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ON OPERATORS WHICH ALMOST COMMUTE WITH
THE SHIFT

I. D. BERG

INTRODUCTION

The aim of this paper is to determine when weighted shifts on £, which almost
commute with the canonical left shift can be perturbed so as to commute with a
perturbation of the left shift.

Our analysis encompasses weighted right and Ieft shifts as well as their preducts,
including, for example, any multiplication operator. We are interested both in
questions of compact perturbations and pertubations of small norm. It turns out
that some of the wonted parallelism between compact perturbations and small
norm perturbations breaks down, itself a phenomeon which is of quite some interest.

There has been a great deal of intersst in the general phenomenon of lifting
from the Calkin algebra, most of it tending towards an abstract approach. These
abstractions have been interesting; it is possible that in general they are actually
unavoidable because of the non-constructive nature of the realization of the Calkin
algebra as an opcrator algebra. However, it is satisfying to find a situation that
yields to constructive methods. Our entire analysis is in the context of Z({s#) where
H = Ly,

We are able to present an essentially complete analysis in the case of shifts
with real weights. There arc phenomena in the complex case which still elude us.
We should mention immediately that the perturbations contemplated do not leave
cither operator as a weighted shift; commutativity of an operator with a weighted
shift is a triviality.

We are concerned with shifts with real weights on £,. We denote the canonical
basis vector of £, as {6,}, i =1,2,.... We define the left shift of index r with
weights ¢, by

1y 176,)=1td,., forn>r
2) T,) =0 forn<r
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We will usually suppress the obvious condition 2 when describing a shift. Contrary
to the usual convention we will allow weights of 0. We also consider the multi-
plicative operator, r = 0, as an allowable left shift.

The canonical ieft shift S will be the shift of index 1 (nullity 1, deficiency 0)
given by 7, = 1 for n > 1.

Right shifts will be defined correspondingly.

We note that because we are dealing with pairs of operators it is not possible
to make the usual assumption that all weights are positive, since the unitary transfor-
mation that achieves this for one shift may be unsuitable for the other.

If Tis a left shift of index r > 0 then

— 1)0,-,_1 for n>r-=-1

[T, SI(5,) = [TS — ST15, = { >
0 for n < r - 1.

If T is a right shift of index — r <0 then

[T, S|(5,) = [TS — STI5, = {(’H ~ WOy for n>2

— 1,6, for n==1.

In either case [T, S] is compact if and only if 't, — t,_,  — 0 and so it is
clear that T need not be a compact perturbation of a constant shift for |7, Sj
to be compact.

Our results are phrased in terms of a canonical left shift because the kernel
is notationally convenient in proofs, but all the results extend by adjunction if
right and left are interchanged.

Since any perturbation T < A T of an operator T which produces an infinite
dimensional scalar direct summand of T - A T allows a unitary transformation of
that perturbed operator which commutes with § +~ A S, a corresponding pertur-
bation of the left shift S, a commutativity attained by matching a scalar direct
summand of § -~ A S with the non-scalar summand of T and vice-versa, it is essen-
tially impossible to hope for meaningful conditions on 7 alone which prevent
liftings to commutativity; we must look for conditions on 7 and S simultancously
beyond the trivial conditions on [S, T] or equivalently for conditions on 7 whick
involve coordinate representation. This is in contradistinction to the problem of
making [T < AT, S] = 0 where, for example, a non-zero eigenvalue of (T -+ AT}
prevents commutativity, and so if 7'— § were of index — 1, then T -+ AT could

not commute with §. _ o
We will say that S and T can be /ifted to commuting Sand 7if § — S=: AS

and T -— T ==+ AT are both compact. That is, we can lift the commuting images of §
and T in the Calkin algebra to genuinely commuting operators. We will save words
by occasionally saying S and T can be lifted to commute. Recall that the Calkin
algebra is the quotient algebra of the bounded operators factored by the compact
operators, B()/H(H).
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As usual we define the essential norm of T, ||7},, as the norm of the projec-
tion of 7 in the Calkin algebra; that is, ||T||, = iTnf 1T+ AT
ATex

We are constantly confronted with estimating the norms of A S and AT such
that [S+ AS, T+ AT]= 0. With apologies for introducing yet another bit of
notation we will define the joint commutation distance of T and S, J(T, S) by
J(T, S)==infmax(||AT|l, || A Si|)overall AT, ASsuchthat[T+ AT, S+ AS]=0.

We define the essential joint commutation distance, J [T, S, by J T, S] ==
= infmax(||ATl},, | AS|,)overall AT,A Ssuch that[T+ AT, S+ A S]=0. Note
that J [T, S] is not equivalent to ||[T, S]|.; even if ||[T, S]|!, = 0 we will have
J [T, S] == 0 only if T, S lift to commute, and there are examples where 7, S do
not so lift.

We show that for real weighted shifts for which there is no joint indicial
obstruction of the type described in Berg-Olsen [3] there is a commuting lifting
from the Calkin algebra achieved by an uncoupling construction of the form there
described. Moreover, we show that this construction is qualitatively, not numerically,
best possible in achieving the smallest norm perturbation accessible, in that the
perturbation achieved by the construction is continuous in the least possible pertur-
bation at 0. This is accomplished by showing that a shift 7 on which [T, S] is
small, yet on which uncoupling cannot yield a small commuting perturbation,
necessarily has a relatively large J[T, S] even though 7, § may lift to commutativity.
This, in turn, is achieved by considering a shift with initial weights which do not
appear at oo. This is more subtle than it appears; as will become evident, a shift
with weights at some finite non-initial position bounded away from the weights
at oo behaves quite differently.

Among those investigating similar lines we should mention K. Davidson.
In particular in his investigation of essentially spectral operators [4] he is confronted
with perturbing nilpotents and normals so as to commute and so there is some
resemblance, though, so far as we can tell, no overlap with our work. We also
acknowledge, with thanks, helpful comments of K. Davidson regarding this paper.

This paper follows leads opened in Berg-Olsen [3], and so several ideas originat-
ed from collaboration with C. L. Olsen.

§1

There are a few technical results which are useful in our analysis and which
require some exposition.

The first matter with which we deal is the establishment of the technique
of “orbit exchange” used for extracting direct summands which are scalar multiples
of finite dimensional cyclic unitary shifts at the expense of a small compact perturb-
ation with, moreover, stretches of original coordinates left unchanged in these
summands.
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That is, given a weighted shift, one can extract as a direct summand any
section flanked both initially and terminally by stretches of the same weights. The
perturbation required to do this changes only these initial and terminal segments,
leaving the middle section unperturbed. The error incurred can be made as small
as desired by using sufficiently long flanking segments, independent of the unchanged
middle segment and the entries themselves outside these segments. Therefore this
construction can be applied successively to uncouple segment after segment without
increasing the norm of this perturbation. The section of shift preceding the construc-
tion is coupled to the section succeeding. The same exchange can be used to exchange
orbits in direct sums of shifts as long as the exchange takes place where the weights
of the two shifts being cxchanged are the same.

The actual technique of the exchange procedure is given below. Because we
only cxchange sections of shift with sections of the same weight there is no
loss of gencrality in assuming the weights are I.

Suppose we have two sections of one shift, or, for that matter, two sections
of distinct shifts:

e T A . 2 B AR TR
sy, oY o, . S
n 12 . .
Consider the new basis for the spacc spanned by Vo, and Vi, given by e, ... .4,
0 0

and oy, ..., o, and the new transformation T, @ 7, given by

. T, p ,
Gi 2 Qs BaWir = G =0, 0081

T‘i
2 ” [} g
O; -3 piaal— Bis10iir LWl = O

where 3., ~ fi?,,-= 1 and the z; slowly tapers from 1 to 0, and the p; slowly
revolve over the unit circle from 1 to — 1. Then

T’llrllu = Pns
T3, = ,.

Moreover T, @ T, is approximately equal 20 S} @ S., with an error bounded
by a constani times difference in successive z; plus difference in successive g;.
Thus, by using a large cnough space for the transformation the error can be madz
as small as desired. By using this proccdure on a finite segment of a shift we
pinch of direct summands. We can then work our way in, getting smailer sum-
mands. Of course, as the summands become c¢f smaller dimension we must



OPERATORS WHICH ALMOST COMMUTE WITH THE SHIFT 369

exchange more rapidly and hence acquire more error. Again, where we do not
have constant weights we acquire an error in making the weights constant for
a stretch. .

An actual estimate on the bound we have by choosing «; and p; evenly
spaced shows that if |z, —1,_;] < |/M?® < 1/256 for all coordinates involved in
an exchange then the perturbation involved in an uncoupling on the stretch involved
is bounded by 100/M.

At the risk of appearing frivolous we write:

LemMMmA 1.1. Orbit exchange pinches off sections of a shift, with the same
initial and terminal weights, of length at least 16, where successive weights differ
by at most \/M? for M > 16, with an error bounded by 100/ M.

We introduced this uncoupling procedure in [1], where we worked out the
details, and used it again in [2]. The formal statements were a bit different in
these contexts because we had different objectives but the procedure was the same.
D. Herrero [5] has since given his own extensive developments and applications
of this idea and J. Stampfli [6] has shown how to pinch out a single cycle with
a one dimensional perturbation.

The next observation is almost algebraic and states that a perturbation of
the shift has a subspace on which the perturbation looks so much like the shift
that a commuting operator looks like a polynomial in the shift on this subspace.

LemMmA 1.2 (Polynomial subspace). Let S be the unilateral left shift. Let
S == S+ A Swhere |AS|| < 1/16. Then there exists an infinite dimensional subspace,
A, invariant under S and spanned by an infinite orthonormal sequence {@} such that

1. $7(p,) =0;

2. liminf{ S¢,, ¢,_.> = 3/4.
If [T, 8] =0 then

~ ~ oo —
3. # is an invariant subspace for T, and on # we have T = ¥, o, 5" with
. n=0
strong convergence ;

4. LTp,, ¢,-.> =< }:’odjsj(p"’ Qs> fori = 0.
i=

Proof. The construction practically proves the lemma except for 2, which
requires a bit more comment. Because [[AS| < 1 and § has a right inverse of
norm | we see that S is semi-Fredholm of nullity 1 and deficiency 0, and hence
there is a unique ¢, such that S(¢,) = 0. Similarly there exists a unique @, such
that S%p, = 0 and ¢, is orthogonal to ¢, and so on. Because S on H# takes
the form of a superdiagonal matrix with no zeros on the first superdiagonal and any
commuting 7" has zeros under the diagonal since $"T¢, = 0, the commutativity
relation for an » x »n corner block involves only the » x n corner blocks of T.
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Hence, since the Jordan form of a finite n x n corner of S isthat of the canonical
shift, we see that the n x n corner block of T is an #’th degree polynomial
in S. Since higher degree terms in § cannot change the n x n corner block,
we see that the first n degrees of the polynomial are fixed by the n x n block and
in turn fix the first n superdiagnonals of 7. This establishes 3 and 4.

n-1
Now to prove 2 consider {¢,, ) == 0 for any unit Yy € V ¢;. Then
ie=1

(S(p,,, S~¢> = <(pns §*§¢> = <(pn$ (S + AS)*(S + AS)‘//> ==
=T — P, +(ASHS+S*AS+ AS P
where P, is projection on 4,. Now

<S;(P,,, 5‘/’) = - <(pn> P1¢/> + <<Pn: R‘/’)
where
IRI < 1/16 -+ 1/16 -+ (1/16)=.
For large enough n we see that (v, , Pyy» < 1/162foranyy and so {Se,, Sys> <3.16.

- n--2
Now we note that Sy includes the ball of radius 15/16 in V¢; and hence
i=1
the projection of S¢, on ani 1s of norm at most (16/15)(3/16) = 1/5. But So, is

itself of norm at least 15/16 and is in V¢, and so 1{Sp,, 9,2 + (1/5)2>15/16 and
so {So,, @, = 3/4. This estabhshes 2 and completes the proof of Lemma [.2

The next observation provides us with one of the few tools for showing
that two operators cannot lift to commutativity. This is the joint indicial criterion
developed in Berg-Olsen [3] (Proposition 3). We paraphrase the criterion here.

THEOREM 1.3 (Joint indicial criterion). Let A be semi-Fredholm of non-zero
index. Let P(x,y) be a polynomial in two variables such that x factors P(x,y).
Let B, necessarily semi-Fredholm, be such that 0 is in the unbounded component
of the essential resolvent of P(A, B). Then J A4, B] # 0.

This joint indicial criterion makes it immediate that if 7" is a right shift of
index — r with real weights bounded away from 0 and S is a left shift with similar
weights then T and S cannot lift to commutativity because (7°.57)2 has a positive
essentizl spectrum.

We will give another proof that illustrates our approach to norm obstructions.

2. LIFTINGS

We start this section with the proof that shifts that suffer from our joint indicial
obstruction cannot be lifted. We consider the canonical left shift but any left shift
with positive weights bounded away from 0 would serve here. It may not be imme-



OPERATORS WHICH ALMOST COMMUTE WITH THE SHIFT 373

diately apparent, but the proof we give here does really isolate the same phenomenon
as that in Theorem 1.3, and Proposition 2 of [3] can be taken as its precursor.

THEOREM 2.1. Let T be a right shift of index —r with positive weights so
that 1 > liminf(79,) > n > 0. Let S be the canonical unilateral left shift. Then T’

and S cannot be lifted to commute. Moreover )T, S1 = J [T, S1> y/3 for r = 1.
In general )T, S} 2 J [T, S} > nj27-*.3.

Proof. Assume ||§ — S|, < #/3 and |T — T||, < #/3. Consider V¢, the
i=1

subspace of successive kernels of S. If [T, §] = 0 then by Lemma 1.2 (T'¢,, ¢,) = «
for all n. But then {(8§T¢,, ¢,y = {(aS09,,¢,> = 0. Now we observe that ST is
simply a multiplication operator and moreover {STo,, ¢,> > 5 for large enough »
(since for any finite set of §; we have ¢, as close to orthogonal to that set as

needed). Hence (S + AS)(T + AT)¢,, 9,0 > n— 21/3 — 12/9 > ¢ which is
impossible.

If r > 1 we consider (§"T¢,, ¢,> = 0 where ¢, is any element in the n'th
kernel of §’. Even without invoking the polynomial subspace lemma it is clear

— — ﬂ—l. S~ . o~
that ST, isin V ($7)~/(0),and s0 (ST, , ¢,> = 0. Once again { ST, , @,y > 1
j=1
for large enough n and so if |AS|,|AT| < #/3 271 then

n (r n
S ST T s On — 11

>11—(1+ T_Mor -1} o,
3.27 3.2r-1

where this remarkably unenlightening computation is put in merely to show good
faith. :

This completes the proof of Theorem 2.1.

Let us now present our promised positive results. The first theorem, which
extends and explains Proposition 6 of Berg-Olsen [3] shows that if a real weighted
left shift and the canonical left shift almost commute they can be lifted to commute,

while if they have a small commutator and the initial weights reappear at oo they
are close to commuting.

THEOREM 2.2. Let S be the canonical left shift. Let T be a real weighted
left shift of multiplicity r>0 given by 19, = t,0,_,.. Then if [T, S] is compact
then T and S lift to commute. Further, there exists 6(r, &) > 0 independent of T
such that if

1) [T, 8] < d(r, &),

2) liminft, < t,,., < limsup#,,
then J[T, S}<e.
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L)
~J
[ %]

If (T, S]is compact and 1) and 2) hold then there exist compact AT and A S
such that P ATi<e, |AS <eand [T+ AT, S+ AS]=0.

Proof. Assume first that r = 1, that is, T is a real weighted shift of index 1,
and that [T, S] is compact, that is simply that lim jz, — ¢,_,i == 0. Then if « is

any cluster point of the weights of T we attain arbitrarily long stretches of the
weights of T as close as desired to «. Then, using the uncoupling procedure we
split off finite dimensional cyclic direct summands, on each of which the weights
are almost constant, leaving a shift which genuinely approaches « in weight. Another
small perturbation leaves each of these finite cyclic summands actually of constant
weight. Now on any stretch of weights where i1, — t,_,i < I/M? < 1/256 these
desired finite dimensional perturbations are of norm at most 100/M, and since
they have both domain and range on disjoint stretches they commute with the
corresponding summand of §. We now have our commuting perturbation. We
will show later that this construction is best possible in the sense that there may
be no way of attaining a small norm commuting perturbation if the shift-like
direct summand cannot be made close to a uniformly. Using the same uncoupling
on the same vectors split off direct cyclic summands of § itself. Now each of
the summands of § commutes with the corresponding summands of 7. The
remaining summand of 7, now 2 shift with weights approaching « is simply
perturbed by the compact perturbation of changing each weight to &« thereby
allowing it to commute with the corresponding shift summand of S. Now if
its — 1,_.,'<1/256 and 2) holds then we split off our summands as before choosing
2 =~ t, and acquiring a remaining shift summand within again 100/ of the constant
weighted shift o and so acquire commutativity at the expense of || A ST < 100°M
and TAT: < 100/M. If 1) and 2) hold and (¢, — #,_;] —> 0 then AS and AT are
cach compact and with the same norm bound. We need consider only smali
1, - 1,..; since where this is large the corresponding large finite dimensional perturb-
ation does not affect compactness and by producing a large J relieves our theorem
of quantitative implications.

Now we consider the case where T is a multiplication operator. Once again
the requirement that [T, S]<d implies that supir, — t,-,; < ¢ and we require
4, -ty — 0 for compactness. Once again we choose stretches on which the 1,
are as close as desired to a cluster point z and choose basis vectors as if we
were (o uncouple shift sections with the same weights. We then proceed to match
sections of similar weights throughout the operator just as if it were a shift. This
leaves us with direct summands on each of which the multiplication operator is
almost constant.

Now we use the new basis vectors to uncouple the sections of S corresponding
to sections of T and what we have are finite dimensional cyclic direct summands

of § and multiplication by constants on the same vectors for 7. The remaining
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shift summand of S matches with, depending whether or not 2) holds, multiplica-
tion by a constant o or by a sequence tending to a. This completes the analysis
if T is a multiplication operator.

Now suppose T is a shift of multiplicity r. Once again we have [f, — t,,,]
small as before and the same split into constant r-cyclic summands of T (that is,
each element hits every r’th index) matched against single cyclic summands of §
yields the same results as before. Alternatively, one could choose r’th roots of the
weights in such a way that 7 = (7’)" where 7' was a weighted shift of index I
with weights chosen real or pure imaginary in such a way as to approximately
match r’th roots where the weights themselves were close. This same argument
works just as well for P(T) observing that [P(T), S]is compact iff [T, S] is compact.
In this case we factor P(7’)into linear factors and since each is of the form (T + 2)
the same perturbation splits cyclic direct summands for all factors and for S simul-
taneously and so we get our commuting perturbations for P(T).

This completes the proof of Theorem 2.2.

We have seen that if 7 is a left shift and [T, S] is compact then T, S lift
to commute. If T is a right shift with 0 in its essential spectrum and [T, S} is
compact then a variation of the previous argument shows that T, S lift to commute.
If T is a right shift without 0 in its essential spectrum, that is 0 is not a cluster
point of its weights, then we saw earlier that T, S cannot lift to commute. That
is, with the next theorem we have covered all cases.

THEOREM 2.3. Let § be the canonical left shift. Let T be a real weighted
right shift of finite index r whose essential spectrum includes 0. That is,
76, = t,6,., and liminf |¢,| = 0.

n

If (T, S] is compact then T and S lift to commure.
Further there exists &(r, €) > O independent of T such that if [T, S] < §(r, ¢)
then J[T, S] < e.

Proof. We first consider the case of multiplicity 1. Because of the zeros of
the weights after a small perturbation we can completely uncouple 7 into finite
dimensional shifts of small self-commutator. We then uncouple each of these shifts
into a finite sum of scalars times the cyclical shifts. We then perform the same
decomposition, using the same vector, on S§% leaving cycles of §* matching
cycles of T and leaving the necessary remaining direct summand of S*, call it §*%
which is still unitarily equivalent to S*¥, matching the vectors on which 7 is 0.
Then, since S* on each cycle is itself merely a scalar multiple of the cycles of 7,
we take S, still retaining commutativity on the cyclic summands, and matching ($%)*
with 0, thereby attaining commutativity. Observing that a small commutator in
this case requires that 7(¢p,) be very small we see that there is no initial piece around
the early coordinates to be matched and so a small perturbation of T and S

12 .- 1733
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commute. For shifts of larger multiplicity take a root 717 with a small self-
-commutator and with real or imaginary weights and perturb S and TV so as
to commute.

We have now completed our desired exhaustive analysis of liftings of arbitrary
shifts and the canonical left shift so as to commute. That is, let S be the canonical
left shift. If T is a right shift with all (real}) weights bounded away from O for
all large enough indices then by our indicial criterion § and T cannot be lifted
to commute. For all other shifts T we see S and 7T can be lifted to commute.

Of course we can exchange right and left consistently (by considering adjoints)
in all our results. In the case where lifting is possible we have shown that additional
restrictions on the first non-trivial weights of T allow us to deduce that a small
commutator of T and S allows nearly commuting 7 and §. The next part of
this paper is devoted to showing that this condition on the initial weights is necessary.

3. NORM OBSTRUCTIONS

We now present our results showing that there can exist a norm obstruction
which prevents § and 7T from being close to commuting operators, independent
of the norm of the commutator of § and 7T, and yet allowing § and T to lift
to commutativity. The reasonable version of the theorem includes so many para-
meters as to completely mask the ideas at first reading and so we present first a
theorem with many parameters fixed. We choose a left shift of index 1 in this
theorem. The phenomenon is actually attainable with a multiplication operator
as 7 but the proof is sufficiently simplified in that case so as not to illustrate clearly
its generalization; the shift offers just enough difficulty to demonstrate the method.

THEOREM 3.1. Let T be a real weighted left shift such that T, - 20, und
G| =2. Let limsupTo; < 1. Let S be the canonical unilateral left shift. Then

J[S, T > 1/64.

Proof. Let {ASi{ < 1/64. Then § =S+ AS has a corresponding sub-
space  of successive kernels V @; as described in Lemma 2.2. Then one can sce
that {l¢, — d,{] < 3/64 and ||@, — J,] < 6/64 and hence if AT} < /64 then
T e T+ AT satisfies [[(T + ATyl < 2/64 + 1/64 and (T -+ A T)gy ~ 20, <
< 1/64 4 12/64, and 50 [[(T + AT)ps — 20, < 13/64 -+ 4/64 == 17 64. If we
assume that 7 commutes with § then by Lemma 2.2 we have a first degree poly-
nomialin §,«S + BIsothat{To,, ¢,-.> = (&S0, , ¢,_.>. Since, for large enough n,
we have both (So,, ¢,_,> > 3/4 by our lemma, and {(To,, ¢,_,> < 65/64, since
1Tl < 65/64, we see that « < 4/3-65/64 = 65/48. But this implies (T¢,, ¢,> ==
== {aSp,, ;> < 65/48 -65/64 and we had earlier seen that (To,, ¢,> > 2 — 17/64
a flat contradiction.
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Let us consider ¢, — &, and ¢, — 3, in more detail. To see that |j¢, — §,]| <
< 2/64 observe that for unit n we have 0 = {¢,,(S* +- AS*)n)> and since S*
isan isometry from £, onto §;- we see that for unit ¢ € §i- we have [{g,, )| < 1/64.
Hence {(¢;, 6,>% > (1 — (1/64)?) > (63/64)% and so {|¢, — 6,]] < 2/64.

Similarly 0 :=: {(@a, (S* + A S*)?p) and so for £€ (§, V §,) we see

<@z, & < oz, ([((AS)*P + S*AS* + (A S*)S¥)n| < 3/64.

Since | {¢p;,0,>1<2/64 we have [(@,,d|>>1 —(3/64)2 — (2/64)% > (63/64)*
and so ||@, — J,]| < 3/64 -+ 2/64 + 1/64 = 6/64.

The fact that we have a worse bound on ||¢, — J,]| then on ||¢, — d,]| is not
simply a computational annoydnce. The fact is that no matter how small the fixed

o0
perturbation allowed it is perfectly possible that 9, 1 V ¢, for some large enough n;
i==1

indeed J, can be in one of the cyclic unitary direct summands of S.

THEOREM 3.2. Let S be the canonical left shift. Let T be a real weighted
left shift of multiplicity r = 0. Suppose for some n >0 we have t,., ¢
¢{—n + liminfe,, limsupz, -+ n]. There exists F(y,r) > 0 independent of T such
that J[S, T} > F(y, r).

Proof. We note the changes required to generalize Theorem 3.1. First note
that if [T, §]= 0 then of 4+ BS is an acceptable commuting lifting of T + S
for scalar «, § and so we can assume that 7 has only positive weights and consider
only t,,., > limsup¢, - #.

Now for sufficiently small AS and AT depending only on ¢,,, we see
Topi1 = t,0101, T(@,) = 0 for r1 < r 4 1 with the accuracy depending only on

|AT|. Now observing that (T(p,,+j, ¢,y for j < r is given by the first j terms of a
polynomial in § we see that

<T(pn+r’ (pn> = <arSr + ook aOI(pn-i-r’ (pn> =~
~ <tr+1‘§r ~+ O'Sr_l -+ . + O'I(Pn+r’ (pn>

with accuracy once again depending only on {AT]|A S!. Because, with again, as
much accuracy as needed {$"p, . ,, @,} ~ | for large enough nwe have (To, ., ,,0,> ~
% t,., > limsupy, - n which is clearly impossible. That is, our relatively large ¢, . ,
prevented T from commuting with § although [7', S]can be made as small as desired
keeping the same parameters.

The reader will note that there is no F(x, r) if one merely requires that for
some m we have ||T(6,)| > limsup||7(d,)| + #; indeed for any fixed candidate
for F(n, r) we can, for large enough m, pull §,, into one of our cyclic direct summands
as in Theorem 2.3 and attain commutativity. Yet he will observe that for any
fixed m there would exist a corresponding F, (i, r) and therefore ask why we have
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put our hypotheses on the first non-trivial weight of T instead of developing F,,(#, r).
The answer is that J[S, T is only of interest where [S, T] itself is very small and
for small enough [S, T'] the suggested condition on ¢, implies ¢, ., fits our hypotheses
and we are back in the already covered case. That is, if the weights of T take
on, for example, the pattern

the norm of the commutator [T, S]alone controls J[T, S]. This is, of course, precisely
what we are gainsaying in our theorem.

We can summarize our results. By means of uncoupling we were able to
remove all bumps with the same initial and terminal weights from 7 in a manner
which commuted with corresponding removals from S leaving either a residual
left shift of T which could commute with a corresponding residual left shift of S,
leaving nothing, or necessarily leaving a right shift-like residual which could not
commute with the necessary shift-like residual of S. A one-sided bump could be
removed with a compact perturbation of T but could not be uncoupled and neces-
sarily left a large perturbation.

We close with a consideration of the difficulties of complex weights. Of course,
our methods work with large classes of complex shifts. Rather than present a large
class of partial results let us go right to a case that illustrates the fundamental
difficulties. Consider T, a unitary left shift with weights all 1 on E, and T, &
unitarily equivalent unitary left shift but with weight e2*/» on the same E,. Does
J[T,, T.] > 07 We conjecture it does not, principally because the most likely cons-

truction, an uncoupling which leaves all entries in orbits which never take an entry
far from its original coordinate presentation, would lead to small commuting perturb-
ations of S and $% which we know to be impossible. Similarly if Sis a left shift
and T is the right shift of index 1 with ¢, = e?7(n®m can § and T be lifted to
commute? ! Theorem 1.3 does not apply. Further ST is unitarily equivalent to a
compact perturbation of @, the bilateral shift with projection on §, removed, and
dim Q-"(0) - 00. That is, implausible though it might seem at first glance, the weights
of T allow ST to be perturbed so as to allow an increasing sequence of kernels,
a phenomenon which strikes at the heart of the proof of Theorem 1.2 and Theo-
rem 1.3. Of course this destruction of the hypothesis of a sufficiency theorem still
leaves the possibility of what we consider a desirable result, that is, the impossibility
of a commuting lifting of S and 7. We should mention that what we believe
to be this same problem in different guises impinges on other current research,
for example, that of K. Davidson and D. Voiculescu, and so it is possible that the
solution will come about quite indirectly.

This work was partially supported by an NSF grant.

1 Yes, K. Davidson (personal communication).
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