φ} instead of σ_t^{φ} . However it turns out that the one parameter family

$$\rho_t^{\varphi} = \frac{1}{2} (\sigma_t^{\varphi} + \sigma_{-t}^{\varphi})$$

can be generalized in a natural way to normal states on JBW-algebras (cf. Theorem 3.3 and Proposition 3.6). The construction of ρ_i^{φ} makes use of the full structure theory of JBW-algebras.

We reduce the general case to the following two cases:

- (1) There exists a trace τ on the JBW-algebra M, such that $\varphi(x) = \tau(x \circ h)$ for some invertible $h \in M_+$.
- (II) There exists a von Neumann algebra \mathcal{M} and an involutive anti-automorphism Φ of \mathcal{M} , such that M is isomorphic to the self-adjoint part of $\mathcal{M}^{\Phi} = \{x \in M \mid \Phi(x) = x\}.$

In the case of W^* -algebras the K.M.S.-conditions give a very useful characterization of the modular automorphism group σ_t^{φ} . No analogue of the K.M.S.-conditions seems to be available for ρ_t^{φ} . However, it is possible to give a characterization of ρ_t^{φ} which does not involve structure theory. We prove that the one parameter family $\rho_t = \rho_t^{\varphi}$ is characterized by the following five conditions:

- (i) The map $t \to \rho_t(x)$ is w*-continuous for all $x \in M$;
- (ii) Each ρ_t is normal positive and preserves the unit;

(iii)
$$\rho_0 := \mathrm{id}_M \text{ and } \rho_s \rho_t = \frac{1}{2} (\rho_{s+t} + \rho_{s-t}), \ s, t \in \mathbf{R};$$

- (iv) $\varphi(\rho_t(a) \circ b) = \varphi(a \circ \rho_t(b)), \ a, b \in M;$
- (v) The bilinear form on M defined by

$$s(x, y) = \int_{-\infty}^{\infty} \varphi(\rho_t(a) \circ b) \cosh(\pi t)^{-1} dt$$

is a self-polar form on M in the sense of Connes [6] and Woronowicz [26].

It follows from this result that for every state φ on a JB-algebra A, there is a unique self-polar form s_{φ} on A, such that $s(x, 1) = \varphi(x)$ (cf. Proposition 3.8). The corresponding result for C^* -algebras was proved by Woronowicz in [26].

Recently, Iochum has proved that there is a one-to-one correspondence between JBW-algebras and homogeneous self-dual cones in Hilbert spaces (cf. [12, Chapter VII]). The special case of JBW-algebras with a faithful tracial state was treated previously by Bellissard and Iochum in [4].

In Section 4 of this paper we show that the homogeneous, self-dual cone associated with a σ -finite JBW-algebra can be realized as the closure of M_+ in the real Hilbert space H_{φ}^{h} obtained by completing M with respect to the norm coming from the inner product

$$(a,b)_{\varphi}^{\natural} = \int_{-\infty}^{\infty} \varphi(\rho_t(a) \circ b) \cosh(\pi t)^{-1} dt.$$

Moreover, we show that the isomorphism between M and the set of self-adjoint derivations of the self-dual cone described in [5] and [12] can be expressed explicitly in terms of the one parameter family ρ_I^{σ} .

2. PRELIMINARIES ON JBW-ALGEBRAS

A JB-algebra A is a Jordan algebra over R with a complete norm, such that

$$||a \circ b|| \le ||a|| ||b||$$
 and $||a^2 + b^2|| \ge ||a||^2$

for all $a, b \in A$ (cf. [1], [3], [19]). A JBW-algebra is a JB-algebra which is a dual Banach space. A JB-algebra is called a JC-algebra if it is isomorphic to a norm closed Jordan algebra of self-adjoint operators on a Hilbert space. Similarly a JBW-algebra is called a JW-algebra if it is isomorphic to a σ -weakly closed Jordan algebra of self-adjoint operators on a Hilbert space.

From [1] we know that a JB-algebra A is a JC-algebra if and only if no quotient of A is isomorphic to M_3^8 , the exceptional algebra of self-adjoint 3×3 matrices over the Cayley numbers. By [19] every JBW-algebra M is of the form

$$M = M^{\rm sp} \oplus M^{\rm ex}$$

where $M^{\rm sp}$ is a W-algebra, and $M^{\rm ex}$ is isomorphic to $C(X,M_3^8)$ for some hyperstonean space X. Since M_3^8 is a finite dimensional Banach space, $M^{\rm ex}$ can also be written in the form $L^\infty(\Omega,\mu,M_3^8)$ for some Radon measure μ on a locally compact space Ω . Combining this result with the classical theory of JW-algebras due to Topping [24] we get that any JBW-algebra can be decomposed into a type I-part, a type II-part, and a type III-part,

$$M = M_1 \oplus M_{II} \oplus M_{III}$$

and M_1 can be decomposed further into its type I_n parts, where n can be any cardinal number. The exceptional part $M^{\rm ex} = L^{\infty}(\Omega, \mu, M_3^8)$ should be considered as a part of M_{1_3} . Using Stacey's results from [20], [21] each of the type I_n -parts $(n < \infty)$ of M can be decomposed into

$$M_{\mathrm{I}_{n}} = \sum_{\alpha} L^{\infty}(\Omega_{\alpha}, \mu_{\alpha}, F_{\alpha})$$

where the μ_{α} 's are Radon measures on locally compact spaces Ω_{α} , and F_{α} are Jordan factors of type I_n . (A similar decomposition holds when n is an infinite cardinal number, but in this case one has to use w*-measurable functions from Ω_{α} to F_{α} , because the type I_n factors are no longer reflexive Banach spaces, when n is infinite.)

Besides the exceptional JBW-factor M_3^8 of type I_3 , the only JBW-factors of type I_n , $n \ge 3$ are $M_n(\mathbf{R})_{s.a.}$, $M_n(\mathbf{C})_{s.a.}$ and $M_n(\mathbf{H})_{s.a.}$. The JBW-factors of type I_2 are the spin factors V_m , where m can be any finite or infinite cardinal number ≥ 2 .

Recall that a positive functional τ on a JB-algebra A is called a trace if

$$\tau(a \circ (b \circ c)) = \tau((a \circ b) \circ c), \quad a, b, c \in A$$

(cf. [4], [16]). Note that any JBW-factor of type I_n , $n < \infty$, has a unique tracial state τ_0 .

The following three lemmas are all easy consequences of known results.

LEMMA 2.1. Let M be a JBW-algebra, which is a direct sum of type I_n algebras $(n < \infty)$, and let φ be a normal, faithful state on M. Then there exists a tracial state τ on M, and a central decomposition

$$M = \bigoplus_{\alpha} M_{\alpha}$$

of M, such that for each α the restriction of φ to M_{α} is of the form

$$\varphi(x) = \tau(h_{\sigma} \circ x), \quad x \in M_{\sigma}$$

for some invertible element $h_a \in M_+$.

Proof. By the structure theory for type I algebras, we can assume that M is of the form

$$M=L^{\infty}(\Omega,\mu,F)$$

where μ is a Radon measure on a locally compact space Ω and F is a JBW-factor of type I_n , for some $n < \infty$. Let τ_0 be the normalized trace on F. Define a map T of M into Z(M) (the center of M) by

$$(T(x))(\omega) = \tau_0(x(\omega))1, \quad x \in L^{\infty}(\Omega, \mu, F), \ \omega \in \Omega.$$

Clearly T is a w^* -continuous linear map of M into Z(M). In fact T is a center valued trace in the sense of [24], but we shall not need this fact. Define a tracial state τ on M by

$$\tau(x) = \varphi \circ T(x), \quad x \in M.$$

Let p be an abelian projection in M. Then $p(\omega)$ is 0 or a minimal projection in F for locally almost all $\omega \in \Omega$. Since $\tau_0(q) = 1/n$ for any minimal projection q in F, we get T(p) = (1/n)c(p). (The central support c(p) of p is 1 for those $\omega \in \Omega$ such that $p(\omega) \neq 0$, and 0 on the other ω 's.) Hence we get

$$\varphi(p) \leqslant \varphi(c(p)) = \varphi(nT(p)) = n\tau(p).$$

Since any projection is the sum of abelian projections, the above inequality is true for all projections in M. Hence by spectral theory

$$\varphi(x) \leq n\tau(x)$$

for all $x \in M_+$. Sakai's linear Radon-Nikodym Theorem [18, Proposition 1.24.4] is true also for JBW-algebras (with the same proof as for W^* -algebras). Hence there exists a $h \in M_+$, $||h|| \le n$, such that

$$\varphi(x) = \tau(h \circ x), \quad x \in M.$$

Clearly $\varphi(1 - [h]) = 0$, where [h] is the support projection of h. Hence [h] = 1. Let p_m be the spectral projection of h corresponding to the interval [0, 1/m]. Clearly

$$p_1 \geqslant p_2 \geqslant p_3 \geqslant \ldots$$

and w*-lim $p_m = 0$. Since $c(p_m) \le n T(p_m)$ and

$$c(p_1) \geqslant c(p_2) \geqslant c(p_3) \geqslant \dots$$

it follows that also

$$\mathbf{w}^*-\lim_{m\to\infty}\mathbf{c}(p_m)=0.$$

Put now $q_m = c(p_m) - c(p_{m+1})$. Then (q_m) are orthogonal central projections with sum 1, and $h_m = q_m h$ is invertible in the Jordan algebra $q_m M$. This proves Lemma 2.1.

Lemma 2.2. Let M be a JBW-algebra without type I_2 and type I_3 parts. Then there exists a von Neumann algebra \mathcal{N} , and an involutive *-anti-automorphism Φ of \mathcal{N} , such that A is Jordan isomorphic to

$$\{x \in \mathcal{N}_{s,a} \mid \Phi(x) = x\}.$$

Proof. Since M has no type I_3 part it is a JW-algebra. Recall that a JW-algebra N is called *universally reversible*, if for any normal representation π of N on a Hilbert space H, and any finite set y_1, \ldots, y_n of elements in $\pi(N)$, the operator $y_1 \cdot \ldots \cdot y_n + y_n \cdot \ldots \cdot y_1$ is also contained in $\pi(N)$. By [22, Theorem 6.6] any JW-algebra without a type I_2 part is universally reversible. Hence M is universally reversible. The existence of (\mathcal{N}, Φ) can now be proved as in the case of universally reversible JC-algebras (cf. [11, Proposition 2.3]).

LEMMA 2.3. a) A unital JB-algebra generated by two elements (and 1) is a JC-algebra.

- b) A JBW-algebra generated by two elements (and 1) is a JW-algebra.
- *Proof.* a) Because of the exceptional nature of M_3^8 [13, Chapter 1, Theorem 11] and the Shirshov-Cohn theorem [13, Chapter 1, Theorem 10] M_3^8 cannot be algebraically generated by two elements and the identity. Since M_3^8 is finite dimensional it also cannot be generated as a JB-algebra by two elements and 1. Hence, if A is any unital JB-algebra generated by two elements and the unit, it cannot have a quotient isomorphic to M_3^8 , i.e. A is a JC-algebra.
- b) Let M be a JBW-algebra generated by two elements x, y and the identity 1, and let A be the smallest norm closed Jordan algebra containing x, y, 1. The imbedding $i: A \to M$ can be extended to a normal Jordan homomorphism \tilde{i} of A^{**} into M. Since A is dense in M, $\tilde{i}(A^{**}) = M$. Hence there exists a central projection $p \in A^{**}$ such that M is isomorphic to pA^{**} (cf. [7, Theorem 3.3]). From a) we know that A is a JC-algebra. Hence by [8, Theorem 1], A^{**} is a JW-algebra. This proves b).

3. THE ONE-PARAMETER FAMILY ρ_r^{ϕ}

In [6], [26], Connes and Woronowicz introduced the notion of self-polar forms on C^* -algebras. With obvious modifications Woronowicz' definition makes sense also in the case of JB-algebras.

DEFINITION 3.1. Let A be a unital JB-algebra. For any bilinear form $t: A \times A \to \mathbb{R}$ we let t^* denote the linear map from A to A^* defined by

$$\langle t^*(a), b \rangle = t(a, b), \quad a, b \in A.$$

A self-polar form on A is a positive, symmetric bilinear form s on A, for which

- (i) $s(a, b) \ge 0$, $a, b \in A_+$
- (ii) $s^*([0, 1])$ is weak* dense in $[0, s^*(1)]$.

Here $[\xi, \eta]$ means $\{\zeta \mid \xi \leqslant \zeta \leqslant \eta\}$ in any ordered vector space.

REMARK 3.2. a) Using Woronowicz' result [26, Theorem 1.2] on the complexification of A, it follows that if s_1 and s_2 are two self-polar forms on a JB-algebra such that $s_1^*(1) = s_2^*(1)$, then $s_1 = s_2$.

b) If s is a self-polar form on a JBW-algebra, such that $s^*(1)$ is a normal functional on A, an elementary compactness argument shows that $s^*([0, 1]) = [0, s^*(1)]$.

We are now able to state the main result of this paper:

THEOREM 3.3. Let M be a JBW-algebra with a normal, faithful state φ . Then there is a unique one-parameter family $(\rho_t)_{t \in \mathbb{R}}$ of operators on M, satisfying

- (i) The map $t \to \rho_t(x)$ is w*-continuous for all $x \in M$;
- (ii) Each ρ_t is positive, normal and preserves the unit;

(iii)
$$\rho_0 = \mathrm{id}_A$$
, $\rho_s \rho_t = \frac{1}{2} (\rho_{s+t} + \rho_{s-t})$, $s, t \in \mathbb{R}$;

- (iv) $\varphi(\rho_t(a) \circ b) = \varphi(a \circ \rho_t(b)), \quad a, b \in M;$
- (v) The bilinear form on M defined by

$$s(a,b) = \int_{-\infty}^{\infty} \varphi(\rho_t(a) \circ b) \cosh(\pi t)^{-1} dt, \quad a, b \in M,$$

is a self-polar form on M.

Proof of uniqueness of ρ_t . Let H_{φ}^* denote the completion of M with respect to the inner product

$$(a,b)^{\clubsuit}_{\alpha}=\varphi(a\circ b).$$

Assume that (ρ_t) satisfies the conditions of Theorem 3.3. If $x \in M$, $||x||_{\varphi}^{\#} = 1$, we find

$$(\|\rho_{t}(x)\|_{\varphi}^{*})^{2} = \varphi(\rho_{t}(x) \circ \rho_{t}(x)) = \varphi(\rho_{t}^{2}(x) \circ x) =$$

$$= \frac{1}{2} \varphi((\rho_{2t}(x) + x) \circ x) = \frac{1}{2} ((\rho_{2t}(x), x)_{\varphi}^{*} + (\|x\|_{\varphi}^{*})^{2}) \leq$$

$$\leq \frac{1}{2} (\|\rho_{2t}(x)\|_{\varphi}^{*} + 1).$$

By condition (ii) in Theorem 3.3, $\|\rho_t(x)\| \le \|x\|$ for all t. Hence the constant

$$K = \sup_{t \in \mathbf{R}} \|\rho_t(x)\|_{\varphi}^{\#}$$

is finite. The above inequality shows that $K^2 \leq (1/2)(K+1)$, which implies that $K \leq 1$. Hence $\|\rho_t(x)\|_{\varphi}^{\#} \leq 1$. Therefore each ρ_t can be extended to an operator u_t on $H_{\varphi}^{\#}$ with $\|u_t\| \leq 1$. It is easily seen that $(u_t)_{t \in \mathbb{R}}$ is a weakly continuous family of operators on the real Hilbert space $H_{\varphi}^{\#}$. By the conditions (iii) and (iv) of Theorem 3.3 we get

$$u_0 = 1$$
, $u_s u_t = \frac{1}{2} (u_{s+t} + u_{s-t})$ and $u_s = u_s^*$

for all $s, t \in \mathbb{R}$. By Kurepa's result [14, Theorem 2] one can derive fairly easily that there exists a (possibly unbounded) positive, self-adjoint operator D on $H_{\varphi}^{\#}$, such that $u_t = \cos(tD)$, $t \in \mathbb{R}$. In the appendix (Section 5) we give a direct proof of this fact. Since

$$\int_{-\infty}^{\infty} e^{itx} \cosh(\pi t)^{-1} dt = \cosh\left(\frac{x}{2}\right)^{-1}$$

for any $x \in \mathbb{R}$, we get

$$\int_{-\infty}^{\infty} u_t \cosh(\pi t)^{-1} dt = \cosh\left(\frac{D}{2}\right)^{-1}$$
 (strongly).

Hence for $a, b \in M$ the self-polar form (v) in Theorem 3.3 can be expressed as

$$s(a,b) = \int_{-\infty}^{\infty} \varphi(\rho_t(a) \circ b) \cosh(\pi t)^{-1} dt = \left(\cosh\left(\frac{D}{2}\right)^{-1} \dot{a}, \dot{b}\right),$$

where \dot{a} and \dot{b} denote the natural imbeddings of a and b in H_{ϕ}^{*} .

If $(\rho'_t)_{t\in\mathbb{R}}$ is another one-parameter family satisfying (i)—(v) in Theorem 3.3, we get in the same way operators u'_t and D' on H^*_{φ} , such that D' is positive and self-adjoint, $u'_t = \cos(tD')$

$$s'(a,b) = \left(\cosh\left(\frac{D'}{2}\right)^{-1}\dot{a},\dot{b}\right), \quad a,b \in M$$

is a self-polar form on M. Clearly $s^*(1) = (s')^*(1) = \varphi$. Hence by the Woronowicz uniqueness Theorem (cf. Remark 3.2 a) s = s', which implies that

$$\cosh\left(\frac{D}{2}\right)^{-1} = \cosh\left(\frac{D'}{2}\right)^{-1}$$

and since the function cosh is one-to-one on $[0, \infty[$, we conclude that D = D'. Therefore $u_t = u'_t$, $t \in \mathbb{R}$, which clearly implies that $\rho_t = \rho'_t$ for all $t \in \mathbb{R}$.

Proof of existence of ρ_t . Assume that $M = \sum_{\alpha} {}^{\oplus} M_{\alpha}$ and $\varphi = \sum_{\alpha} {}^{\oplus} \lambda_{\alpha} \varphi_{\alpha}$, where φ_{α}

are faithful normal states on M_{α} and λ_{α} are positive scalars with sum 1. If we can find for each α a one-parameter family $\rho_{\alpha,t}$ satisfying the conditions in Theorem 3.3 with respect to $(M_{\alpha}, \varphi_{\alpha})$, then clearly

$$\rho_t = \sum_{i=1}^{n} \rho_{\alpha_i,t}$$

satisfies the conditions with respect to (M, φ) . Hence by Lemma 2.1 and Lemma 2.2 it is sufficient to treat the following two cases.

Case I. There exists a faithful trace τ on M, and an invertible element h in M_+ , such that $\varphi(x) = \tau(x \circ h)$ for all $x \in M$.

Case II. There exists a von Neumann algebra \mathcal{N} and an involutive *-automorphism Φ of \mathcal{N} , such that M is Jordan isomorphic to $\{x \in \mathcal{N}_{s,a}: \Phi(x) = x\}$.

Proof of existence in Case I. We will show that

$$\rho_t(a) = \{h^{\mathsf{i}t}ah^{-\mathsf{i}t}\}, \quad a \in M$$

satisfies the conditions in Theorem 3.3. As usual $\{\cdots\}$ denotes the Jordan triple product

$${abc} = a \circ (b \circ c) + c \circ (a \circ b) - b \circ (a \circ c)$$

and h^{it} is the element $\cos(t \log h) + i \sin(t \log h)$ in the complex Jordan algebra $M^{C} = M + i M$. M^{C} has a natural norm, which makes it a "JB*-algebra" (cf. [27]), but we shall not need this fact. ρ_{t} maps M into itself because, for $a \in M$,

$$\rho_t(a) = \{\cos(t\log h) \ a \cos(t\log h)\} + \{\sin(t\log h) \ a \sin(t\log h)\}.$$

The conditions (i) and (ii) of Theorem 3.3 can easily be verified. Clearly $\rho_0 = id_M$, so to verify (iii) it suffices to show that

$$\begin{aligned} & \{h^{is}\{h^{it}ah^{-it}\}h^{-is}\} = \\ &= \frac{1}{2} \left(\{h^{i(s+t)}ah^{-i(s+t)}\} + \{h^{i(s-t)}ah^{-i(s-t)}\} \right) \end{aligned}$$

for $a \in M$ and $s, t \in \mathbb{R}$. However, by Lemma 2.3, the JBW-algebra generated by a and h is a JW-algebra, and for two operators a, h on a Hilbert space the above equality is trivial.

Next we prove (iv). By use of Lemma 2.3 we find

$$\{h^{it}(a\circ h)h^{-it}\}=\{h^{it}ah^{-it}\}\circ h$$

for all $a \in M$. It follows from the trace property

$$\tau(a\circ(b\circ c))=\tau((a\circ b)\circ c)$$

that for all $c, d, e, f \in M$,

$$\tau(\{ecf\} \circ d) = \tau(c \circ \{edf\})$$

and the formula is also true if $c, d, e, f \in M^{\mathbb{C}}$. Hence for $a, b \in M$:

$$\varphi(a \circ \rho_t(b)) = \tau(h \circ (a \circ \{h^{it}bh^{-it}\})) =$$

$$= \tau((h \circ a) \circ \{h^{it}bh^{-it}\}) = \tau(\{h^{it}(h \circ a)h^{-it}\} \circ b) =$$

$$= \tau((h \circ \{h^{it}ah^{-it}\}) \circ b) = \tau(h \circ (\{h^{it}ah^{-it}\} \circ b)) = \varphi(\rho_t(a) \circ b).$$

To prove (v), let $a, b \in M$, and put

$$a' = \int_{-\infty}^{\infty} \left\{ h^{\mathrm{i}t} a h^{-\mathrm{i}t} \right\} \cosh(\pi t)^{-1} \, \mathrm{d}t.$$

We claim that $a' \circ h = \{h^{1/2}ah^{1/2}\}$. By Lemma 2.3 it is enough to check that the formula is true when a and h are operators on a Hilbert space. But in this case the formula is due to Van Daele and Pedersen (see [25] and [15, Proposition 3]). Therefore

$$s(a,b) = \int_{-\infty}^{\infty} \varphi(\rho_t(a) \circ b) \cosh(\pi t)^{-1} dt =$$

$$= \tau(h \circ (a' \circ b)) = \tau((h \circ a') \circ b) = \tau(\{h^{1/2}ah^{1/2}\} \circ b) =$$

$$= \tau(\{h^{1/4}\{h^{1/4}ah^{1/4}\}h^{1/4}\} \circ b) = \tau(\{h^{1/4}ah^{1/4}\} \circ \{h^{1/4}bh^{1/4}\}).$$

This formula shows that s is a positive symmetric form on M. Moreover $s(a, b) \ge 0$ for $a, b \in M_+$ (cf. [16, Theorem (iii)]). From the formula

$$s(a,b) = \tau(\{h^{1/2}ah^{1/2}\} \circ b)$$

we have $s^*(1) = \varphi$. Let now $\psi \in [0, \varphi]$. By the generalisation of Sakai's linear Radon-Nikodym Theorem to JBW-algebras, there exists $k \in M_+$ such that

$$\psi(x) = \tau(k \circ x), \quad x \in M_+.$$

Let $(k-h)_+$ denote the positive part of k-h. Since

$$0 \ge (\psi - \varphi)((k - h)_+) = \tau((k - h)(k - h)_+) = \tau((k - h)_+^2)$$

it follows that $k \le h$. Put $a = \{h^{-1/2}kh^{-1/2}\}$. Then $0 \le a \le 1$, and

$$s(a, x) = \tau(\{h^{1/2}ah^{1/2}\} \circ x) = \tau(k \circ x) = \varphi(x)$$

for all $x \in M$, i.e. $s^*(a) = \psi$. Hence $s^*([0, 1]) = [0, s^*(1)]$ and we conclude that s is a self-polar form.

For the existence proof in case II we shall need the following lemma:

LEMMA 3.4. Let $\mathcal N$ be a von Neumann algebra, and let φ be a normal faithful state on $\mathcal N$. Then

$$s(a,b) = \int_{-\infty}^{\infty} \varphi(\sigma_t^{\varphi}(a) \circ b) \cosh(\pi t)^{-1} dt$$

is a self-polar form on $\mathcal{N}_{s.a.} = \{x \in \mathcal{N} \mid x = x^*\}, \text{ and } s^*([0,1]) = [0, \varphi].$

Proof. We may assume that $\mathcal N$ acts on a Hilbert space H with a cyclic and separating vector ξ_0 , such that

$$\varphi(x) = (x\xi_0, \xi_0), \quad x \in \mathcal{N}.$$

Let S, F, J, Δ be the usual operators from Tomita-Takesaki theory coming from (\mathcal{N}, ξ_0) . From [6] we know that the self-polar form s on $\mathcal{N}_{s.a.}$, for which $s^*(1) = \varphi$ is given by

$$s(a,b)=(\Delta^{1/2}a\xi_0,b\xi_0), \quad a,b\in\mathcal{N}_{s.a.}.$$

(Strictly speaking, Connes defines s as a sesquilinear form on \mathcal{N} , but it is clear that when we restrict to $\mathcal{N}_{s,a}$, we get a self-polar form in the sense of Definition 3.1.)

Let $a, b \in \mathcal{N}_{s,a}$ and put

$$a' = \int_{-\infty}^{\infty} \sigma_t^{\varphi}(a) \cosh(\pi t)^{-1} dt.$$

Then

$$a'\xi_0 = \int_{-\infty}^{\infty} \Delta^{it} a\xi_0 \cosh(\pi t)^{-1} dt = 2(\Delta^{1/2} + \Delta^{-1/2})^{-1} a\xi_0$$

because

$$\int_{-\infty}^{\infty} e^{its} \cosh(\pi t)^{-1} dt = \cosh\left(\frac{s}{2}\right)^{-1}, \quad s \in \mathbf{R}$$

and $\cosh\left(\frac{1}{2}\log\Delta\right) = \frac{1}{2}(\Delta^{1/2} + \Delta^{-1/2})$. Therefore $a'\xi_0 \in D(\Delta^{1/2}) \cap D(\Delta^{-1/2})$ and

$$\frac{1}{2} (\Delta^{1/2} + \Delta^{-1/2}) a' \xi_0 = a \xi_0.$$

Hence

$$(\varDelta^{1/2}a\xi_0\,,b\xi_0)=(a\xi_0\,,\varDelta^{1/2}b\xi_0)=$$

$$= \frac{1}{2} \cdot ((\Delta^{1/2} + \Delta^{-1/2}) a' \xi_0, \Delta^{1/2} b \xi_0) = \frac{1}{2} \cdot ((\Delta^{1/2} a' \xi_0, \Delta^{1/2} b \xi_0) + (a' \xi_0, b \xi_0)) =$$

$$= \frac{1}{2} \cdot ((JSa' \xi_0, JSb \xi_0) + (a' \xi_0, b \xi_0)) = \frac{1}{2} \cdot ((b \xi_0, a' \xi_0) + (a' \xi_0, b \xi_0)) =$$

$$= \varphi(a' \circ b) = \int_{-\infty}^{\infty} \varphi(\sigma_t^{\varphi}(a) \circ b) \cosh(\pi t)^{-1} dt.$$

This proves Lemma 3.4.

Proof of existence in Case II. In this case we can assume that

$$M = \{a \in \mathcal{N} \mid a = a^* = \Phi(a)\}$$

for some von Neumann algebra \mathcal{N} , and some involutive antiautomorphism Φ of \mathcal{N} . Let $\overline{\varphi}$ be the state on \mathcal{N} for which

$$\overline{\varphi}(a) = \frac{1}{2} \varphi(a + \Phi(a)), \quad a \in \mathcal{N}_{\text{s.a.}}.$$

Clearly $\overline{\varphi}$ is a normal faithful Φ -invariant extension of φ . Using that Φ is an antiisomorphism one checks easily that $\overline{\varphi}$ satisfies the K.M.S.-conditions with respect to the one parameter automorphism group $t \to \Phi \circ \sigma^{\overline{\varphi}}_{-t} \circ \Phi$. Hence

$$\sigma_t^{\overline{\varphi}} = \Phi \circ \sigma_{-t}^{\overline{\varphi}} \circ \Phi, \quad t \in \mathbf{R}$$

or equivalently

$$\Phi \circ \sigma_t^{\overline{\varphi}} = \sigma_t^{\overline{\varphi}} \circ \Phi, \quad t \in \mathbb{R}.$$

From this it follows that $\frac{1}{2}(\sigma_t^{\overline{\varphi}} + \sigma_{-t}^{\overline{\varphi}})$ maps M into itself. Let ρ_t be the restriction of $\frac{1}{2}(\sigma_t^{\overline{\varphi}} + \sigma_{-t}^{\overline{\varphi}})$ to M. We will show that ρ_t satisfies the conditions of Theorem 3.3. The conditions (i)—(iv) are easily verified. Let us prove (v). By Lemma 3.4

$$\overline{s}(a,b) = \int_{-\infty}^{\infty} \overline{\varphi}(\sigma_t^{\overline{\varphi}}(a) \circ b) \cosh(\pi t)^{-1} dt$$

is a self-polar form on $\mathcal{N}_{s,a}$. The form on M given by

$$s(a,b) = \int_{-\infty}^{\infty} \varphi(\rho_t(a) \circ b) \cosh(\pi t)^{-1} dt$$

is simply the restriction of \overline{s} to M. Hence s is a positive symmetric form on M and $s(a,b) \ge 0$ for $a,b \in M_+$. Moreover $s^*(1) = \varphi$. Let $\omega \in M^*$, $0 \le \omega \le \varphi$. Let $\overline{\omega}$ be the state on \mathcal{N} , for which

$$\overline{\omega}(a) = \frac{1}{2}\omega(a + \Phi(a)), \quad a \in \mathcal{N}_{s.a.}$$

Then clearly $0 \le \overline{\omega} \le \overline{\varphi}$. By Lemma 3.4, there exists $a \in \mathcal{N}_{s,a}$, $0 \le a \le 1$, such that

$$\overline{\omega}(b) = \overline{s}(a, b)$$
 for $b \in \mathcal{N}_{s.a.}$.

But since $\overline{\omega}$ is Φ -invariant, we have also

$$\overline{\omega}(b) = \overline{s}(a, \Phi(b)).$$

Using $\overline{\phi} \circ \Phi = \overline{\phi}$ and $\sigma_{-i}^{\overline{\phi}} \circ \Phi = \Phi \circ \sigma_{i}^{\overline{\phi}}$ we get that $\overline{s}(a, \Phi(b)) = \overline{s}(\Phi(a), b)$. Hence

$$\overline{\omega}(b) = \frac{1}{2}(\overline{s}(a,b) + \overline{s}(\Phi(a),b)) = \overline{s}(a',b)$$

where $a' = \frac{1}{2} (a + \Phi(a)) \in M$, and $0 \le a' \le 1$. Hence s is a self-polar form on M. This completes the proof of Theorem 3.3.

DEFINITION 3.5. The unique one-parameter family ρ_t satisfying the conditions of Theorem 3.3 we call the modular cosine family associated with φ , and it will be denoted $(\rho_t^{\varphi})_{t \in \mathbb{R}}$.

The following proposition can be extracted from the proof of Theorem 3.3.

PROPOSITION 3.6. Let M be a JBW-algebra and φ a faithful normal state on M.

a) If there exists a trace τ on M and an invertible element $h \in M_+$, such that $\varphi(a) = \tau(h \circ a)$, $a \in M$, then

$$\rho_I^{\varphi}(a) = \{h^{\mathrm{i}t}ah^{-\mathrm{i}t}\} =$$

 $= \{\cos(t\log h) \ a \cos(t\log h)\} + \{\sin(t\log h) \ a \sin(t\log h)\}.$

b) If M is the self-adjoint part of a von Neumann algebra \mathcal{M} , then

$$\rho_{\iota}^{\varphi}(a) = \frac{1}{2}(\sigma_{\iota}^{\varphi}(a) + \sigma_{-\iota}^{\varphi}(a)), \quad a \in M.$$

c) If M is of the form $\{a \in \mathcal{N}_{s.a.} \mid \Phi(a) = a\}$, where \mathcal{N} is a von Neumann algebra, and Φ is an involutive antiisomorphism on \mathcal{N} , then

$$\rho_{t}^{\varphi}(a) = \frac{1}{2} \left(\sigma_{t}^{\overline{\varphi}}(a) + \sigma_{-t}^{\overline{\varphi}}(a) \right), \quad a \in M$$

where
$$\overline{\varphi}(a) = \frac{1}{2} \varphi(a + \Phi(a)), \ a \in \mathcal{N}_{s.a.}$$

REMARK 3.7. If φ is a tracial state, then by Proposition 3.6 a), $\rho_t^{\varphi} = \mathrm{id}_M$ for all $t \in \mathbb{R}$. The converse is also true. Indeed, if $\rho_t^{\varphi} = \mathrm{id}_M$, then $s(a, b) = \varphi(a \circ b)$ is a self-polar form on M. In particular $\varphi(a \circ b) \ge 0$ for all $a, b \in M_+$. But this implies that φ is a trace (cf. [16]).

The following proposition was proved by Woronowicz in the case where A is the self-adjoint part of a unital C^* -algebra (cf. [26, Section 2]).

PROPOSITION 3.8. For any state φ on a unital JB-algebra, there exists one and only one self-polar form s on A such that $s^*(1) = \varphi$.

Proof. The uniqueness is due to Woronowicz (cf. Remark 3.2 (a)). Theorem 3.3 shows the existence of s in the case where A is a JBW-algebra, and φ is a faithful normal state. The condition of faithfulness can easily be removed by passing to the reduced Jordan algebra $\{pAp\}$ where p is the support projection of φ .

Let now φ be an arbitrary state on a unital JB-algebra A. Then A^{**} is a JBW-algebra (cf. [19], [10]) and φ has a unique extension to a normal state $\tilde{\varphi}$ on A^{**} . Let \tilde{s} be the self-polar form on A^{**} associated with $\tilde{\varphi}$, and let s be the restriction of \tilde{s} to $A \times A$. To show that s is a self-polar form on A, it suffices to verify condition (iv) in Definition 3.1. Note first, that the range of the map $\tilde{s}^{*}: A^{**} \to A^{***}$ is contained in A^{*} . This is true, because for every $a \in (A^{**})_{+}$, the positive functional $\tilde{s}^{*}(a)$ is dominated by a multiple of the normal functional $\tilde{\varphi}$, which implies that $\tilde{s}^{*}(a)$ is also normal. Let $\psi \in A^{*}$, $0 \le \psi \le \varphi$, and let $\tilde{\psi}$ be the normal extension of ψ to A^{**} . By Remark 3.2 (b), there exists a $b \in A^{**}$, $0 \le b \le 1$, such that $\tilde{\psi}(a) = \tilde{s}(a, b)$ for all $a \in A^{**}$. Choose now a net (b_{α}) in A, such that $0 \le b_{\alpha} \le 1$ and $b_{\alpha} \to b$ in the weak* topology. Then for all $a \in A$

$$\lim_{\alpha} \langle s^*(b_{\alpha}), a \rangle = \lim_{\alpha} \langle s^*(a), b_{\alpha} \rangle = \langle \tilde{s}^*(a), b \rangle = \psi(a).$$

Hence $s^*([0, 1])$ is weak* dense in $[0, \varphi]$.

4. THE SELF-DUAL CONE P_{φ}^{\natural}

Let P be a cone in a real or complex Hilbert space H. P is called *self-dual* if P coincides with the cone $P^0 = \{ \xi \in H \mid (\xi, \eta) \ge 0, \eta \in P \}$. Following the notation of Connes [6], an operator $D \in B(H)$ is called a *derivation* of P if

$$\exp(tD)P = P, \quad t \in \mathbf{R}.$$

Moreover, a self-dual cone P is called *homogeneous* if for any face F in P, $e_F - e_{F^{\perp}}$ is a derivation of P. Here e_F and $e_{F^{\perp}}$ are the projections on the closed linear spans of F and F^{\perp} . $(F^{\perp} = \{ \xi \in P \mid (\xi, \eta) = 0, \eta \in F \}$.)

In [6, Section 4] Connes associated to any W^* -algebra \mathcal{M} acting standardly on a Hilbert space \mathcal{H} a homogeneous self-dual cone $\mathscr{P}^{\natural} \subseteq \mathcal{H}$, such that $\mathscr{M}_{s,a}$ is isometrically isomorphic to the set of self-adjoint derivations of \mathscr{P}^{\natural} (see also [2], [9]). Moreover, he proved that there is a one-to-one correspondence between W^* -algebras and those homogeneous self-dual cones which satisfy a certain condition of orientability (cf. [6, Section 5]).

In [4], [5] Bellissard and Iochum studied the connection between JBW-algebras and homogeneous self-dual cones (without orientation) and recently Iochum established a one-to-one correspondence between JBW-algebras and homogeneous self-dual cones (cf. [12, Chapter VII]).

The aim of the present section is to prove that the self-dual cone P^{\natural} , which Iochum associates to a JBW-algebra M, and the isometry δ of M onto the set of self-adjoint derivations of P^{\natural} can be expressed in terms of the modular cosine families ρ_i^{σ} .

Theorem 4.1. Let M be a JBW-algebra with a faithful normal state φ , and let s_{φ} be the self-polar form on M associated with φ . Let H_{φ}^{\natural} denote the completion of M with respect to the inner product

$$(a,b)^{\,\natural}_{\varphi}=s_{\varphi}(a,b)$$

and let $P_{\varphi}^{\, \natural}$ be the closure of $M_{\, +}$ in $H_{\varphi}^{\, \natural}$. Then

- a) P_{ω}^{\natural} is a homogeneous, self-dual cone in H_{ω}^{\natural} ;
- b) For any $a \in M$, there is a unique operator $\delta_{\varphi}(a) \in B(H_{\varpi}^{\natural})$, such that

$$(*) \qquad (\delta_{\varphi}(a)x, y)_{\varphi}^{\natural} = \frac{1}{2} ((\tilde{a} \circ x, y)_{\varphi}^{\natural} + (x, \tilde{a} \circ y)_{\varphi}^{\natural}), \quad x, y \in M$$

where

$$\tilde{a} = 2 \int_{-\infty}^{\infty} \frac{\rho_t^{\varphi}(a)}{\cosh(2\pi t)} dt.$$

Moreover, $\delta_{\varphi}: M \to B(H_{\varphi}^{\dashv})$ is an isometry of M onto the set of self-adjoint derivations of P^{\dashv} .

Proof. We divide the proof in two cases as in the proof of Theorem 3.3.

Case I. Assume that there exists a tracial state τ and a positive invertible operator $h \in M_+$, such that

$$\varphi(a) = \tau(h \circ a), \quad a \in M.$$

By Remark 3.7 we have $\rho_{\tau}^{\tau} = \mathrm{id}_{M}$, $t \in \mathbf{R}$ and $s_{\tau}(a, b) = \tau(a \circ b)$. Thus $H_{\tau}^{t_{1}}$ is the completion of M with respect to the norm $\tau(a^{2})^{1/2}$. Moreover the formula defining $\delta_{\tau}(a)$ reduces to

$$(\delta_{\tau}(a)x, y)_{\tau}^{\mu} = \frac{1}{2} (\tau((a \circ x) \circ y) - \tau(x \circ (a \circ y))) = (a \circ x, y)_{\tau}^{\mu}$$

i.e. $\delta_{\tau}(a)x = a \circ x$, $x \in M_+$. Hence by [4], P_{τ}^{h} is a homogeneous self-dual cone in H, and δ_{τ} is an isometry of M onto the self-adjoint derivations of P_{τ}^{h} .

By the proof of Theorem 3.3 (Case I) we have

$$s_{\varphi}(a,b) = \tau(\{h^{1/4} a h^{1/4}\} \circ \{h^{1/4} b h^{1/4}\}), \quad a,b \in M.$$

Hence the map $u_0(a) = \{h^{1/4}ah^{1/4}\}$ extends to a unitary map of H_{φ}^{\natural} onto H_{τ}^{\natural} . Since $u_0(M_+) = M_+$ we have $u(P_{\varphi}^{\natural}) = P_{\tau}^{\natural}$. Therefore P_{φ}^{\natural} is also a homogeneous, self-dual

cone and the map $\delta_{\varphi} \colon M_+ \to B(H_{\varphi}^{\natural_1})$ given by $\delta_{\varphi}(a) = u^* \delta_{\tau}(a) u$, $a \in M_+$ is an isometry of M_+ onto the self-adjoint derivations of $P_{\varphi}^{\natural_1}$. For $x, y \in M$

$$(\delta_{\varphi}(a)x, y)_{\varphi}^{h} = (\delta_{\tau}(a)ux, uy)_{\tau}^{h} =$$

$$:= \tau((a \circ \{h^{1/4}xh^{1/4}\}) \circ \{h^{1/4}yh^{1/4}\}) = \tau(a \circ (\{h^{1/4}xh^{1/4}\} \circ \{h^{1/4}yh^{1/4}\})).$$

However

$${h^{1/4}xh^{1/4}} \circ {h^{1/4}yh^{1/4}} = {h^{1/4}(xh^{1/2}y)h^{1/4}}.$$

Indeed, this formula is trivial for x = y by Lemma 2.3, and since both sides are symmetric in (x, y) the general case follows by polarization. Thus

$$(\delta_{\varphi}(a)x, y)_{\varphi}^{h} = \tau(a \circ \{h^{1/4}\{xh^{1/2}y\}h^{1/4}\}) =$$
$$= \tau(\{h^{1/4}ah^{1/4}\} \circ \{xh^{1/2}y\}).$$

As in the proof of Theorem 3.3 (case I) we have

$$\{h^{1/4}ah^{1/4}\} = \tilde{a} \circ h^{1/2}$$

where

$$\tilde{a} = \int_{-\infty}^{\infty} \{h^{it/2}ah^{-it/2}\} \cosh(\pi t)^{-1} dt =$$

$$= 2 \int_{-\infty}^{\infty} \{h^{it}ah^{-it}\} \cosh(2\pi t)^{-1} dt =$$

$$= 2 \int_{-\infty}^{\infty} \rho_t^{\varphi}(a) \cosh(2\pi t)^{-1} dt.$$

Therefore

$$(\delta_{\varphi}(a)x, y)_{\varphi}^{h} = \tau((\tilde{a} \circ h^{1/2}) \circ \{xh^{1/2}y\}) =$$

$$= \tau(\tilde{a} \circ (h^{1/2} \circ \{xh^{1/2}y\})).$$

By Lemma 2.3 and polarization, we get

$$h^{1/2} \circ \{xh^{1/2}y\} = \frac{1}{2} \left(\{h^{1/2}xh^{1/2}\} \circ y + \{h^{1/2}yh^{1/2}\} \circ x \right).$$

Hence

$$(\delta_{\varphi}(a)x, y)_{\varphi}^{h} = \frac{1}{2} \tau((\tilde{a} \circ y) \circ \{h^{1/2}xh^{1/2}\}) + \frac{1}{2} \tau((\tilde{a} \circ x) \circ \{h^{1/2}yh^{1/2}\}) =$$

$$= \frac{1}{2} ((x, \tilde{a} \circ y)_{\varphi}^{h} + (\tilde{a} \circ x, y)_{\varphi}^{h}).$$

This completes the proof in Case I.

For the proof in Case II we need the following lemma.

LEMMA 4.2 (Van Daele, Pedersen). Let \mathcal{H} be a complex Hilbert space, let $a \in B(\mathcal{H})$, and let h be a non singular, positive self-adjoint (possibly unbounded) operator on \mathcal{H} . If we put

$$a' = \int_{-\infty}^{\infty} h^{it} a h^{-it} \cosh(\pi t)^{-1} dt$$

then for $\xi, \eta \in D(h)$:

$$\frac{1}{2}((a'\xi,h\eta)+(a'h\xi,\eta))=(ah^{1/2}\xi,h^{1/2}\eta).$$

In particular, if h is bounded, then

$$a' \circ h = h^{1/2} a h^{1/2}$$
.

Proof. As already mentioned in Section 3, the case h bounded was treated in [15] (see also [25, Section 4]). Assume now that h is unbounded, and let p_n be the spectral projection of h corresponding to the interval [0, n]. Let $\xi, \eta \in \mathcal{H}$. Since h is bounded on $p_n(\mathcal{H})$, we have

$$-\frac{1}{2}\cdot((a'\xi_n,h\eta_n)+(a'h\xi_n,\eta_n))=(ah^{1/2}\xi_n,h^{1/2}\eta_n)$$

where $\xi_n = p_n \xi$, $\eta_n = p_n \eta$. By spectral theory

$$\lim_{n\to\infty} ||h^{\alpha}(\xi_n-\xi)|| = \lim_{n\to\infty} ||h^{\alpha}(\eta_n-\eta)|| = 0$$

for $0 \le \alpha \le 1$. Hence in the limit we get the stated equality.

Proof of Theorem 4.1 (continued).

Case II. Assume next that M is of the form

$$M = \{ x \in \mathcal{N}_{s.a.} \mid \Phi(x) = x \},$$

where \mathcal{N} is a W^* -algebra and Φ is an involutive antiisomorphism. The state φ can be extended to a state $\overline{\varphi}$ on \mathcal{N} , given by

$$\overline{\varphi}(a) = \frac{1}{2} \cdot \varphi(a + \Phi(a)), \quad a \in \mathcal{N}_{s.a.}.$$

We may assume that \mathcal{N} acts on a Hilbert space \mathcal{H} with a cyclic and separating vector ξ_0 . The self-polar form on $\mathcal{N}_{s,a}$ associated with $\overline{\varphi}$ is

$$\overline{s}(a,b) = (\Delta^{1/2}a\xi_0, b\xi_0), \quad a,b \in \mathcal{N}_{s,a}.$$

(cf. Proof of Lemma 3.4) and by the proof of Theorem 3.3 (Case II) the self-pelar form s_{φ} associated with φ is simply the restriction of \overline{s} to M. Hence the completion H_{φ}^{\natural} of M with respect to the norm

$$[a]_{\varphi}^{q} = s_{\varphi}(a,b)$$

can be identified with the closure of $\Delta^{1/4}M\xi_0$ in \mathcal{H} , and P_{ϕ}^{\pm} can be identified with the closure of $\Delta^{1/4}M_{+}\xi_0$. Thus P_{ϕ}^{\pm} coincides with the cone $P_{M,\phi}^{\pm}$ considered by Iochum in [12, Chapter VII, Section 2]. Iochum proves that this cone is self-dual and homogeneous. Moreover he shows that the map

$$a \rightarrow \frac{1}{2}(a + JaJ)$$
 (restricted to H_o^{\flat})

is an isometry of M onto the set of self-adjoint derivations of $P_{\phi}^{\,\mathrm{h}}$.

Let $\delta_{\phi}(a)$ denote the restriction of $\frac{1}{2}$ (a - JaJ) to H_{ϕ}^{L} . It remains to be proved that $\delta_{\phi}(a)$ is given by the formula (*) stated in Theorem 4.1. From Proposition 3.6(c) we have

$$\rho_t^{\phi}(a) = \frac{1}{2} \cdot (\sigma_t^{\overline{\phi}}(a) + \sigma_{-t}^{\overline{\phi}}(a)), \quad a \in M.$$

Let $x, y \in M$. Since $x, y \in \mathcal{A}_{s,a}^{*}$, $J\Delta^{1/4}x\xi_0 = \Delta^{1/4}x\xi_0$ and $J\Delta^{1/4}y\xi_0 = \Delta^{1/4}y\xi_0$. Hence

$$(\delta_{\varphi}(a)x, y)_{\varphi}^{h} = \frac{1}{2}((a + JaJ)\Delta^{1/4}x\xi_{0}, \Delta^{1/4}y\xi_{0}) =$$

$$= \operatorname{Re}(a\Delta^{1/4}x\xi_{0}, \Delta^{1/4}y\xi_{0}).$$

Put

$$\tilde{a} = 2 \int_{-\infty}^{\infty} \rho_t^{\varphi}(a) \cosh(2\pi t)^{-1} dt =$$

$$= 2 \int_{-\infty}^{\infty} \sigma_t^{\overline{\varphi}}(a) \cosh(2\pi t)^{-1} dt =$$

$$= \int_{-\infty}^{\infty} \Delta^{it/2} a \Delta^{-it/2} \cosh(\pi t)^{-1} dt.$$

By Lemma 4.2,

$$\begin{split} (aA^{1/4}x\xi_0, A^{1/4}y\xi_0) &= \frac{1}{2}((\tilde{a}x\xi_0, A^{1/2}y\xi_0) + (A^{1/2}x\xi_0, \tilde{a}y\xi_0)) = \\ &= \frac{1}{2}(A^{1/4}\tilde{a}x\xi_0, A^{1/4}y\xi_0) + (A^{1/4}x\xi_0, A^{1/4}\tilde{a}y\xi_0)). \end{split}$$

Since $(\Delta^{1/4}c\xi_0, \Delta^{1/4}d\xi_0)$ is real for $c, d \in \mathcal{N}_{s.a.}$, we get by splitting $\tilde{a}x$ and $\tilde{a}y$ in their hermitean and skew-hermitean parts, that

$$\operatorname{Re}(a\Delta^{1/4}x\xi_0,\Delta^{1/4}y\xi_0) = \frac{1}{2}(\Delta^{1/4}(\tilde{a}\circ x)\xi_0,y\xi_0) + (x\xi_0,\Delta^{1/4}(\tilde{a}\circ y)\xi_0)).$$

This proves that

$$(\delta_{\varphi}(a)x, y)_{\varphi}^{\ \ \ \ \ \ } = (\tilde{a} \circ x, y)_{\varphi}^{\ \ \ \ \ \ \ } + (x, \tilde{a} \circ y)_{\varphi}^{\ \ \ \ \ }.$$

General case. It is easily seen that if $(P_i)_{i \in I}$ is a family of homogeneous self-dual cones in real Hilbert spaces $(H_i)_{i \in I}$, thue the cone

$$P = \{ \xi \in \bigoplus_{i \in I} H_i \mid \xi = (\xi_i), \ \xi_i \in P_i \text{ for all } i \in I \}$$

is a homogeneous self-dual cone in $H = \bigoplus_{i \in I} H_i$. Moreover $d \in B(H)$ is a derivation of P if and only if $d = \bigoplus_{i \in I} d_i$, where $d_i \in B(H_i)$ are derivations of P_i . Hence by Lemma 2.1 and Lemma 2.2 the general case can be reduced to Case I and Case II by a central decomposition of the algebra.

5. APPENDIX

We will give a short proof of the following result due to Kurepa (cf. [14, Theorem 2]).

PROPOSITION 5.1. Let $(u_t)_{t \in \mathbb{R}}$ be a weakly continuous one-parameter family of bounded self-adjoint operators on a real or complex Hilbert space H, such that

- (i) $u_0 := 1$;
- (ii) $||u_t|| \leq 1$, $t \in \mathbb{R}$;

(iii)
$$u_s u_t = \frac{1}{2} (u_{s+t} + u_{s-t}), \quad s, t \in \mathbf{R}.$$

Then there exists a positive self-adjoint operator D on H, such that

$$u_t = \cos(tD), \quad t \in \mathbf{R}.$$

Proof. It is enough to treat the case where H is a complex Hilbert space. (If H is a real Hilbert space we can pass to $H^{\mathbf{C}} = H + \mathrm{i}H$.)

Note that by (iii)

$$u_t = u_{-1}, \quad t \in \mathbb{R}.$$

The weak continuity of $(u_t)_{t \in \mathbb{R}}$ actually implies strong continuity, because

$$||(u_s - u_t)\xi||^2 = ((u_s^2 + u_t^2 - u_s u_t - u_t u_s)\xi, \xi) =$$

$$= \frac{1}{2} ((u_{2s} + u_{2t} + 2 - 2u_{s+t} - 2u_{s-t})\xi, \xi)$$

for all $\xi \in H$. For $f \in L^1(\mathbf{R})$ we put

$$u(f) := \int_{-\infty}^{\infty} f(t)u_t dt$$
 (strongly).

A simple computation shows that for $f, g \in L^1(\mathbf{R})$:

$$u(f)u(g) = \frac{1}{2}(u(f*g) + u(f*\check{g}))$$

where $\check{g}(t) = g(-t)$. Hence if f and g are even functions, then u(f)u(g) = u(f * g). The functions $(f_{\lambda})_{\lambda > 0}$ given by

$$f_{\lambda}(t) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + t^2}, \quad \lambda > 0$$

form a continuous convolution semigroup of even functions in $L^1(\mathbf{R})$. Note that $f_{\lambda} \ge 0$, $||f_{\lambda}||_1 = 1$ and that $(f_{\lambda})_{\lambda \ge 0}$ is an approximating unit for $\lambda \to 0$. Therefore $(u(f_{\lambda}))_{\lambda \ge 0}$ is a strongly continuous semigroup of self-adjoint contractions and $u(f_{\lambda}) \to 1$

strongly for $\lambda \to 0$. Let (-D) be the generator of this semigroup. Then D is positive self-adjoint and

$$u(f_{\lambda}) = \exp(-\lambda D), \quad \lambda > 0.$$

The semigroup (f_{λ}) can be extended to a holomorphic semigroup $(f_{\lambda})_{\text{Re }\lambda>0}$, where f_{λ} is given by the same formula as for λ real. Since both $u(f_{\lambda})$ and $\exp(-\lambda D)$ are strongly holomorphic in the half plane $\text{Re }\lambda>0$, we have

$$u(f_{\lambda}) = \exp(-\lambda D), \quad \operatorname{Re} \lambda > 0.$$

For $t \in \mathbf{R}$ and $\sigma > 0$

$$\cos(tD) e^{-\sigma D} = \frac{1}{2} (u(f_{\sigma+it}) + u(f_{\sigma-it})).$$

A simple computation shows that

$$f_{\sigma+it}(s) + f_{\sigma-it}(s) = f_{\sigma}(s-t) + f_{\sigma}(s+t), \quad s \in \mathbf{R}.$$

Therefore

$$\cos(tD)e^{-\sigma D} = \frac{1}{2} \int_{-\infty}^{\infty} (f_{\sigma}(s-t) + f_{\sigma}(s+t))u_{s} ds$$

and since $(f_{\sigma})_{\sigma>0}$ is an approximating unit, we conclude that

$$\cos(tD) = \operatorname{strong-lim}_{\sigma \to 0}(\cos(tD)e^{-\sigma D}) =$$

$$= \frac{1}{2}(u_t + u_{-t}).$$

REMARK 5.2. Kurepa's setting-up is more general than stated in Proposition 5.1. He considers weakly continuous one-parameter families of bounded normal operators satisfying (i) and (iii) and proves the existence of a normal operator D, such that $D - D^*$ is bounded and $u_t = \cos(tD)$, $t \in \mathbb{R}$. However, it is clear that the extra conditions $u_t = u_t^*$ and $||u_t|| \le 1$ force D to be self-adjoint, and by exchanging D with |D| one can get D positive. Kurepa considers only separable Hilbert spaces, but this condition is not essential, because the Hilbert space can always be written as a direct sum of separable u_t -invariant subspaces.

REFERENCES

- ALFSEN, E. M.; SHULTZ, F. W.; STØRMER, E., A Gelfand-Neumark theorem for Jordan algebras, Advances in Math., 28(1978), 11-56.
- ARAKI, H., Some properties of modular conjugation operator of von Neumann algebras and a non commutative Radon-Nikodym theorem with a chain rule, *Pacific J. Math.*. 50(1974), 309-354.

- 3. Behnke, H., Hermitian Jordan Banach algebras, J. London Math. Soc. (2), 20(1979), 327--333.
- 4. Bellissard, J.; Iochum, B., Homogeneous self-dual cones versus Jordan algebras. The theory revisited, Ann. Inst. Fourier (Grenoble), 28(1978), 27-67.
- 5. Bellissard, J.; Iochum, B., L'algebre de Jordan d'un cône autopolaire facialement homogène, C.R. Acad. Sci. Paris, 288(1979), 229-232.
- 6. Connes, A., Caractérisation des espaces vectoriels ordonnés sous-jacent aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble), 24(1974), 121-155.
- 7. EDWARDS, C. M., Ideal theory in JB-algebras, J. London Math. Soc. (2), 16(1977), 507-513.
- 8. Effros, E. G.; STORMER, E., Jordan algebras of self-adjoint operators, *Trans. Amer. Math. Soc.*, 127(1967), 313-316.
- 9. HAAGERUP, U., The standard form of von Neumann algebras, Math. Scand., 37(1975), 271-283.
- 10. HANCHE-OLSEN, H., A note on the bidual of a JB-algebra, Math. Z., 175(1980), 29-31.
- 11. Hanche-Olsen, H., On the structure and tensor products of JC-algebras, Canad. J. Math., 1984, to appear.
- 12. IOCHUM, B., Cones autopolaires et algèbres de Jordan, Springer Lecture Notes in Math., 1049(1984).
- 13. JACOBSON, N., Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Providence, R.I., 1968.
- 14. Kurepa, S., A cosine functional equation in Hilbert space, Canad. J. Math., 12(1960), 45-50.
- 15. PEDERSEN, G. K., On the operator equation HT + TH = 2K, Indiana Univ. Math. J., 25(1976), 1029 1033.
- 16. Pedersen, G.K.; Stormer, E., Traces on Jordan algebras, Canad. J. Math., 34(1982), 370-373.
- 17. PEDERSEN, G.K.; TAKESAKI, M., The operator equation THT = K, Proc. Amer. Math. Soc., 36(1972), 311-312.
- SAKAI, S., C*-algebras and W*-algebras, Springer-Verlag, Berlin Heidelberg New York, 1971.
- Shultz, F. W., Jordan algebras which are Banach dual spaces, J. Functional Analysis, 31(1979), 360 - 376.
- 20. STACEY, P. J., The structure of type I JBW-algebras, Math. Proc. Cambridge Philos. Soc., 90(1981), 477:-482.
- 21. STACEY, P. J., Type I, JBW-algebras, Quart. J. Math. Oxford, 33(1982), 115-127.
- 22. STURMER, E., Jordan algebras of type I. Acta Math., 115(1966), 165-184.
- TAKESAKI, M., Tomita's theory of modular Hilbert algebras and its applications, Springer Lecture Notes in Math., 128(1970).
- 24. TOPPING, D. M., Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc., 53(1965).
- 25. VAN DAELE, A., A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras, *J. Functional Analysis*, **15**(1974), 378-393.
- Wordonowicz, S. L., Selfpolar forms and their applications to the C^φ-algebra theory, Rep. Math. Phys., 6(1974), 487–495.
- 27. Wright, S., Jordan Co-algebras, Michigan Math. J., 24(1977), 291-302.

UFFE HAAGERUP Matematisk Institut, Odense Universitet, DK-5230, Odense M, Denmark. HARALD HANCHE-OLSEN
Matematisk Institutt,
Universitetet i Oslo,
Blindern, Oslo 3,
Norway.