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NON-SELF-ADJOINT CROSSED PRODUCTS. III:
INFINITE ALGEBRAS

MICHAEL McASEY, PAUL S. MUHLY and KICHI-SUKE SAITO

1. INTROCDUCTION

Let M be a von Neumann algebra, let « be a x-automorphism of M, and
let M X, Z be the von Neumann algebra crossed product determined by M and «.
In this work, which is a continuation of [10] and [17], we investigate the structure
of a certain non-self-adjoint subalgebra of M X, Z which we call a non-self-adjoint
crossed product and which we denote by M X, Z, . (Precise definitions are given
in the next section.) In [16] and [17] we assumed that M was finite and that « pre-
serves a faithful normal trace. Here, M may be arbitrary and we assume only that
o fixes a faithful normal state on M. Our primary objective is to describe the inva-
riant subspace structure of M x,Z, and to exploit some of its consequences.

We view M X, Z in standard form, we identify the underlying Hilbert space
with Haagerup’s L*-space (see [8] and [27]), L?, and we identify M X, Z with a von
Neumann algebra £ of operators acting on the left of L2 The commutant of M X, Z,
then, is identified with a von Neumann algebra R of operators acting on the right
of L2, In this identification, M X, Z, is denoted by £, . There is a special subspace
H2 of L? which stands in the same relation to L? as the classical Hardy space on
the unit disc stands in relation to L? of the circle. Our main result, Theorem 3.10,
asserts that if o fixes the finite central projections of M elementwise, then every sub-
space M of L2 that is invariant under £, and contains no reducing subspace for £
may be written I = R ,H? where R, is a partial isometry in R. Conversely, if each
subspace of L? that is invariant for £, and contains no reducing subspace for £
has the form R ,H? for a suitable partial isometry in R, then « fixes the finite central
projections in M elementwise. Thus an exact analogue of Beurling’s theorem, as
extended by Lax and Halmos, is true for M X, Z, precisely when o fixes each finite

central projection of M.
The algebra M X, Z, is an example of what Arveson [1] calls a maximal sub-
diagonal algebra (cf. [13] and [16] also). Although M X,Z, may be maximal as
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a subdiagonal algebra in M X, Z, it need not be maximal among the ultraweakly
closed subalgebras of M X, Z. In Theorem 4.4 we use our analysis of invariant
subspaces to prove that M X, Z, is maximal among the ultraweakly closed sub-
algebras of M x, Z precisely when M is a factor. A closely related result was proved
by Peligrad and Rubinstein [19, Proposition 4.2] and their proof can be modified
to prove ours. However, our proof leads to some interesting refinements of the
basic results on invariant subspaces.

When M is finite and « preserves a faithful normal finite trace on M, then
M X, Z is a finite von Neumann algebra and M X, Z, is a finite maximal subdia-
gonal algebra in the sense of [1]. Consequently, the following factorieation theorem
is true; Every invertible k € M X, Z may be factored as k = w,a, = a,u, where u;
is unitary in M X, Z and where each q; is an invertible element in M X, Z, with
inverse also lying in M X,Z, [l, Theorem 4.2.1]. This result, or more accurately a
technical extension of it (cf. [{6, Proposition 1.2] and {22, Proposition 1]), was one
of the key ingredients in the arguments of [16] and [17]; except for the invariant
subspace theorem, all of the major results in [16] and [17] require it. When M is
not finite, M X, Z . is no longer a finite subdiagonal algebra and there is no reason,
a priori, to believe that the factorization theorem remains valid. Indeed, Larson [12]
has recently exhibited a subdiagonal algebra in which the factorization theorem
fails. He does not refer to subdiagonal algebras as such, but his arguments show
that if one lets the rationals Q act on £(Q) through translation and if one forms
£%(Q) X Q. in the way one builds M X, Z_ , then £°(Q) X Q, is a maximal subdia-
gonal algebra in £/°(Q) X Q without the factorization property. In contrast, as we
shall show in Corollary 5.2, the factorization theorem is true in M X, Z, as a con-
sequence of our analysis of invariant subspaces. Thus we find that the invariant
subspace structure of M X, Z. leads directly to all of the results about M X, Z,
without the intervention of the general theory from [1].

In [3] Arveson showed that factorization holds in certain subdiagonal alge-
bras of a type I, factor. This result together with our results in this note are the
only positive results known to us concerning factorization in nonfinite subdiagonal
algebras. So, when contrasted with Larson’s discoveries, the problem of identifying
those subdiagonal algebras in which the factorization theorem is valid becomes all
the more piquant. A recent study of Jorgensen [9] may prove useful here.

The next section is devoted to preliminaries. Section 3 contains our analysis
of invariant subspaces and the fourth section is concerned with maximality ques-
tions. The fifth and final section is devoted to the factorization theorem.

2. PRELIMINARIES: NON-SELF-ADJOINT CROSSED PRODUCTS

Throughout this paper, M will be a von Neumann algebra on a Hilbert space
H with a cyclic and separating vector {,. For convenience, we normalize £,. Put
@(x) == (x&, &), x € M. Then ¢ is a faithful normal state on M. Let a be a «-auto-
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morphism of M which preserves ¢; ¢ o = @. Recall that the crossed product M X, Z
of M by the automorphism group {®"},cz is the von Neumann algebra on the

Hilbert space ¢%(Z, H) generated by the operators n(x), x € M, and u defined by the
equations

((x)8) (n) = a~"(x)¢(n), ¢ef*(Z,H), neZ,
W) (n) =¢,m—1), et (Z,H),nel.

Since m is a normal faithful «-representation of M, we may and shall identify M
with its image n(M) in M X, Z. The automorphism group {B,}:er of M X, Z dual
to {¢"}»ez in the sense of Takesaki [26] is implemented by the unitary representation
of R, {V,}ier, defined by the formula (V,£)(n) = e**" ¢(n), ¢ € £%(Z, H); that is,
B(a)=VaVy, acMx,Z.

For every n e Z, we define a o-weakly continuous linear map ¢, on M X, Z
by the integral

1
g,(a) = S e~ p(a)dt, aeMx,Z.
[1]

Then it is clear that
e(MX,Z)={ac MX,Z:B(a)=e*""a, teR}.

Further, the g,, 1 € R, are automorphisms of M X, Z and are characterized by the
formulae

B(x)=x, xeM,

B(u) = e*™u, 1eR.

Thus, by [13, 26], we have
M={yeMX,Z:B(x)=1x, teR}.

Recall that g, is a faithful, normal, {f,}:cr-invariant conditional expectation of
M x,Z onto M. Put ¢ = @ og,. Then ¢ is clearly a {§,},er-invariant faithful normal
state on M X, Z. The function y is defined by the formula (0) = &, and ¥(n) =0,
n#0. Then ¥ is a cyclic and separating vector for M X, Z on¢*(Z, H) such that
Po(x) = (Y, ¥), xe M X, Z. We now define M X, Z, tobe {xe M X,Z :¢,(x) =0,
n < 0} and call M X, Z, the non-self-adjoint crossed product determined by M and .

Let {6,}:cr be the modular automorphism group on M X, Z associated with
@ and let N denote the crossed product (M X, Z) X, R of M x,Z by {0,}:er. Recall
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that N is the von Neumann algebra on the Hilbert space L*(R,2(Z, H)) generated
by the operators p(x), x € M X, Z, and A(s), s € R, defined by the equations

(p(x)E) (1) = o (x)E(1), EeL*R,(Z,H)), 1R,
(MDD =&t — ), EeL*R,(HZ,H)), teR.

We identify M X, Z with itsimage p(M X, Z) in N. Let {0,}scr be the dual action
of {6,}:er on N which is implemented by the unitary representation of R, {S,}/er,
defined by the formula

(S8 (s) = e¥&(s), <eLl*R,(XZ, H)):
that is, 0.(a) = S,aSf, ae N. Then we have
MXx,Z={aeN:0(a)=a, tcR}.

Since N is semi-finite (cf. [26]), there exists the faithful normal semi-finite trace t
on N satisfying the equation 78, = e~57, s € R (see [7, Lemma 5.2]).

According to Haagerup (8] ({27, Chapter 2]), the space L°(M X, Z),
p €1, oo) (for simplicity, L”) is defined as the set of all t-measurable operators &
such that

0k) = e=Pk, seR.

The algebraic structure in L? is inherited from the regular ring of 7-measurable
operators. As in [8], we define the operators L, and R, on L*® by the equations

Lk=xk, Rk=kx, xeMX,Z, kel’

If § is a subset of M x,Z, we will write L(S) (resp. R(S)) for {L,:x € S} (resp.
{R, : xe S§}). In particular, we put 2=L(M X, Z), R=R(M X, Z), 8, =L(M X,Z.)
and R, -~ RIM X, Z,). 1t is clear that € == {L(M), L,}"" and R = {R(M),R,}"".
Further, £, (resp. R,) is a o-weakly closed subalgebra of £ (resp. R) which is
generated by L(M)and L, (resp. R(M) and R,). The involutionJ : ke L?® — k% e L*
and L3 together with £ form a standard form {€, L2, J, L2} in the sense of Haage-
rup [5] (cf. [27, Theorem 36]). By the uniqueness of standard forms, the positive
cone PY in £%(Z, H) is identified with L2 . Through this identification, we denote the
operator in L} corresponding to ¢ by A,, that is, &, is the Radon-Nikodym deri-
vative of the dual weight w of ¢ with respect to 7 in the sense of Pedersen-Takesaki
([18]). So we have w(x) = t(lyx), x € N and /}” is a separating and cyclic vector
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for M X, Z in L2 Thus we may identify {M X, Z, (%(Z, H), y} with {, L?, Ig*};
this identification will be made throughout the paper.

Since @of, = @, t € R, there exists a unitary group {W,},cr on L? such that
W (ahi?*) = B(a)hY? ae M X, Z, t € R. Tt is elementary to check that the spectral
cesolution of {W }.er is given by the formula

27i
e 'HntEn R

18

W, =

n=—0oco

where E, is the projection of L? onto the closed linear span u"[Mh}/®], of u"Mhy* in
L2 It is equally easy to check that the projection E, can be calculated as the (Boch-
ner) integral

1
E(x)= Se““"’i”' W (x)dt, xel2
0

1t is clear that E,(ah}*) = ¢,(a)h}/? a € M X, Z . The following theorem summarizes
the basic properties of the structures that we have been discussing.

THeOREM 2.1 (cf. [13, Theorem 3.15] or [20, Theorem 2)). The algebra
M X, Z., is a maximal subdiagonal algebra in M X, Z with respect to the expectation
& . The diagonal of M X, Z equals M. In addition, the map x — L., (resp. R,),
xe€M X, Z.,isaoc-weakly continuous, isometric isomorphism (resp. anti-isomorphism)
of MX,Z, onto £, (resp. R, ).

3. INVARIANT SUBSPACES AND THE BLH THEOREM

In this section, we investigate the structure of the subspaces of L2 which are
invariant under £, or R, .

DerINITION 3.1. Let 9 be a closed subspace of L2 We shall say that M is:
left-invariant, if .M < I, left-reducing, if QM <= M; left-pure, if M contains no
non-trivial left-reducing subspace; and lefr-full, if the smallest left-reducing sub-
space containing 9t is all of L2 The right-hand versions of these concepts are defined
similarly, and a closed subspace which is both left- and right-invariant will be called
two-sided invariant.

The following proposition shows that the analysis of the invariant subspace
structure of £, may be reduced, in part, to known results about the invariant sub-
spaces of L,. The proof is straightforward because £, is the g-weakly closed sub-
algebra generated by L(M) and L,, and so will be omitted.
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PROPOSITION 3.2. Let M be a left-invariant subspace in L2. Then
(1) M reduces L(M);
(2) M reduces L if and only if M reduces L,;
(3) M is left-pure if and only if A LiIM = {0},
and n>0
(4) M is lefr-full if and only if Vo LM =
n<

PROPOSITION 3.3. Let M be a left- (resp. right-) invariant subspace of L*. Then
M= W, @ My, where M, is a left- (resp. right-) reducing subspace and M, is a
left- (resp. right-) pure left- (resp. right-) invariant subspace.

As in the proof of [21, Theorem 4.1], we have the following proposition.

PROPOSITION 3.4. Every left- (resp. right-) reducing subspace M in L? has
the form RL*(resp. L, L?) for some projection e in M X, Z. In particular, if M is
two-sided reducing, then there exists a central projection e of M X,Z such that
M= RL:= L1

We next define H? to be the closed linear span [(M X, Z.,)hy®), of (M X, Z )k} ®
in L%, and we put Hj = L H2 H2 is called the ‘noncommutative Hardy space deter-
mined by M and a. The following proposition presents the basic properties of H2,

ProposiTION 3.5. (1) L*=H? @ JH} = H: © JH2

(2) RiH2 = LiH? for every ne Z.

(3) H? is a left-pure, left-full, right-pure, right-full, two-sided invariant sub-
space of L2

(4) H2 = Z*B Li[MhY%, .

(5) H2 = {xeL2 E(x) =0, n < 0}.
(6) H2 = [M*(M X, Z.)],.

Proof. (1) Assertion (1) follows from the proof of [1, Theorem 2.2.1].
(2) Since L H? = H} and JL,J = R¥, we have

HBR=LoJH;=1*0JLH=L*0R;JH =
= R%(L? © JH®) = R}H}.
Thus we have R,H2 = Hi = L H2 If n > 1, and if R7H? = L7H?Z, then
R;*’H? = R(RiH?) = R(L;H?) = Li(RH?) =
= L%(LH?) = Li+*'H2.
Thus L7H? = R'H? for all n > 0. But, if » < 0, then using (1) once more and the

fact that
R¥"HE = R*"-VH? = L¥*-DH2 = [ *"H3,
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we find that
RiH? = JRUH? = J(L}"(JH?) = J(L3"(L* © HY) =

= J(L* © Li"H}) = J(L* © RI"H}) =
= J(R*(JH?)) = L7 H2.

(3) Let v be a unitary element in M. Since H2 is clearly left-invariant, L*Hj =
= HZ = L HZ, by (2). Thus we have

RH? = R(L?© JH?) = L © R,JHZ =
=1% g JL*H! = L? © JH? = H2.

Since M is generated by unitary elements in M, H? is a right-invariant subspace of
L% It is clear that H2 is left-full and right-full since A2 e H2 Let xe( V) L:H2=

nz0

= (R H2. Then, for every n > 0, there exists |[an element y, € H? such that
#>0

x = L}y, . For every y € JH?, we have
(x, Liy) = t(y*u™u"+1y, ) = 1(y*uy,..) =
= (UYp+1, ¥) = 0,

because uy,,, € HZ and y e JH2. Since U L?JH? is dense in L2, we have x = 0.
nz0

Thus H? is left-pure and right-pure.
(4) is clear since H? is left pure.
(5) is clear by the definition of H? and E,.
(6) Since [MhY?1, = [hY*M],, (6) follows from (2) and (4).
This completes the proof.

In this paper we are interested in certain wandering subspaces for the bila-
teral shifts L, and R,. As in [16], we have the following proposition.

PROPOSITION 3.6 ([16, Theorem 3.2]). For i=1, 2, let IM; be a left-pure,
left-invariant subspace in L2, let q; be the projection of L* onto WM;, and let p; be
the projection of L* onto M; © LI, ,i =1, 2. Then each p; lies in L(M)', and p, < p,
in L(M)' if and only if there is a partial isometry v in M X, Z such that g, = R, q,R¥.
In this event, M, = RM,. In particular, if My = H® and p, <X p, in LMY,
then there exists a partial isometry v in MX,Z such that M, = RH*?
and vv* e M.

Proof. Each q; lies in L{M)’ by Proposition 3.2; and since L, normalizes
L(M), and therefore L(M)’, it follows that p, = ¢; — L,q;L¥ lies in L(M)". If
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D2 X py in L(AL), then there is a partial isometry w in L(M)" such that p, = wn*
and w*w < p;. As in the proof of [16, Theorem 3.2], put R, = Y, LiwLi*. Then
k-:. oo

R, is a partial isometry in R such that g, = R,g;R”. The cnnverse is trivial by [14,
Theorem 3.2].
If 9, = H?® and p, < p,, then we have

RIR, = ( 3 LZwL,’j‘")¢( y LﬁwL;?”) =

"o —-00

(=]
=y LiwHwlLEn,
n=—-00

Hence we have

RURqu = (

§ LZw*wa")( § L:':'PlLf") <

r n-=0

(e
<Y Liw*wlLi" < gq,.
n:=0

This implies that R*R H® < H? and so R*R, e R, by [I, Theorem 2.2.1]. There-
fore R,,« € R(M) and so vv* € M. This completes the proof.

Let M be a left-invariant subspace of L2. By Proposition 3.3, M = M, @ M.,
where 9, is a left-reducing subspace of L? and 9, is a left-pure left-invariant
subspace of L% Let ¢; be the projection of L? onto 9i;, and let p, be the projection
of M, © L,M,. Let P be the projection of L2 onto H2, and let p, be the projection
of L? onto H2 © L ,H? Then the following corollary is a consequence of Propo-
sition 3.6.

COROLLARY 3.7. If po X po in L(M)', then there exist a partial isometry v
in MX,Z and a projection g, in M X,Z such that M =RH*® anL2 and
RL.R;::R,,O = 0.

Proof. By Propositions 3.4 and 3.6, there is a partial isometry v in M X, Z
and there is a projection ¢, in M X,Z such that 9J?=RvH2(-BRqoL‘-’. Thus
RL,PR,’,E’R,,o == 0. Since H? is left-full by Proposition 3.5(3), LiPL}" converges
strongly to 1 (n - —o0). So we have

RLIPLI"RER, = Li(R,PRIR,)LY" =0,

and RUR,'","R,,0 = 0. This completes the proof.

We shall say that the Beurling-Lax-Halmos (hereafter abbreviated the BLH
theorem) is valid if every left-pure, left-invariant subspace MM of L* has the form
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R H? for some partial isometry v in M X, Z. In [17], we showed that if M is finite,
then the BLH theorem is valid if and only if « fixes the center 3(M) of M element-
wise. Our aim in this section is to find necessary and sufficient conditions for the
BLH theorem to be valid in the present, more general setting.

LemMA 3.8. Suppose that M is a properly infinite von Neumann algebra. If
P is a projection in L(M)', then p < p, in L(M)'.

Proof. We recall that p, is the projection of L? onto [Mh3/%], (= H2 © L H?).
Thus p, = E,. Let ¢(p,) be the central support projection of p, in L(M)’. Since
the center 3(L(M)’) of L(M)’ equals L(3(M)), there exists a central projection z in
M such that L, = c¢(p,). Since p, is the projection of L? onto [Mh}?],, we have

12

xhy® = poxhy’® = c(py)x¥hi® = Lxhi® = zxh}? xeM.

Since h}/? is a separating vector in L%, we have x = zx, x€ M and so z = 1. Thus
c(po) = 1. Since (L(M)p,)’ = poL(M)'p, (cf. [4, Chapter 1, §2, Proposition 1]),
{L(M)p,, [Mhy/®,} is a standard form and so p, is properly infinite. Since M is
o-finite and the central support projection ¢(p) is dominated by 1, we have p < p,
in L(M)', by [4, Chapter 111, § 8, Corollaire 5]. This completes the proof.

PROPOSITION 3.9. If M is properly infinite, then the BLH theorem is valid,

Proof. Let M be a left-pure, left-invariant subspace of L2 let p be the projec-
tion of L? onto M © L IN. Since p lies in L(M)’ and M is properly infinite, p < p,
in L(M)' by Lemma 3.8. By Proposition 3.6, there exists a partial isometry v in
M X, Z such that M = R,H?. This completes the proof.

By [4, Chapter 1, § 6, Corollaire 1], any von Neumann algebra M is uniquely
decomposed into a direct sum of two algebras, one of which is finite and the other
of which is properly infinite; that is, M = Mz @ M(1 — z), where Mz is finite,
M(1 — z) is properly infinite, and z is the maximal, finite, central projection of M.
Since, necessarily, a(z) = z, z is a central projection of M X,Z, and so M X, Z =
=(MX,Z)z®(MX,Z)(1 —z). It is clear that (M X,Z)z = Mz Xq, Z and
MX, Z)(1 —2)=M(1 — 2) Xa,Z, where o, and «; are the restrictions of « to Mz
and M(1 — z), respectively.

THEOREM 3.10. The following assertions are equivalent:

(1) o fixes each finite central projection of M.

(2) Every left-pure, left-invariant subspace of L® is of the form RH® where
v is a partial isometry in M X, L.

(3) Every left-invariant subspace of H? is of the form RH?, where v is a par-
tial isometry in M X, Z.

Proof. (1) = (2). Let M be a left-pure, left-invariant subspace of L2, and
let z be the maximal, finite, central projection of M. Then L9 and L,_,M are left-
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pure, left-invariant subspaces of L2. Since Mz is finite, there exists a partial isometry
v, in (M X, Z)z such that L0t = vaH2, by [16, Theorem 3.2] and {17, Theorem 3.2].

On the other hand, since M(1 — z) is properly infinite, there exists a partial iso-
metry vy in (M X, Z)(1 — z) such that L,_, M = R, H?, by Proposition 3.9. Thus,
putting v = v, 4 v,, we see that v is a partial isometry in M X,Z such that
M = R ,HZ Therefore, the BLH theorem is valid.

(2) = (3). Since H?* is left-pure by Proposition 3.5 (3), it is clear that (2)
implies (3).

(3) = (1). Let z be the maximal, finite, central projection of M. If z==0, then we
are done. Suppose that z#0. Consider the finite von Neumann algebra Mz. Since
o fixes z, (M X, Z)z = (Mz) X, Z, and we may restrict our attention to (Mz) X, Z.
But then, the assertion follows from Theorem 3.2 of [17]. This completes the proof,

CoRrOLLARY 3.11. If « fixes each finite central projection, and if M is a left-pure,
left-full, left-invariant subspace of L?, then there is an isometry v in M X, Z such
that 9 = R H:.

Proof. By Theorem 3.10, there exists a partial isometry vin M X, Z such that
M = R,H2 Since R, and L, commute, we find that

RL:S R(V LiH2) =V LIRH2 =V LI = L2,
neZ

neZ nez

that is, R, is a co-isometry and so v is an isometry in M X, Z. This completes the
proof.

4. MAXIMALITY OF Mx ,Z

Our main objective in this section is to prove the following theorem which
determines when M X,Z, is a maximal o-weakly closed subalgebra of M X,Z.
Recall that Theorem 2.1 tells us that M X, Z. is maximal as a subdiagonal algebra.
In [16], we proved that, when M is finite, M is a factor if and only if M X, Z, is
maximal as a o-weakly closed subalgebra of M X, Z. In this section, we generalize
this result to cover the case when M is an arbitrary (o-finite) von Neumann algebra.
To do this we require the following lemmas.

LeEMMA 4.1. Let M be a properly infinite von Neumann algebra. If B is
a proper, a-weakly closed subalgebra of M X, Z containing M X, Z .., then [Bh3®)s # L2

Proof. Since B is a proper g-weakly closed subalgebra of M X, Z, there exists
a nonzero element x € L! such that ©(y*x) = 0 for every y ¢ B, by the Hahn-Banach
theorem. Let x = |x*|v be the polar decomposition of x. Since |x*|V/2 € L2, we may
consider the right-invariant subspace [|x*|/2B], of L2 If [|x*[*/2B], were right-reduc-
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ing, then it is clear that [Jx*¥2B], = [|x*|V3(M X, Z)],. Since ve M X,Z and
1 € B, we would have, for each b € B,

(|x*] 20, [x*[V2h) = T(b* |x*|12|x*{V2p) = 1(b*x) = 0.

Since [|x*|Y2Bly=[|x*|Y2(M X, Z)];, we would have |x*|2y = 0 and so x would be
zero — a contradiction. By Propositions 3.3 and 3.9, there is a partial isometry w
in Mx,Z and a projection p in M X,Z such that [|x*]V2B), = L H* @ L,L%
Since w*w € M by Proposition 3.6 and L, L}L, = 0 by Corollary 3.7, we have

Lyllx*V2B]y = LyL H? = Ly H* < H.

Thus there exists a nonzero element ¢ € H? such that L}{x*|¥2 = L*L c. Propo-
sition 3.5 (1) implies that for every a€ B and b e H® (= u(M X,Z,)), we have

(ahd?, (bw*wc)*) = T(bw*wcahy®) = 1(bw*|x*|V2ah}®) =
= t(hY*bw*|x¥|V2a) = (w*|x*|V2a, b*h}*) = 0,

because w*|x*[V2e H? and b*h}?e JH3. Since (HPw*wc)* # {0}, we have
[BhY?%). # L2 This completes the proof.

The following lemmas may be found in [16]. Since the proofs there do not
require that M is finite, they apply here and so we shall not reproduce them.

LeMMA 4.2 (cf. [16, Lemma 4.2]). If M is a factor and if B is a {B,}ier-inva-
riant, o-weakly closed subalgebra of M X, Z containing M X, Z ., then B= M X,Z,
or B=MXx,Z.

LeEMMA 4.3 (cf. [16, Theorem 2.3]). Suppose that M is a factor and M X, Z
is not a factor. Then 3(M X, ZYN{(M X, Z,) is a maximal oc-weakly closed sub-
algebra of 3(M X, Z), where 3(M X,Z) is the center of M X, Z.

THEOREM 4.4, The following assertions are equivalent :
(1) M is a factor;
and
(2) M X,Z, is maximal as a c-weakly closed subalgebra of M X, Z.

Proof. The implication (2) = (1) is proved just as in the proof of Theorem
4.1 of [16]. So we concentrate on the implication (1) = (2). If M is a finite factor,
then M X, Z, is maximal as a g-weakly closed subalgebra of M X, Z by [16, Theorem
4.1]. Therefore we suppose that M is a properly infinite factor. Let B be a proper
o-weakly closed subalgebra of M X,Z containing M X,Z,, form the two-sided
invariant subspace [BhY¥?),, and note that [Bh}?], # L? by Lemma 4.1. Note, too,
that [Bh}?), does not reduce either £, or R, because it contains the cyclic and
separating vector Y% Since H? c [BA}?),, [BhY?); is obviously left-full.
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To show that it is left-pure, we begin by replacing B by a potentially bigger
subalgebra. We set B = {xe M X, Z : LIBh}?), < [BhY2,}. Since [BAY%, is not
left-reducing, it is clear that B is a proper, o-weakly closed subalgebra of M x,Z

containing B and [BhY?], = [BAY?],.
To show that [Bhy®l, is lefi-pure, let P,, be the projection of L% onto

(M Li[BhY?,. Since [BhY®), # L2, P, # 1. 1t is clear that P, lies in £ = R.
n>0

Since, however, [Bhy?], is right-invariant, so is () L Bh§?], . This implies that P
n>0

commutes with R(M) and R,PoR; < P, . Thus P,e R(M)' n R.
Next we shall prove that R,PR,; = P_. Suppose that R,P R} < P,,. Then

P L2 (=() LI[Bi"),) is right-invariant and not right-reducing. Put g, = P,

n>0

— R,P,R;. Then g, is the projection of L? onto P,L? © R P L2 Let P (resp. py)
be the projection of L? onto H? (resp. H? © R H?). Let P, be the projection of
L? onto () RIP L2 Since P, e R(M) n R, it is clear that PLe R' n R := H(L).

">

Hence thereoexists a central projection p., in M X, Z such that ch,n =P, . fMX,Z
is a factor, P}, must be zero, since p,,#1, and so P, L? is right-pure. In the contrary
case, since L, [Bhy®), < L, L* < [B}"), pl, lies in B. Thus Ploe 3(M X, Z) n B.
Since (M X, Z)n(M X, Z,) is maximal as a o-weakly closed subalgebra of
QM X, Z) by Lemma 4.3, we find that either 3(M X,Z)n }3=3(M X, Z) N
N{Mx,Z,), in which case p,, =0, or I(MX,Z)n B= (M X, Z). But, if
3(M x,Z) were contained in f?, then the o-weakly closed subalgebra D generated
by M X, Z., and 3(M X, Z) would be a {B,};cr-invariant subalgebra of M X, Z satis-
fying the relations M X, Z, < DB § M X, Z. Since thisis not possible by Lemma
4.2, we conclude once more that P,, = 0. Thus P L? is right-pure.

We now consider the following two cases:

(1) ¢, is infinite in R(M)’;
and

(11) g, is finite in R(M)'".

Case (i). Suppose that g, is infinite. Since p, is infinite and R(M)’ is a factor,

~ ¢, by [4, Chapter III, §8, Corollaire 5]. By Proposition 3.6, there exists a
partlal isometry w in M X, Z such that P, L?= L H? and L;L, == 1, because
HZ is right-full. Hence we have

Pl = PLLEL P = P LiL2 = LiPL? =
= LiLH? = H=.

Since H? is right-pure, P,,=0, which contradicts the assumption that R,P,R’< P,
Thus P, € 3(2).

Case (ii). Suppose that g, is finite in R(M)'. Since p, is infinite and R(M)’ is
a factor, ¢, < p, by [4, Chapter I1I, § 8, Corollaire 5]. Thus there exists a partial
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isometry w in M X, Z such that P L? = L H2 Since P, = L ,PL}, by Proposi-
tion 3.6, it is clear that V RIP,R¥" = L,L%. Since P,c R0 R(M), we have

neZz
L,L; < 3(2). We now prove that L,LJ is a finite projection in L. Suppose that
L,L; ~L,=L,L}, where q is a projection in M X, Z. Then there exists a par-
tial isometry w, € M X,Z such that LWLf = Lffl'Lwl and L, = LwlLffl. Since
g, = Py, — R,PoR; € R n R(M)', we have

(Lo @) (Lo @) = @l Lo gy = L Lugy = a
and

(L)L @) = Lugilus = Ly L gy = Lyt
Thus we have ¢, ~ L,g,<q, in R(M}'. Since ¢, is finite in R(M)', q; = L,q, . Hence
we have

LLY =Y, RigiRE" = ¥, RILgRE" = L,L, L.
nezZ neZ
This implies that L, > L,L} and so L,= L,L;. Consequently, L,L} is a finite-
central projection in €. On the other hand, we assert that LiL, < L,LZ. For,
since PoLil L2 = LiL H? we have P LiL, = LEL P. Thus, RIP R*"LiL, =
= L L,RiPR¥". Since RP R" — L,L; and RI!PR}" — 1 (n - —o00), we have
LLELYL, = LiL, and so LyL, < L L. Since L, L} is finite, LiL, = L L.
Thus we have
PI1:=P L L= P LILJL:= P L:L?c L}L H?c H?

because L, L, e L(M). Thus, since H? is right-pure, P, = 0. This is a contra--
diction.

Therefore, in both cases, P, € 3(L). Thus there exists a central projection
P in M X, Z such that L, = P, . Since me[Bhf,’z]2 < L, L? c [Bh®)z, Peo.
lies in B. Thus P €I(M X, Z)N B. Since (M X, Z)n (M x,Z,) is maximal as a
o-weakly closed subalgebra of 3(M x,Z) by Lemma 4.3, we find that either-
3(MX,Z)nB=3(Mx,Z)yn(Mx,Z,),in which case p,, =0, or 3(M X, Z) n B=
= 3(M x,Z). But, if 3(M x,Z) were contained in B, then the o-weakly closed
subalgebra D generated by M X, Z, and 3(M X, Z) would be a {f,},er-invariant
subalgebra of M X, Z satisfying the relations M x,Z, s D < B SMX,Z.
Since this is not possible by Lemma 4.2, we conclude once more that p,, = 0. Thus-
[Bhy?), is left-pure as we wished to prove.

Let g, be the projection of L? onto [BEY?), © L [BhY?],; then we consider-
the following two cases:

(a) g, is infinite in L(M)’;
and

(b) q, is finite in L(M)'.
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Case (a). Suppose that g, is infinite in L(Af}". Since p, is infinite in L(M)’,
Po ~ §o. Since [Bh{®], is left-pure and left-full, there exists a unitary operator
ve M X, Z such that [BA}®], = R,H2 This implies that

[BhY®) = R} RJL(B)H), = Ri[R,L(B)H?), =
= R¥L(B)RH); = RIL(B)[BhY™:): =
= Ri[BHYY, = HE.

Therefore B = M X,Z, , by [I, Theorem 2.2.1]. So in this case, M X, Z, is maximal
as a o-weakly closed subalgebra of M x,Z.

Case (b). Suppose that g, is finite in L(M)’. Since L(M)' is o-finite, there
exists a maximal family {r,}¢°.; of mutually orthogonal, equivalent, finite projections

[>2]
in L(M)' such thatg, ~ r, < p,. Then p; — Y. 7 is a finite projection in L(M).

Put ry, = p, — S: r,. Since L(M) is afactor, rqy < g, or g < ro. If gy < ry, then

we have a contradnct:on by the maximality of {r,}3.,. Thus, r, < g,. Since g, ~ r,
(n = 1), there exists a partial isometry v,,eL(M) such that v}v, = r, < p, and
v,,v,’f = g,. Since [Bh}®), is Jeft-full, there exists an isometry w, € M X, Z such that

=keZZL’,fv,,L;“", [BhY*), = R, H* and R, R, € R(M). Thus, for every n > 1,

R R, [BhY*), = Ry R, [L(B)H?], = (R, R, L(B)H], =
= [Ry, L(B)Ry H¥, = Ry, L(B)[BAY)): =
= [Ry Ry H]: = R, R, HZ.

On the other hand, since r, < q,, there exists a partial isometry v, in L(M)’

such that viv, =r, and wvwg < go. It follows that there exists a partial iso-

metry wye M X,Z such that R, =Y, Lin L}, Rj[Bh},/?]g:R,fonoHﬂ and
keZ 0

RyR, €R(M). Thus we have R, R,[BH"],=RyR,H. Since Ry R, =

Z L{‘,r L** and R} Ry, = z. Lir,L¥**, we have
kEZ

uMB

Y RIR, —

n=0

3 Linlit= ¥ Lipli*= 1.
kez keZ
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oo . o

Consequently, [BAi?], = Y R:an"[B/z(’)’ e = Y, R:annH2 = H2, and we con-
n=0 n=>0

clude that B= M x,Z,. Thus M x, Z. is maximal as a g-weakly closed sub-

algebra of M X, Z, and the proof is complete.

There are several corollaries and modifications of Theorem 4.4, which are
worth developing.

COROLLARY 4.5. Suppose that M is a factor. If e is a projection in M X, Z
such that R)L? is right-invariant, then e lies in 3(M X, Z), so that RJL? is two-sided
reducing.

Proof. 1t is clear that R, € R(M)' n R and R,R.R} < R,. Put 9 = (M RIR,L2.

neZ

Suppose that R,R.R.; < R,. Let Q be the projection of L? onto Mi. Then, we clearly
have Q € 3(2). Thus, there exists a projection g € 3(M X, Z) such .that R,=0.
But also R,RL?* ¢ RL* = R,L? Hence, since M X, Z, is maximal as a ¢-weakly
closed subalgebra of M X,Z by Theorem 4.4, ge (M X, Z ) n 3(M x,Z). Since
q # 1, ¢ = 0; that is, R,]L? is right-pure. Then, as in thc proof of Theorem 4.4,
R, e 3(2). This completes the proof.

Next we investigate the form of two-sided invariant subsgaces of L2,

THEOREM 4.6. If M is a factor, then every two-sided invariant subspace which
is not left-reducing is left-pure, left-full, right-pure and right-full.

Proof. If M is a finite factor, then we are done, by [16, Theorem 4.1]. So
we suppose that M is a properly infinite factor. Let 9 be a two-sided invariant
subspace which is not left-reducing and let P, be the projection of L2 onto (T} LZIN.

n>0
Then P_L? is left-reducing and right-invariant. By Corollary 4.5, P, lies in 3(2).
Thus, there exists a projection p, in 3(M X, Z) such that L, = P.. But also,
L, M L,,mL2 < 9R. Hence, by Theorem 4.4, p,,e M X, Z, . Since I(M X,Z) n
N(Mx, Z,) is isomorphic to H* of the unit disc by Lemma 4.3 (cf. [16, Theo-
rem 2.3]) and P, # 1, we conclude that P, = 0; that is, that M is left-pure. To

show that 9 is left-full, let P_,, be the projection onto VYV Li%. Then, as before,
neZ

P_ , lies in 3(2), but this time P_,, is not zero. Thus there exists a projecticn
P-w in 3(MX,Z) such that L, =P_o. Also, L, 9 =9I because

p
Mc VLIM=L

neZ
P_., = 1, and M is left-full. Since M is not left-reducing, M is not right-reducing
by Corollary 4.5. The proof that M is right-pure and right-full is similar, so the
proof is complete.

‘,_sz. Thus, by maximality once more, p_, lies in M X, Z,,

Theorem 4.6 yields the following corollary.

2 - 2086
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CoROLLARY 4.7. If M is a factor, then every two-sided invariant subspace M
which is not left-reducing is of the form RH* = L B2 where v is an isbmetry in
M X,Z and w in a co-isometry in M X, Z. In particular, if M is a type I1l-factor
or a finite factor, every two-sided invariant subspace which is not left-reducing
is of the form RH? = L H® where v and w are unitary operators in M X,Z.

Proof. If M is a finite factor, then we are done by [16, Theorem 4.1].
Suppose that M is properly infinite. Since I is left-pure, left-full, right-pure and
right-full by Theorem 4.6, the first assertion is valid by Corollary 3.11. Let g, be
the projection of L? onto M © L,IN. Note that the projection of L2 onto
H: O LH%is E,. If M is a type IlI-factor, then L(M)' is a type III-factor.
Since g4 and E, are infinite projections of L(M), g, ~ E,,by[4, Chapter III, §5
Corollaire 5}. Thus, we can choose a unitary operator v in M X,Z such that
M = R,H2 This completes the proof.

REMARKS 4.8. We note in passing that if every two-sided invariant subspace
which is not left-reducing is of the form R,H? = L H? where v and w are unitary
operators in M X,Z, then the proof that (3) implies (1) in [16, Theorem 4.1]
applies here to show that M is a factor. It is attractive to conjecture that if M
is Il or I .-factor, then every two-sided invariant subspace which is not left-reducing
is of the form RH? = L H? where v and w are unitary operators in M X, Z.
The problem boils down to showing that if M is a I, or Il factor and if M
is a two-sided invariant subspace which is not left-reducing, then the projection
of L? onto M © LM, which lies in R(M)’, must be infinite in R(M)". While this
is the case in every example we know of, we are unable to show it in general.

5. A FACTORIZATION THEOREM

In this section we prove the factorization theorem discussed in the introduction.
We begin with a somewhat technical generalization which is the natural analogue,
in the present setting, of [16, Proposition 1.2] and {22, Proposition 1]. The factori-
zation theorem is an immediate consequence.

THEOREM 5.1. Let ke M X, Z. If there exist elements k, and k, e L*® such
that Lk, = Rk, = hi/® and such that ki and ki have dense ranges, then there
are unitary operators u, and uy in M X, Z and operators a; and a, in MX, 7L,
such that k = wa, = au,.

Proof. Let z be the maximal, finite, central projection of M. Then (M X, Z,)?
is a finite maximal subdiagonal algebrain (M X, Z)z, and so by [16, Proposition 1.2},
the conclusion holds in (M X, Z)z. Therefore, we may suppose that M is properly
infinite. We prove that k = wa,; the other representation is verified in a similar
fashion. Put M = [L,H?], . Itis clear that M is right-invariant. We first prove that M



NON-SELF-ADJOINT CROSSED PRODUCTS 19

is right-pure, that is, (M) Ri[L,H?], = {0}. Let x¢ ﬁOR,'}[LkHZ]Z. Since [L, H2], =
n>0 n>

= [L (M X, Z,)h¥?),, there exists a sequence {x,,}m..oin M X, Z, , which depends
upon n, such that ||R2L,x,hy/* — x|l —» 0 (m - o0). For every ye M X, Z, and
j < 0, we have

t(wykyx) = limt(u/ykoRIL, (x,516%)) =

M=300
= limt(u/ykokx, hy?u") = Hmt(u/*"phi®x, M%) =
m-—»0o0 m—oo
= limt(x, /g%’ +"yhY?) = lim (u/ +"phy?, J(xhY?))-
m~»00 M=>00

If n+4+j > 0, then T(u/yk,x) = 0, by Proposition 3.5 (1), because u’/*"yh;'® € Hy

and Jx,/i/* € JH2. Since | u/(M X, Z,) is o-weakly dense in M X, Z, we have
j<o0

kox = 0 and so x*k; = 0. Thus x* vanishes on the intersection of the domain of x*

and the range of &, which is strongly dense in the sense of Segal. Consequently,

x* vanishes by [25, Corollary 5.1], x = 0, and I is right-pure.

On the other hand, since [L,L%,= V R[LH?,, [L,L?*, is right-reducing
n<o0

and so there exists a projection e in M X, Z such that [L,L?], = L. L? by Propo-
sition 3.4. Hence we have L, = L,L,. Since k, € L?, we have h¥* = kk, = Lk, =
= L, Lk, = eh{® and so e == 1, because h}® is a separating vector. Thus M is
right-full.

Let g, be the projection of L? onto M © R,M. Since the projection of L2
onto H2 © R M2 is E,, we have g, < E, in R(M)’ by Lemma 3.8. Thus there exists
a partial isometry v, in R(M)’ such that vgv, < E, and v,vf = gq,. Put V =

[==]
= Z RivoRE". Then it is clear that Ve R’ = € and 9 = VH2. Hence there

n=: —00

exists a partial isometry v in M X, Z such that ¥V = L,. We then have

o o
LiL,= Y, RingvRi" < Y, RIER;" =1,
n=-0o n= (=]
(e 2] oo .
LLi = Y, RivgvgR;" =Y, Rig,R:" =1,
n=-—oo n=— —-00

because M is right-full. Thus L, is a co-isometry and LIL H?2 < H2 This implies
that LyL,e £,. Since LyL, = L.  is self-adjoint, we have L., e £, n 2% = L(M).
Put a = v*k and v*v = r. Then [LH%, = L . H? = L ,H? c H2 By [l, Theorem
221}, ae M X, Z, .Setry= vy v,and define an operator Tin R(M)' by T = r,L,E,.

(o] o0
Put P, = Y RVER;"= Y E, . Since ac MX,Z,,

m=n m==n
roLaEy = roL(Py — Py) = roL,Py — roL P, =
= roPyL, Py — roP\L Py = roL P, .
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Therefore, we have
[TL?), = (rol By, = [roL,PoL?], =

== [roLH%)s = [roL,H*], = oL

On the other hand, it is clear that T = r L E, = E,L,E, = ‘%“”E°'

Put b = kyv. Then ba = kyvv*k = kok = hy/* and b eL®. Let 5 be the pro-
jection of kAy”® onto R, and set { = kA}® — ». Then it is clear that { € M © RM
and 0¥ = vg{ er L2 = L,(H2 © RH?) = L[MhY?, c [Mhy*), = [h2M].. Since
n € R = [khy/®(M X, Z,)u),, there exists a sequence {b,}; in (M X, Z.,)u such
that lim |ip — kMy/%b,jl= = 0. We then have

n=»o0

v* = v*(kig® — n) = lim (ah}® — ah}®b,).

n—=»00

Since v*{ e [MhY*, and ahi/*h, € HE, we have
v = E,(v*{) = lim Ey(ah}’® — ahd/®b,) =

= E,(ahy®) = &(a)hy* .
‘Therefore, we have, for every de M,

1(Ep(b)ey(@)hy*d) = t(bey(a)hy*d) = t(kote*ld) =

= 1(kLd) = imt(ko(kh}? — khi*b)d) ==

n—00

= limt(hyd — hob,d) = t(hyd) = T(hy*h§*d),

n->00

becausz /1*b,d € Bg. Thus t((Ey(b)eg(a) — hy*)x) = 0 for x € E,L® == [Mh}?),. Since
Ey(b)ey(a) — hy® € EgL?, we have E (b)ey(a) = hy®

Suppose that roL,Eyx = g5(a)Ey(x) = 0. Then h§?(Eyx) = Ey(b)eg(@)Epx == 0.
By [11, Lemma 2.1], we conclude that E,x = 0. Hence Ker 7 = (1 — £,)L? and
so [T*L?, = (ker T)L = E L2 Since [TL?, = r,L?, ry ~ E, in R(M)'. Thus there
exists a partial isometry w, in R(M)’ such that wiw, = E, and wywy = ry. Put
%o‘ RiwgR:". Tt is clear that L, is an isometry of £ such that L,L} = L,

w T |4}

n=.-00o
and LjLMH?= H2 Thus L,.-L, is a unitary operator in 2. Set L, = LiL, -
== L oL,. Since [LH, = LJ[LH%, = L,LH® = H?, we have L, e£,. Put

u, = vw. Then k = u,c. This completes the proof.

L

COROLLARY 5.2. Let k be an invertible element of M X, Z. Then there are
unitary operators u, and us in M X,Z and invertible operators a, and a, in
M X, Z, such that k = w,a, = au, and ait, as'e M X, Z. .
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Proof. Put k; =k-hy* and k,= h}*k-*. Then Lk, = Rk, = hy*. 1t
is clear that kf and kY have dense ranges. By Theorem 3.1, there is a unitary u;
in MX,Z and an operator a, in M X, Z, such that k = wa,. It suffices to
prove that ayle M x,Z, . From the proof of Theorem 5.1, we see that H?=
= [La, H?), = L, H?, because L, is invertible. Therefore L“f A2 = H? and so

ai*e M X, Z, . The factoring k=a,u, is proved similarly, and the proof is complete.

COROLLARY 5.3. Every invertible positive operator in M X, Z can be factored
in the form a*a, where a belongs to (M X, Z )N (M X, Z,)™ .

Proof. Let k be an invertible positive operator in M X , Z_ . By Corollary 4.2,
there exist an operator ae€ M X, Z, and a unitary operator , in M X, Z such
that k¥*=wa and a ‘e MX,Z,. Thus k = (k¥?)2= g*a. This completes
the proof.
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