J. OPERATOR THEORY . INCREST. 1984
11(1984), 343..364 © Copyright by A

TOMITA-TAKESAKI THEORY FOR JORDAN ALGEBRAS

UFFE HAAGERUP and HARALD HANCHE-OLSEN

1. INTRODUCTION

The present paper is an attempt to generalize the Tomita-Takesaki Theory to
JBW-algebras, the Jordan algebra analogues of W*-algebras (cf. [19]). If # is a
W*.algebra and ¢ is a normal faithful state on .#, it is not possible to distinguish

a? and ¢, solely in terms of the Jordan product x oy = —;—— (xy + yx). Indeed if

one computes the modular automorphism group of ¢ considered as a state on the
opposite algebra .#/°P (i.e. the vector space .# equipped with the product (x, y) — yx)
one gets 02, instead of gf. However it turns out that the one parameter family

1
p? = > (6f +a2))

can be generalized in a natural way to normal states on JBW-algebras (cf. Theorem 3.3
and Proposition 3.6). The construction of p? makes use of the full structure theory
of JBW-algebras.

We reduce the general case to the following two cases:

(I) There exists a trace T on the JBW-algebra M, such that ¢(x) = 7(x<h)
for some invertible e M, .

(I1) There exists a von Neumann algebra .# and an involutive anti-auto-
morphism & of .#, such that M is isomorphic to the self-adjoint part of #® =
= {xe M | ®(x) = x}.

In the case of W+-algebras the K.M.S.-conditions give a very useful charac-
terization of the modular automorphism group ¢?. No analogue of the K.M.S.-
-conditions seems to be available for p?. However, it is possible to give a characteri-
zation of p? which does not involve structure theory. We prove that the one para-
meter family p, = p? is characterized by the following five conditions:



344 S UFFE HAAGERUP and HARALD HANCHE-OLSEN

(i) The map ¢ — p,(x) is w*-continuous for all xe M;
(ii) Each p, is normal positive and preserves the unit;

. 1
(1") Po= ldM and PPy = ":2— (ps+1 + ps—t)a s, 1€ R’

(iv) @(p(a)ob) = @(acp,(b)), a,be M;
(v) The bilinear form on M defined by

s(x,7) = S (p(a) + b) cosh(xr) 1 dt

is a self-polar form on M in the sense of Connes [6] and Woronowicz [26].

It follows from this result that for every state ¢ on a JB-algebra A, there
is a unique self-polar form s, on A, such that s(x, 1) = ¢(x) (cf. Proposition 3.8).
The corresponding result for C*#-algebras was proved by Woronowicz in [26).

Recently, Ilochum has proved that there is a one-to-one correspondence between
JBW-algebras and homogeneous self-dual cones in Hilbert spaces (cf. {12, Chap-
ter VII]). The special case of JBW-algebras with a faithful tracial state was treated
previously by Bellissard and Iochum in [4].

In Section 4 of this paper we show that the homogeneous, self-dual cone
associated with a o-finite JBW-algebra can be realized as the closure of M, in the
real Hilbert space H obtained by completing M with respect to the norm coming
from the inner product

[o o]

(a,b); = S o(p(a) e b) cosh(nt)~1dt.

-0
Moreover, we show that the isomorphism between M and the set of self-adjoint

derivations of the self-dual cone described in [5] and [12] can be expressed explicitly
in terms of the one parameter family pf.

2. PRELIMINARIES ON JBW-ALGEBRAS
A JB-algebra A is a Jordan algebra over R with a complete norm, such that
llacbll < llalliibll and |la® + bl > fla®

for all a,be 4 (cf. [1], [3], [19]). A JBW-algebra is a JB-algebra which is a dual
Banach space. A JB-algebra is called a JC-algebra if it is isomorphic to a norm closed
Jordan algebra of self-adjoint operators on a Hilbert space. Similarly a JBW-algebra
is called a JW-algebra if it is isomorphic to a g-weakly closed Jordan algebra of
self-adjoint operators on a Hilbert space.
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From [I] we know that a JB-algebra 4 is a JC-algebra if and only if no
quotient of A is isomorphic to M§, the exceptional algebra of self-adjoint 3 x 3
matrices over the Cayley numbers. By [19] every JBW-algebra M is of the form

M = M» @ M=

where M® is a W-algebra, and M** is isomorphic to C(X, M§) for some hyper-
stonean space X. Since M3} is a finite dimensional Banach space, M can also be
written in the form L®(Q, u, M$§) for some Radon measure y on a locally compact
space Q. Combining this result with the classical theory of JW-algebras due to
Topping [24] we get that any JBW-algebra can be decomposed into a type I-part,
a type Il-part, and a type IlI-part,

M=M1 ('DMH@MIH

and M, can be decomposed further into its type I, parts, where n can be any cardinal

number. The exceptional part M = L®(Q, u, M) should be considered as a part

of M, . Using Stacey’s results from [20], [21] each of the type I,-parts (n < c0) of M
3 .

can be decomposed into

M]": Z Lw(ga’#a>Fa)

where the p,’s are Radon measures on locally compact spaces Q,, and F, are Jordan

factors of type I,. (A similar decomposition holds when » is an infinite cardinal

number, but in this case one has to use w*-measurable functions from Q, to F,,

because the type I, factors are no longer reflexive Banach spaces, when # is infinite.)
Besides the exceptional JBW-factor M3 of type I,, the only JBW-factors of

typel,,n > 3 are M, (R),, , M,(C),, and M,(H), , . The JBW-factors of type I,

are the spin factors V,,, where m can be any finite or infinite cardinal number > 2.
Recall that a positive functional T on a JB-algebra A is called a trace if

(ao(boc)) =1((aob)oc), a,b,ceAd

(cf. [4], [16]). Note that any JBW-factor of type I,, n < oo, has a unique tracial
state 7.

The following three lemmas are all easy conseqences of known results.

LEMMA 2.1. Let M be a IJBW-algebra, which is a direct sum of type I,
algebras (n < o0), and let ¢ be a normal, faithful state on M. Then there exists
a tracial state © on M, and a central decomposition

M=®Ma
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of M, such that for each a the restriction of @ to M, is of the form

o(x) = t(hyox), x€ M,
Jor some invertible element h,e M, .

Proof. By the structure theory for type I algebras, we can assume that M
is of the form

M = L2, u, F)

where u is a Radon measure on a locally compact space 2 and F is a JBW-
-factor of type I,, for some n<oo. Let 1, be the normalized trace on F. Define a
map T of M into Z(M) (the center of M) by

(T(x)) (@) = to(x(@))l, x€ L™, p, F), weL.

Clearly T is a w*-continuous linear map of M into Z(M). In fact T is a center
valued trace in the sense of [24], but we shall not need this fact. Define a tracial state
7 on M by

(x) =@-T(x), xeM.

Let p be an abelian projection in M. Then p(w) is 0 or a minimal projection
in F for locally almost all @ € Q. Since 14(¢) = 1/n for any minimal projection ¢
in F, we get T(p) = (1/n)c(p). (The central support c(p) of p is 1 for those w € @
such that p(w) # 0, and 0 on the other w’s.) Hence we get

o(p) < o(c(p)) = @(nT(p)) = nt(p).

Since any projection is the sum of abelian projections, the above inequality is true
for all projections in M. Hence by spectral theory

o(x) < nt(x)

for all xe M. . Sakai's linear Radon-Nikodym Theorem {18, Proposition 1.24.4]
is true also for JBW-algebras (with the same proof as for W*-algebras). Hence
there exists a he M, [|h|| < n, such that

o(x) =1(hox), xeM.

Clearly @(1 — [A]) = 0, where [/] is the support projection of h. Hence [A] =: 1.
Let p,, be the spectral projection of / corresponding to the interval [0, 1/m]. Clearly
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and w*-lim p, = 0. Sincec(p,) < nT(p,,)and

M0

c(p) = c(py) 2 c(py) > - -

it follows that also

w¥-lim c(p,,) = 0.

m—co

_ Put now ¢, = c(p,) — c<(Pn+1)- Then (g,,) are orthogonal central projections with
sum 1, and /,, = g,/ isinvertible in the Jordan algebra g,,M. This proves Lemma 2.1.

LEMMA 2.2. Let M be a JBW-algebra without type 1, and type 15 parts.
Then there exists a von Neumann algebra A", and an involutive x-anti-automorphism
@ of &, such that A is Jordan isomorphic to

{X E‘/Vs.a. | q)(x) = X}.

Proof. Since M has no type I, part it is a JW-algebra. Recall that a JW-
-algebra N is called universally reversible, if for any normal representation © of N
on a Hilbert space H, and any finite set y,, ..., y, of elements in =(NN), the operator
Yit-- Yyt Yy ... -y is also contained in n(N). By [22, Theorem 6.6] any JW-
-algebra without a type I, part is universally reversible. Hence M is universally
reversible. The existence of (A", ®) can now be proved as in the case of universally
reversible JC-algebras (cf. [11, Proposition 2.3]).

LeMMA 2.3. a) A unital IB-algebra generated by two elements (and 1)} is
a JC-algebra.

b) A JBW-algebra generated by two elements (and 1) is a JW-algebra.

Proof. a) Because of the exceptional nature of M3 [13, Chapter 1, Theo-
rem 11} and the Shirshov-Cohn theorem [13, Chapter 1, Theorem 10] M$ cannot
be algebraically generated by two elements and the identity. Since M3} is finite
dimensional it also cannot be generated as a JB-algebra by two elements and 1|.
Hence, if A is any unital JB-algebra generated by two elements and the unit,
it cannot have a quotient isomorphic to M§, i.e. 4 is a JC-algebra.

b) Let M be a JBW-algebra generated by two elements x, y and the iden
tity 1, and let A be the smallest norm closed Jordan algebra containing x, y, I.
The imbedding i: 4 - M can be extended to a normal Jordan homomorphism 7 of
A*™* into M. Since A is dense in M, 7(A**) = M. Hence there exists a central
projection p € A** such that M is isomorphic to pA** (cf. [7, Theorem 3.3]).

From a) we know that A4 is a JC-algebra. Hence by [8, Theorem 1], A** is a
JW-algebra. This proves b).
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3. THE ONE-PARAMETER FAMILY p¢{

In [6], [26], Connes and Woronowicz introduced the notion of self-polar
forms on C#*-algebras. With obvious modifications Woronowicz’ definition makes
sense also in the case of JB-algebras.

DerFINITION 3.1. Let A be a unital JB-algebra. For any bilinear form
t: A x A — R welet t* denote the linear map from A4 to A* defined by

(t*(a),b) =1{a,}b), a,beA.

A self-polar form on A is a positive, symmetric bilinear form s on A, for which
(i) s(a,b) 20, abeAd,
(i) s*([0, 1]) is weak* dense in [0, s*(1)].

Here [¢, ] means {{ | £ < { < 5} in any ordered vector space.

REMARK 3.2. a) Using Woronowicz’ result [26, Theorem 1.2] on the com-
plexification of A4, it follows that if 5, and s, are two self-polar forms on a
JB-algebra such that sy (1) = s3(1), then s = s,.

b) If s is a self-polar form on a JBW-algebra, such that s*(1) is a normal
functional on A, an elementary compactness argument shows that s*([0, 1]) =

= [0, s*(1)].
We are now able to state the main result of this paper:

THEOREM 3.3. Let M be a IBW-algebra with a normal, faithful state .
Then there is a unique one-parameter family (p,);er of operators on M, satisfying

(i) The map t - p(x) is w*-continuous for all xe M;
(i) Each p, is positive, normal and preserves the unit;

. 1
(ili) po =1id,, psp,= —2-(ps+, + ps-1), S tER;

(iv) o(p,(a) ob) = placp(b)), a,beM;
(v) The bilinear form on M defined by

s(a, b) = S @(p,(a)ob) cosh(nt)~1dt, a,be M,

is a self-polar form on M.

Proof of uniqueness of p,. Let H¥ denote the completion of M with respect
to the inner product

(,b)& = p(asb).
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Assume that (p,) satisfies the conditions of Theorem 3.3. If xe M, ||x|¥=1,
we find

(e ()EP = @(px) ° (X)) = @(p}(x) o x) =

= S 0pa () + ) 03) = - (a0, F + (1)) <

1
< —2—(Hp2,(X)ll$ + D).
By condition (ii) in Theorem 3.3, ||p,(x)|| < {|x]| for all r. Hence the constant
K = sup|lp(x)11
teR
is finite. The above inequality shows that K2 < (1/2)(K 4+ 1), which implies that
K < 1. Hence ||jp(x){|#¥ < 1. Therefore each p, can be extended to an operator u,
on H¥ with |ju,|| < 1. It is easily seen that (u,),er is a weakly continuous family

of operators on the real Hilbert space HF. By the conditions (iii) and (iv) of
Theorem 3.3 we get

1
®
Up = 1, us, = '_2— (us+t + us—t) and Us = Uy

for all 5,1€ R. By Kurepa’s result [14, Theorem 2] one can derive fairly easily
that there exists a (possibly unbounded) positive, self-adjoint operator D on H},
such that #, = cos(¢tD), t € R. In the appendix (Section 5) we give a direct proof
of this fact. Since

1 . x \?
S e"* cosh(nt)~1dt = cosh (—2~)
for any x € R, we get
o0
D -1
S u,cosh(nt)~1dt = cosh (7) (strongly)..

Hence for a,b e M the self-polar form (v) in Theorem 3.3 can be expressed as.
¢ DN,
s(a, b) = S o(pa) o b) cosh(nt)-*dt = (cosh(z—) a, b),

where @ and b denote the natural imbeddings of a and b in HE.
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If (p;),eris another one-parameter family satisfying (i)—(v) in Theorem 3.3,
we get in the same way operators u; and D’ on H¥, such that D’ is positive and
self-adjoint, u} = cos(tD’)

D\, .
§'(a, b) = (cosh(—zw) a, b), abeM

is a self-polar form on M. Clearly s*(1) = (s')*(1) = ¢. Hence by the Worono-
wicz uniqueness Theorem (cf. Remark 3.2 a) s = s’, which implies that

-1 ry -1
cosh(-D~) = cosh(»D-)
2 2
and since the function cosh is one-to-one on [0, co], we conclude that D = D’.
Therefore u, = u;, t € R, which clearly implies that p, = p; for all r € R.

Proof of existence of p,. Assume that M = ¥ ® M, and o= Y. ®2,0,, where o,

are faithful normal states on M, and 2, are positive scalars with sum 1. If we can
find for each « a one-parameter family p, , satisfying the conditions in Theorem 3.3
with respect to (M,, ¢,), then clearly

Pr= Z ® Pa,¢
satisfies the conditions with respect to (M, ¢). Hence by Lemma 2.1 and Lemma 2.2
it is sufficient to treat the following two cases.

Case 1. There exists a faithful trace T on M, and an invertible element /4
in M., such that ¢(x) = 1(xoh) for all xe M.

Caske 1. There exists a von Neumann algebra .4~ and an involutive #-auto-

morphism @ of 4, such that M is Jordan isomorphic to {xe A" ' &(x) = x}.
Proof of existence in Case I. We will show that
p(a) = {h'ah="}, aeM

satisfies the conditions in Theorem 3.3. As usual {---} denotes the Jordan triple
product

{abc} =ac(bec)+co(asb) —be(acc)
and 4% is the element cos(rlogh) + isin(¢logh) in the complex Jordan algebra
MC= M+ iM. MC has a natural norm, which makes it a ‘“JB*-algebra”
(cf. [27]), but we shall not need this fact. p, maps M into itself because, for a € M,

p{a) = {cos(t logh) a cos(t logh)} + {sin(t logh) a sin(r logh)}.
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The conditions (i) and (ii) of Theorem 3.3 can easily be verified. Clearly p, = id,,,
so to verify (iii) it suffices to show that

{his{hilah—il}h-i:} —
= -;—-({hi(“‘”ah'i(””} + {Ili(‘""ah"i(s—f)})

for ae M and s, t € R. However, by Lemma 2.3, the JBW-algebra generated by a
and £ is a JW-algebra, and for two operators a, 7 on a Hilbert space the above
equality is trivial.

Next we prove (iv). By use of Lemma 2.3 we find

{hi'(a o hYh=1*} = {hi'ah=i*} o h

for all a e M. It follows from the trace property

t(ao(beoc)) =1((acb)oc)
that for all ¢,d,e,fe M,
t({ecf } od) = t(c o {edf })

and the formula is also true if ¢,d, e, fe MC. Hence for a,be M:
(a e p, (b)) = t(h o (ao {H"bR=11})) =
= t((hoa) o {h'bh~"}) = t({h*(hoa)h~1"} ob) =
= t((ho {h*ah=1*}) o b) = t(h o ({h'ah=*} o b)) = @(p(a) = b).

To prove (v), let a,be M, and put
a = S {h"ah=*} cosh(nt)~1dt.
—o0
We claim that a’oh={h"?ah*’?}. By Lemma 2.3 it is enough to check that the formula
is true when ¢ and /4 are operators on a Hilbert space. But in this case the

formula is due to Van Daele and Pedersen (see [25] and [15, Proposition 3]).
Therefore

(o]

s(a, b) = S ¢(pda) ob) cosh(rnt)-1dt =

— 00

=1(ho(a ob)) =1((hoa’) ob) = t({h*ah'*} - b) =

— r({h”“{h”“ah”‘}h”‘} Ob) _ T({h1/4a/11/4} ° {h1/4b/11/4}).
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This formula shows that s is a positive symmetric form on M. Moreover s(a, b) = 0
for a,be€ M, (cf. {16, Theorem (iii)]). From the the formula

s(a, b) = t({h**ah*} o b)

we have s%(1) = ¢. Let now ¥ € [0, ¢). By the generalisation of Sakai’s linear
Radon-Nikodym Theorem to JBW-algebras, there exists k € M, such that

Y(x) =1(kox), xeM.,.
Let (kK — /), denote the positive part of k — A. Since
0> —o)(k—h),)=1t((k—h)(k—h))=t((k— )
it follows that k < h. Put a = {A="?kh~"*}. Then 0 < a < 1, and
s(a, x) = 1({h2ah'?} o x) = 1(k 0 X) = ()

for all x e M, i.e. s%(a) = y. Hence s*({0, 1]) = [0, s*(1)] and we conclude that s
is a self-polar form.

For the existence proof in case II we shall need the following lemma:

LEMMA 3.4. Let .V be a von Neumann algebra, and let ¢ be a normal
faithful state on N°. Then

s(a, b) = S @(c?(a) o b) cosh(nt) 1 dt

is a self-polar form on ¥, , = {xe N |x = x*}, and s*([0, 1]) = [0, ¢].

Q.

Proof. We may assume that 4" acts on a Hilbert space H with a cyclic
and separating vector &,, such that

(P(x) = (xéo s go), xeN.

Let S, F,J, 4 be the usual operators from Tomita-Takesaki theory coming from
(A, &). From [6] we know that the self-polar form s on 4, , for which
s%(1) == ¢ is given by

s(a, b) = (4'2aé,, b&,), a,be N, .
(Strictly speaking, Connes defines s as a sesquilinear form on ./, but it is clear

that when we restrict to A", , , we get a self-polar form in the sense of Definition 3.1.)
Let a,be ¥, , and put

a = S a¥(a) cosh(nt)-1dr.

-0
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Then

@t = \ dita,cosh(nr)~1ds = 2(4" + A=¥%)-14¢,

ég/'ﬁg

because

-] . . .
S e cosh(nt)1dr = cosh(—;-) , seR

and cosh(—;— logA) = —(4"® + 4-'?). Therefore a’éy e D(4Y*) n D(4-*%) and

1
2

‘;_ (4" + APy a'E, = a,.
Hence
(4'%ag,, b&y) = (a&y, 4V*b&y) =
= _;-(M"“ + A7) @&y, AP bEy) = —;—«A‘” a'Ey, A" béo) 4 (a'Ey, bEy)) =

- —;—((JSa’éo, JSbEs) + (@', bE)) = —;—((béo, Q&) + (@', bEy)) =

= @@’ ob)= S @(a?(a) o b) cosh(mt)~1dr.

This proves Lemma 3.4.

Proof of existence in Case II. In this case we can assume that
M={acH|a=a* = P(a)}

for some von Neumann algebra .4/, and some involutive antiautomorphism & of A"
Let ¢ be the state on A" for which

(a) = —;—cp(a + ®(a), aed,,.

Clearly o is a normal faithful @-invariant extension of ¢. Using that ¢ is an
antiisomorphism one checks easily that @ satisfies the K.M.S.-conditions with respect

to the one parameter automorphism groupt — @ o 0% 0 ®. Hence

0'?:¢00’fto¢, teR
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or equivalently
Qo0g?=0% 0P, teR.

From this it follows that —]2-(0;7 -+ 0% ,) maps M into itself. Let p, be the restriction

| B — -
of > (6? + 6%,) to M. We will show that p, satisfies the conditions of Theorem 3.3.

The conditions (i)—(iv) are easily verified. Let us prove (v). By Lemma 3.4
(> ]
S(a, b) = S @(6%(a) o b) cosh(nt) 1 dt
~ 00
is a self-polar form on A", . The form on M given by

sta,b) = \ ¢(p,a)ob) cosh(nt)=1dt

émg

18 simply the restriction of § to M. Hence s is a positive symmetric form on M
and s{(a,b) = 0 for a,be M,. Moreover s*(1) =¢. Let we M*, 0 £ o < o.
Let @ be the state on .4, for which

o(a) = -%— w(a + ¥(a)), aeN,, .

Thenclearly0 € @ < @. By Lemma 3.4, thereexistsae A4, , 0 < a < 1, such that
w(b) = s(a, b) for be N, .
But since @ is ¢-invariant, we have also
(b)) = s(a, P(b)).

Using 9@ =9 and 0% o® = Pog? we get that 3(a, P(b)) = s(¥(a), b)-

Hence

@(b) = -;— ($(a, b) -+ 5(P(a), b)) = F(a', b)

where @’ = ——;— (a + ®(a)) e M, and 0 <a’< 1. Hence s is a self-polar form on

M. This completes the proof of Theorem 3.3.
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DerFinNITION 3.5. The unique one-parameter family p, satisfying the conditions
of Theorem 3.3 we call the modular cosine family associated with ¢, and it will be
denoted (p?),er.

The following proposition can be extracted from the proof of Theorem 3.3.

PROPOSITION 3.6. Let M be a JBW-algebra and ¢ a faithful normal state
on M.

a) If there exists a trace 1 on M and an invertible element he M +» Such
that @(a) = 1(hoa), ae M, then

p?(a) = {h'ah~"} =
= {cos(t logh) a cos(tlogh)} + {sin(z logh) a sin(t logh)}.

b) If M is the self-adjoint part of a von Neumann algebra A, then
1
pi(a) = EY (67(a) + 024(a)), acM.

c) If M is of the form {aeN, |P(a) = a}, where & is a von Neumann
algebra, and @ is an involutive antiisomorphism on A, then

p2(a) = % (03(a) + 0% (a)), a€M

where @(a) = —;~ p(a+ P(a)), aetN, .

REeMARK 3.7. If ¢ is a tracial state, then by Proposition 3.6a), pf =id,
for all 1 € R. The converse is also true. Indeed, if pf = idy,, then s(a, b) = @(a - b)
is a self-polar form on M. In particular ¢(acb) > 0 for all a,be M. But this
implies that ¢ is a trace (cf. [16]).

The following proposition was proved by Woronowicz in the case where A
is the self-adjoint part of a unital C*-algebra (cf. [26, Section 2}).

PRroPOSITION 3.8. For any state ¢ on a unital IB-algebra, there exists one
and only one self-polar form s on A such that s*(1) = ¢.

Proof. The uniquenessis due to Woronowicz (cf. Remark 3.2 (a)). Theorem 3.3
shows the existence of s in the case where 4 is a JBW-algebra, and ¢ is a faithful
normal state. The condition of faithfulness can easily be removed by passing to
the reduced Jordan algebra {pAp} where p is the support projection of ¢.
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Let now ¢ be an arbitrary state on a unital JB-algebra 4. Then A** is a
JBW-algebra (cf. [19], [10}) and ¢ has a unique extension to a normal state ¢
on A**% Let § be the self-polar form on A** associated with ¢, and let s be
the restriction of § to A x A. To show that s is a self-polar form on A4, it suffices
to verify condition (iv) in Definition 3.1. Note first, that the range of the map
F¥: A%% —» 4%%% is contained in A%, This is true, because for every a € (4%%), ,
the positive functional §%(a) is dominated by a multiple of the normal functional ¢,
which implies that §%(a) is also normal. Let y € 4%, 0 < ¥ < @, and let  be the
normal extension of ¥ to 4%%. By Remark 3.2 (b), there exists a b € A%, 0<b<],
such that /(@) = 3(a, b) for all a € 4%%. Choose now a net (b,) in 4, such that
0 < b, < land b, — bin the weak* topology. Then for alla e A

im{s*(b,), @) = lim{s¥(a), b,> = {5%(a), b) = Y(a).

Hence s%([0, 1]) is weak* dense in {0, ¢].

4, THE SELF-DUAL CONE P;

Let P be a cone in a real or complex Hilbert space H. P is called self-dual
if P coincides with the cone P = {¢ € H|(&,n) > 0, € P}. Following the notation
of Connes [6], an operator D € B(H) is called a derivation of P if

exp(tD)P =P, teR.

Moreover, a self-dual cone P is called /homogeneous if for any face F in P,
ep e is a derivation of P. Here e, and e,y are the projections on the closed
lincar spans of F and F*. (FL=={¢eP|((n) =0, neF})

In [6, Section 4] Connes associated to any W#*-algebra .# acting standardly
on a Hilbert space 5 a homogeneous self-dual cone 4 < #, such that %,
is isometrically isomorphic to the set of self-adjoint derivations of 2% (see also [2],
[9]). Moreover, he proved that there is a one-to-one correspondence between W*-
-algebras and those homogeneous self-dual cones which satisfy a certain condition
of orientability (cf. [6, Section 5]).

In [4], [5] Bellissard and Tochum studied the connection between JBW-algebras
and homogeneous self-dual cones (without orientation) and recently Iochum establish-
ed a one-to-one correspondence between JBW-algebras and homogencous self-dual
cones (cf. [12, Chapter VII]).

The aim of the present section is to prove that the self-dual cone P%, which
Iochum associates to a JBW-algebra M, and the isometry 6 of M onto the set
of seif-adjoint derivations of P4 can be expressed in terms of the modular cosine
families pf.
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THEOREM 4.1. Let M be a YBW-algebra with a faithful normal state ¢,
and let s, be the self-polar form on M associated with ¢. Let H g denote the complc-

tion of M with respect to the inner product
(a,b)§ = s,(a, b)

and let P73 be the closure of M, in H}. Then
a) P8 is a homogeneous, self-dual cone in HJ ;

b) For any a € M, there is a unique operator ,(a) € B(H (f), such that

1, . ~
(*) Oolayn )8 =—(@ex )3 + (5 aenf), xyeM
where
s\ Pl 4
cosh(2nt)

Moreover, 8, : M — B(H;) is an isometry of M onto the set of self-adjoint deri-
vations of P4.

Proof. We divide the proof in two cases as in the proof of Theorem 3.3.
Case I. Assume that there exists a tracial state 7 and a positive invertible
operator e M, , such that

ol@ =rt(heca), ach.

By Remark 3.7 wz have pf = idy,, t € R and s.(a, b)=1(aob). Thus H} is the comple-

tion of M with respect to the norm t(a®)Y% Moreover the formula defining 5.(a)
reduces to

(6a)x, 1) = »é—(r((a ex)ey) < 1(xe(@oy)) = (aox, )k

1e. d(a)x =aox, xe M, . Hence by {4], Pf is a homogeneous self-dual cone
in A, and &, is an isometry of M onto the self-adjoint derivations of P#.
By the proof of Theorem 3.3 (Case I) we have

5o(a, b) = t({H* ah} o A BIYYY), @, b e M.

Hence the map u,(a) = {#*ah**} extends to a unitary map of H Jonto HE. Since
uy(M,) = M, we have u(Pj)=P}. Therefore P;' is also a homogeneous, self-dual

11 — 1733
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cone and the map §,: M, — B(H‘f) given by d,(a) = u*d (a)u, a€ M, is anisometry
of M, onto the self-adjoint derivations of P;. For x,ye M

(5¢(a)x’ }‘)‘f = (5,(0)14.\’, uy)f =
= (@ o {h xR} o (WP 1)) = t(a = ({RMAxh} o (Wph'1Y)).

However

{HVAxh) o (RAYRISY = (HA(xhYRy Y,

Indeed, this formula is trivial for x = 3 by Lemma 2.3, and since both sides are
symmetric in (x, y) the general case follows by polarization. Thus

(0p(@)x, 3) 8 = t(ac {WP{xh' Py} 1Y) =
= t({IMah'*} o {xh'?p}).
As in the proof of Theorem 3.3 (case I) we have

{RY%ah'} = @ o W'?

where
a = S {h*Pah= "2} cogh(mt) =1 dt ==
oo
=2 S {h''ah™"} cosh(2nt)~1dt =
@
=2 S p?(a) cosh(2xr) -1 dt.
—o0
Therefore

(6,(a)x, J’)(f = 1((@ c M) o {xIPPy}) =
= 1(a < (I"* s {xh""*p})).

By Lemma 2.3 and polarization, we get

o {xh'?y} = ~!2~ ({h*2xh*} o y + (BB} o x),
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Hence

(3p(@)x, ) = ; 2((@ o y) o (HExh2Y) + ~;~ t((@ o x) o (WY} =

1 -~ -
= (0 @)l + @ o)),

This completes the proof in Case I.
For the proof in Case Il we need the following lemma.

LeMMA 4.2 (Van Daele, Pedersen). Let # be a complex Hilbert space,

let a e B(#), and let I be a non singular, positive self-adjoint (possibly unbounded)
operator on . If we put

e
a = 3 hi*ah™' cosh(mt)~Ydt
—oo
then for &, e D{h):
1 . .
‘2“((0'@, hn) + (a'hé, n)) = (ah™*, h'%y).
In particular, if h is bounded, then
a’ oh = W\aht'?,

Proof. As already mentioned in Section 3, the case 4 bounded was treated
in [15] (see also [25, Section 4]). Assume now that 4 is unbounded, and let p, be

the spectral projection of /i corresponding to the interval [0, ). Let &, € #. Since /i
is bounded on p,(s#), we have

) .'17_ .((a,ém h’?n) + (alhén ’ ’1;-)) = (ahljzén ’ hl/zﬂﬂ)

where &, = p,&, u, = py. By spectral theory

im [[A%(&, — &)!| = lim [|h*%(n, — 1)l =0

n—-o0 n--+00

for 0 < « < 1. Hence in the limit we get the stated equality.
Proof of Theorem 4.1 (continued).
Case II. Assume next that M is of the form

M={xet,, |dx) =x),
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where A" is a W*-algebra and & is an involutive antiisomorphism. The statc ¢
can be extended to a state ¢ on ., given by

— 1
(p(a):i(p(a —1_ ¢(a))s ae‘Ahs.a.'

We may assume that A" acts on a Hiibert space # with a cyciic and separating
vector &,. Theself-polarformon .47, | associated with @ is

Sa, b) = (4'agy, bey), a,bed,

{cf. Proof of Lemma 3.4) and by the proof of Theorem 3.3 (Case II) the self-polar
form s, associated with @ is simply the restriction of § to M. Hence the completion

H} of M with respect to the norm

ifa’!’_g == 5,(a, b)

can be identificd with the closure of A¥M¢&, in &, and P ; can be identified with

the closure of AY¥AM,¢&,. Thus P:,’ coincides with the cone P:1'o considered by
fochum in [12, Chapter VII, Section 2]. lochum proves that this cone is self-dual
and homogencous. Morcover he shows that the map

a - -—;— (a-- JaJ)y (restricted to Hg)

is an isometry of A onto the set of self-adjoint derivations of P(f.
< _ 1 A .
Let §,(a) denote the restriction of e (a--Jal)to Htff. Itremainsto be proved
that d,(a) is given by the formula (=) stated in Theorem 4.1. From Proposition 3.6:¢)
we have

N ] ' O » -
piia) = - {6%(a) + 6% fa)), aehM.
Let x,yeM. Since x, y €A, , , JAY¥xE, = AVl and JAYyE, = AY4pE,. Hence

1
By, 7)== (e + Jal) Ay, Ay%y) =

== Re(ad"x&y, 4V 5,).
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Put

a =2 S p?(a) cosh(2nt)~*dt =

— o0

00
=2 S 6%(a) cosh(2nt)~1dt =

o0
— S A1 g A=cosh(xt) 1 dt.
(o]

By Lemma 4.2,

} 1w o i .
(aA™xEy, AMp) = 5 ((axéy, A1) + (43x¢,, ayé,)) =

1 s . e s s
= - (Aaxdy, 45 + (4x8,, 4Maygy)).

Since (4*cCy, AMdE,) is real for c,d e N, , , we get by splitting ax and ay in
their hermitean and skew-hermitean parts, that

. i} 1 . e . 3 .
Re(adixéy, A&y = - 2—(41”*(0 o x)o, ¥&o) + (x&g, 4Y4(a 0 y)Ey)).

This proves that
(Sp(@)x, )i = (@ ox, )} -+ (x,80))A.

General case. 1t is easily seen that if (P;);e, is a family of homogeneous self-
-dual cones in real Hilbert spaces (H;);e;, thne the conc

P=1{¢e @ H,

&= (&), ¢ eP; for all iel}
iel

is a homogeneous self-dual cone in H = @ H;. Moreover d € B(H) is a derivation
iel
of P if and only if d = @ d;, where d, € B(H,) are derivations of P;,. Hence by
ier

Lemma 2.1 and Lemma 2.2 the gencral case can be reduced to Case I and Case I
by a central decomposition of the algebra.
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5. APPENDIX

We will give a short proof of the following result due to Kurepa (cf. [i4,
Theorem 2)).

PROPOSITION 5.1. Let (u),er be a weakly continuous one-parameter family
of bounded self-adjoint operators on a real or complex Hilbert space H, such that
(1) uy:=1;

(i) jiw,, <1, teR;
1
(i) v, —= ~r~é~(us+, +u,_,), s teR

Then there exists a positive self-adjoint operator D on H, such that
u, —=cos(tD), teR.
Proof. 1t is enough to treat the case where H is a complex Hilbert space.
(If H is a real Hilbert space we can pass to HC = H 4-iH.)
Note that by (iii)
uy==u_.,, teR.
The weak continuity of (,);cr actually implies strong continuity, because

(g — )l = (5 + uf — ug, — up)E, &) =
1 .
= ”é‘(("&s + uy, +- 2 2“s+t - 2“s—r) 6’ &)

for all £ € H. For fe LYR) we put
[+
u(f) = S fidu,de  (strongly).

00

A simple computation shows that for f, g € LY(R):
1 v
u(f)u(g) = 7("(f*g) +u(f=8)

where g(t) == g(—t). Hence if f and g are even functions, then u(f)u(g)=u{f+g).
The functions (f});s, given by

1 3 .

fith=—- “— i>o0

T AR+ 1
form a continuous convolution semigroup of even functions in L'(R}. Note that
£ =0, |Ify", =1 and that (f});s, is an approximating unit for 2 — 0. Therefore
((£,)) 10 is a strongly continuous semigroup of self-adjoint contractions and u(f;) — 1
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strongly for 2 — 0. Let (—D) be the generator of this semigroup. Then D is positive
self-adjoint and
u(f;) =exp(— D), i>0.

The semigroup ( f,) can be extended to a holomorphic semigroup (f;)re 3>, Where f;
is given by the same formula as for . real. Since both u(f,) and exp(— AD) are
strongly holomorphic in the half plane Re A > 0, we have

u(f,) = exp(— AD), Rel > 0.
ForteR and ¢ > 0

cos(1D) e="P = %(u(f”i,) Fu(f o).

A simple computation shows that

Sorid) +fozis) =fo(s — 1) +fo(s + 1), seR.
Therefore

cos(tD)e P =

o3 S (fuls = 1) + £ s + D)uyds

and since (f,),>o IS an approximating unit, we conclude that

cos(tD)= strong-lim(cos(tD)e~P) =
a=+0
= L(u +u_y)
5 M -th

ReMark 5.2. Kurepa’s setting-up is more general than stated in Propo-
sition 5.1. He considers weakly continuous one-parameter families of bounded
normal operators satisfying (i) and (iii) and proves the existence of a normal opera-
tor D, such that D — D* is bounded and u, = cos(tD), t € R. However, it is clear
that the extra conditions v, = u;* and |ju,!] < 1 force D to be self-adjoint, and by
exchanging D with |D| one can get D positive. Kurepa considers only separable
Hilbert spaces, but this condition is not essential, because the Hilbert space can
always be written as a direct sum of separable v-invariant subspaces.
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