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ON THE STRUCTURE OF (BCP)-OPERATORS
AND RELATED ALGEBRAS. 1

GREG ROBEL

1. INTRODUCTION

This paper is concerned with a class of (bounded, linear) operators on Hilbert
space which we call (BCP)-operators, and which were first studied by S. Brown,
B. Chevreau, and C. Pearcy in [7], where the existence of invariant subspaces
for such operators was established. The class (BCP), together with various related
classes of operators, has been further studied in a number of works including [1],
[21, [3], [4], [8], and [13]. In particular, recent work of C. Foias, C. Pearcy, and
B. Sz.-Nagy [10, 11] has given strong reason to hope that a sufficient understanding
of (BCP)-operators would yield the existence of invariant subspaces for a large
class of operators containing, for example, all Toeplitz operators and all hypo-
normal operators. For this reason, and others, results about the structure of (BCP)-
-operators are of considerable interest.

This paper is divided into six sections. In Section 2, we recall some preliminary
material and establish our notational conventions. We also give here our definition
of the class (BCP), which has the advantage that the class (BCP) is now both self-
adjoint and more general than the class studied in [7]. We are able to work in this
broader context by virtue of Lemma 3.4, Corollary 3.5, and Lemma 3.6 (B).

Operators of class (BCP) (together with some related classes of operators)
were studied in [3] in the context of the Sz.-Nagy—Foias functional model for
contraction operators. In Section 3 we obtain many of the key results of an early
version of [3] for (our, more general) (BCP)-operators. Unlike [3], our proofs
make no use of the Sz.-Nagy—Foias functional model. In addition to giving a more
accessible approach to these results, our techniques admit certain extensions which
will be taken up in the forthcoming Part IT of this paper.

In Section 4 we use the results of Section 3 to obtain Theorem 4.2 which
concerns the realization of certain operators as compressions of a (BCP)-operator
to a semi-invariant subspace.
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In Section 5 we obtain some density theorems which amplify the results of
Sections 3 and 4.

Section 6 is devoted to showing that any (BCP)-operator can be represented,
up to unitary equivalence, as a lower triangular, two-way infinite operator matrix
in which the diagonal entries are all of class (BCP).

2. PRELIMINARIES

Throughout this paper, 3# will denote a separable, infinite-dimensional, complex
Hilbert space, and Z(s) will denote the algebra of all (bounded, linear) operators
on . Denote by (tc) the Banach space of all trace-class operators on # under
the trace norm |-}|.. Recall from [9] that the bilinear form {4, K) = tr(4K) on
L(#) X (rc) allows the identification of L(H#’) as the dual of (zc), and that the
weak ¥ topology on £(5#) under this identification coincides with the ultraweak
operator topology. If &7 is any ultraweakly closed subspace of #(#°), then we
may consider its preannihilator L&/ in (zc), which will be a closed subspace of
(tc). Let Q = (zc)/*&/; then the bilinear form (A4, [K]) =tr(4K) on & X Q
allows the identification of &/ with the dual of Q. For x, y e # we let x ® y denote,
as usual, the operator (x ® y){(z) = (2, y)x. We have x ® ye(tc) and ||[x ® yll ==
= [lx @ il = lIxll Iyl

For an operator T € (), the symbols o(T), 6.(T), 01e(T), and o (T) will
denote, respectively, the spectrum, essential spectrum, left essential spectrum, and
right essential spectrum, of T.

Let D denote the open unit disc in the complex plane, and let A~ denote
the Banach algebra of all bounded, analytic functions on D, under the supremum
norm. We may identify H> with a certain subspace of L*(T) (where the unit circle T
is endowed with Haar measure), and moreover under this identification H® is weak*
closed in L*(T). For each ie D, the map f+ f()) is weak*® continuous on H®.
For all of these facts we refer to [12].

A subset A of D is said to be dominating if for every fe H=, || fi| == supif(4)i.

A€A

A theorem of L. Brown, A. Shields, and K. Zeller [6] asserts that 4 < D is domi-
nating if and only if almost every point of T is a nontangential limit point of A,

Recall that given any completely nonunitary contraction T on J#, one has
the Sz.-Nagy—Foias functional calculus @,: H* — #(5#) for T, which is a con-
tractive, unit-preserving algebra homomorphism such that &.(f}) = T, where
S € H> is the position function (1) = A (see [17], Chapter 3). If ¢(T) n D is domi-
nating, then @; is, in addition, isometric. Moreover, in this case the range of @
is precisely the ultraweakly closed subalgebra o/ of £(#) generated by T and
1%, and @ is a weak* homeomorphism of H* onto &/ ([7], Theorem 3.2 and
p. 129).
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We denote by Qr the quotient space (zc)/te/y; then as noted earlier, we
may identify o/ as the dual space Qr. If Te %(H#) is a completely nonunitary’
contraction and ¢(7T)n D is dcminating, then ty what has already been said..
for each 1€ D, the map f(T) > f(4) is a (well-defined) weak* continuous linear
functional on &/, and is hence an element of Q. We denote this element of Q-
by [Ci].

The main theorem of [7] asserts that a contraction T' has a nontrivial invariant
subspace whenever ¢(T) n D is dominating. For the purpose of proving this result,,
one can easily reduce to the case where T is completely nonunitary, 6(T) = ¢ (T) =
= 6,(T) = 0,,(T), and 7" — 0 strongly. After making these reductions, the authors.
of [7] assume that T is completely nonunitary, ¢,.(T) n D is dominating, and 7" —~0
strongly; they then prove the following structure theorem:

For any [K]e€ Qy, there exist vectors x,y € such that [K] =[x ® y]. In
particular, this is true for [K] = [C,), and this yields easily the existance of in-
variant subspaces.

This result has been strengthened in several directions. C. Apostol, in [1],“
proved the above structure theorem under the assumptions that T is completely
nonunitary and has no hyperinvariant subspaces, 7" — 0 strongly, and (in lieu
of requiring that ¢,.(7") te dominating) that the essential norm of the resolvent
of T satisfies a certain growth condition. Then H. Bercovici, C. Foias and C. Pearcy,.
in [3], by means of the Sz.-Nagy— Foias functional model [17], obtained this structure-
theorem in a context which contained both of the above results, and without the
assumption that 7" — 0 strongly. Moreover, they obtained “n X n matrix versions’”
of this structure theorem (where n can be either a positive integer or §,) which.
in turn yield more detailed structural information about the operator 7. For example,
the matrix versions of this structure theorem allow one to prove, as Bercovici,.
Foias, J. Langsam, and Pearcy do in [2], that the operator T under study is reflexive.
These results also make it possible to obtain operators of various prescribed classes-
as compressions of 7 to a semi-invariant subspace (up to some equivalence relation),.
as is done in {4] (and in Section 4 of the present paper).

Our aim in Section 3 below is to obtain “matrix versions” of the atove
structure theorem for the following class of operators.

DerINITION. The class (BCP) consists of all completely nonunitary contrac-
tions T on & for which ¢ (T) n D is dominating.

Prior to the present work, these results had been obtained, in an early version
of [3], for those completely nonunitary contractions 7 such that ¢, (7)0D is
dominating. The class (BCP) as defined above has the dual advantages of greater
generality and of being self-adjoint. Moreover, we are able to preve our results
without recourse to the functional model.

We conclude this section with some remarks concerning our notation. When
there is no ambiguity in context, we shall suppress the subscript on @, 7, and @,
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and we shall usually write f(T) rather than @.(f). We write ker and ran for kernel
and range, and the letter P will always designate an orthogonal projection. Sequences
are indexed by the positive integers, unless otherwise specified.

3. THE STRUCTURE OF

Throughout this section, unless otherwise specified, let 7€ £(o#) be a fixed
operator of class (BCP), and let & = &/, Q = Qr, as above. Let us choose, once
and for all, a countable, dense subset A = {1,} of ¢ .(T) n D, and a function x: Z* —
— {— 1, 1} such that x(k) = — 1 [respectively, x(k) = 4 1] implies 2, € 6,.(T)
(A € 0ce(T)].

Note that the set A is obviously dominating. The following lemma is proved
in the same way as [7, Lemma 4.7].

unit ball of Q.

Recall [14, p. 10] that 1 €0, (T) if and only if there exists an orthonormal
sequence {x,} in  such that {|(T — 2)x,|! = 0. Obviously, then, 1 & o.(T) if and
only if there exists an orthonormal sequence {x,} in # such that {|(T* — I)x,)| - 0.

The following is [7, Lemma 4.4].

LemMA 3.2. Let /. €0 (T)ND and let {x,} be an orthonormal sequence
such that (T — A)x,|l — 0. Then for any fixed y e, ||[x, ® yllp — 0.

Our next goal is Lemma 3.4, in preparation for which we establish the following
result, which essentially appeared in [7]. The proof given here is perhaps somewhat

more transparent. For Lemma 3.3 we shall assume only that 7 is a completely
nonunitary coatraction and that &(7) n D [rather than ¢ (T) n D] is dominating.

LEMMA 3.3. Assume that T" — 0 strongly, and let {x,} = H be a sequence
such that x, — 0 weakly. Then for any y e, ||[y ® x,]llog = 0.

Proof. We may assume, by [17, Chapter 2], that T = V*|3#, where V is a
unilateral shift of some multiplicity and ## is an invariant subspace for V. We
may also assume, by the uniform boundedness principle, that each {|x,|| < I.

For each #, we may choose, by the Hahn-Banach theorem (and since & is
isometric), f, € H*®, ||f,l = 1, such that

Iy ® x,lig={fu(D]): [y ® x> =
= tr{[ (D ® x,)} = tr{{ /(T)y] ® x,} = (fuD)y, x,)-

Let ¢ > 0. Choose N > 0 such that [[Pm(VN)yH <¢gf2 and let y,= Pmn(VN)y,

n =2y = ya= P~y For eachn, write £,(z) = pa(2) + h,(2)zV where h € H®
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N-1
and p,(z) = Y}, o,z Note that each |, < L. Since x, — 0 weakly, there exists
k=0

ne > 0 such that n > n, implies that [(V**p,, x,)| < ¢/2N for k =0, ..., N— 1.
Then for n = n,,

Iy ® Xalllg = [(fu(T)y, x)| = [(ul(V*)p, XDl S 1(f(V*)y1, x|+

+ ,(.fn(V*)}é) Xn)i < ,(.fn(V*)yls Xn)l “I— 8/2 S f(pn(V*)yly Xn)l +

N1
+ VYV, x|+ 62 <Y o [V, x)1 + 0+ ¢/2 <ce.
k=0

We now revert to our standing convention that Te #(#)is a fixed operator
of class (BCP).

LeMMA 3.4. Let Aeo (T)n D andlet {x,} < H# be an orthonormal sequence
such that (T — Dx,|| = 0. Then for any y € 3#, ||[y ® x,]llg = 0.

Proof. Let T, = (T — 4)(1 — AT)-" Since e D, (1 — IT)-! is a power
seriesin T,so T, € &/ and hence Mfl < & . Moreover (T,))_, = T,so MT;. =r.
Also, T, is a completely nonunitary contraction [17] and the obvious spectral
mapping theorem holds, so that T; is of class (BCP). These comments show that
we may assume that 1 = 0. ’

Let ¥ be the minimal isometric dilation of 7% The space on which ¥ acts
may be decomposed as a direct sum £%(F) @ &, where &, # are Hilbert spaces,
and £2(%) is the space of square-summable sequences (indexed by Z*) in &. With
respect to this decomposition, we have ¥V = ¥V, @ U where V] is a unilateral shift
and U is a unitary operator with spectral measure absolutely continuous with
respect to Haar measure on T. (See [17], Chapters 2 and 3.)

Write x, = xp @ xZ, ¥y = y* ® y? where x%, yl € £2(F) and x2, y® e Z. Now

Iy ® xullig, =
= sup ATy, x,)l = sup (S (P, x)l = Iy ® xlllg,,.
feH™ yfi=1 FeH™ (If|=1

so we need to show that the latter tends to zero. Since for any vectors y, v, w, we have

Iy @ vlllg,, < Iy ® wllig,,, + ¥l flv — wl|

and since

”xn - Pker V‘xn” = ”(] - Pker V‘)xn” = ”VV*X"” = ”Txn” - 09
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we may assume that {x,} < ker ¥* and hence in particular that x; = 0 for all z.
Thus, we have that

I ® xulllg,, = sup 1(/(V*)y, x,)| =

seH®
=1
= sup [([f(F)® fIUHNIO* D), x;, @ x)| =
FeH®
21
= sup ((S(FOW, )= @ xllg .-
i b

The last expression tends to zero by the previous lemma, since V;” — 0 strongly
and x} — 0 weakly.

REMARK. In [7], where the goal was to show the existence of invariant
subspaces for an operator T of class (BCP), the authors were able, as mentioned
earlier, to reduce to the case where 7" — 0 strongly, by virtue of [17, Chapter 2,
Theorem 5.4]. They then showed that in this case ||[y ® x,]llo = O for any ortho-
normal sequence {x,} (and any vector y). This reduction is unavailable for our
present purposes, and the conclusion for an arbitrary sequence {x,} is false without
the hypothesis on the powers of T (see the remarks at the end of Part II). The
argument given above was suggested by H. Bercovici.

COROLLARY 3.5. Let A€o (T)ND and let {x,} be an orthonormal sequence
such that |(T* — Z)x,|| = 0. Then for any y € #,

(A) lix, ® ¥lllg = 0
and
(B) iy ® x,lllg — 0.

Proof. Note that for any x, y € # we have

Ix ® e, = sup I(4x, )| =
T
[4 =1

= sup [(4%y, x)| = sup |(4y, ¥)| = ||[y ® x]llg,.-
A€ o AE o o

l4l=1 |Mj={

Since T* is of class (BCP) if and only if Tis, assertion (A) follows from Lemma 3.4
applied to T*, and similarly, (B) follows from Lemma 3.2. %8

From now on we shall refer to Lemmas 3.2, 3.4 and Corollary 3.5 as the.
‘““vanishing lemmas”.
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LEMMA 3.6. (A) Let €0, (T)n D and let {x,} be an orthonormal sequence
such that (T — x| = 0. Then ||[x, ® x,] — [C,l{lp — 0.

(B) Let s eae(T)nD and let {x,} be an orthonormal sequence such that
(T* — 2)x,|| = 0. Then ||[x, ® x,] — [C;]llg = 0.

Proof. Assertion (A) is [7, Lemma 4.3] and is proven in a similar man-
ner as (B).
To prove (B), choose, via the Hahn-Banach theorem, f, € H* such that

1AM =lfli=1

and-

”[xn ® xu] - [C).]HQ = <fn(T)’ [xu @ X"] - [C).]>

We may write f,({) = f,(4) + ({ — 1)g.({) where g, € H*and ||g,|| < 2(1 — [A])~~
We then have

x, ® x,] — [Cillle =
= {fulD) + (T = DguT), [x, ® x,] — [C,]> =
= (D), % ® %1 — (LD, 1D +
+ T — DT, [x, ® X1 — (T — Dgy(T), [C;]> =
= Lo D)0> %) — FolD) + (T — DT, [, ® x,1> — 0 =
= (T — Dgul(T)xn> xn) < llgall IXT* = Dyl = 0. %
LemMa 3.7. Let 2ea,(T) (respectively, ico,(T)), and let F be any

finite-dimensional subspace of #. Then there exists an orthonormal sequence {x,}
in FL such that ||(T — Vx|l =0 (|(T* — Dx,|| = 0.

Proof. One constructs {x,} inductively, using the fact that if Aea (T)
(% €0,(T)) then (T — A) ((T* — 7)) cannot be bounded below on any subspace of
finite co-dimension in J%. Y

LeMMA 3.8. There exists an orthonormal family {ek:k, n > O} such that
(A) T — A)ekl - 0 as n — oo whenever x(k) = — 1,
(B) I(T* — L)kl = 0 as n — oo whenever x(k) = + 1,

«©) ek @ el]llg = 0 as n — oo whenever k # 1.
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Proof. Let i — (k(i), n(i)) be the enumeration of Z+ x Z+ suggested by the
matrix below:

N W
O w»n N

10

We proceed by induction on i. For i = 1, we choose a unit vector e} in # such
that either |[(T" — A))ell| < Lor|(T* — 1,)el[l < 1, depending on whether s¢(1) =:--1
or + 1.

Suppose that mutually orthogonal unit vectors ¢fii) have been chosen for
1 €7 < N, such that

7 = Awi)ebi@il < i=t whenever x(k()) = — 1,
t1)

T — Lpebipll < i~' whenever  x(k(i)) = + 1,
and
ek ® ekiBllg < [max{i,j}]~' whenever i # j.

Let # = V {ek@:1 < i < N}. Applying Lemma 3.7, there exists an orthonormal
sequence {x,} in FL such that either

(T — ;'k(N+l))Xm” -0
or

T+ — zk(xuy)xm” -0 asm-oo

depending on whether x(k(N + 1)) = — | or -~ 1. Applying the appropriate vanish-
ing lemmas, we have that for any sufficiently large index M and foreachl €< i € N,

Mexth ® xulllg < (N + 17,
and

Il ® enillle < (N + 1)~

In addition, we may also ensure, by taking M sufficiently large, that either
T ~ Awrapxull < (N =171 or |(T* — Zxn+1y)Xull < (N + 1)1, depending
on whether x(k(N 4+ 1)) = — 1 or -+ 1. We now set ekNil} = x,,, where M is
large enough that the aforementioned inequalities hold.
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This constructs by induction an orthonormal family {ek} which clearly has
the desired properties. %

We now partition the family {e¥} of Lemma 3.8 into a family of mutually
orthogonal “‘drawers” &,;, indexed by Z* xZ*, so that each drawer consists of
an orthonormal family of vectors which has the same properties as the family {ek}.
More precisely, each drawer

D;; = {ebt i k,n > 0}

satisfies '

(D) T — A)ek/|l -0 as n - oo, whenever x(k) = — 1;
(D2) (T* — A)ek /]| - 0 as n — oo, whenever x(k) = + 1:
and

(D3) fllek: "/ ® e ]|lg > 0 as n — co, whenever k # [.

Set ;= V@ij and 47 = V@,j.

LemMa 3.9. Let N > 0 and suppose u;, v;e # and [L;j}€Q (1 < i, j < N).
Assume that

{u; @ v;] — [Lijllig < &;;-

Let 1 € iy, jo S Nandlet 0 <6< & j- Then there exist u,fo, uj—o € H# such that

(A) ), ® 03] — [Lisdle < 6,

(B) ”[u’fo ® Uj] - [Lioj]”Q <& Jor all j,
(C) “[ui ® U}O] — [Lijo]”Q < Eijo for all i,
(D) ||u,f0 — u;oH < ayzj ,

and

(E) llog, — vl < }f2 .

Moreover, we can arrange matters so that uﬁ-o — u; €M; and v,'-o — v €M Jo,
Proof. Set d = ”[u, ® v;] —[Lij])llg- We may assume that d > 0 since
otherwise we can simply take u, =u; , v; = vj, -

Let {K] = [L, ,]—-[u, ®v,] ByoLemma3l we may choose me Z+, 2,, ...
s Am€A, ocl,...,oc,,,eC such that

Y, lo
v=1
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and

[47TKl— ¥ «[C, ]| < 6/(2d).

L v=1 "le
‘Choose y,, ..., ym€C such that 2= a,d, and select sequences {el,,’i("jﬂ},
e {er v/} from drawer @;ojo. For simplicity of notation, we will write {e;}, ...
-.., {en} for thess, respectively.

m m
Set s, =Y, ye, and 1, =Y F.e,. We claim that we may take
re:l v

1 1
(3.1) i = Ui+ Sn, u,’-o = + 1.

First, note that obviously for any such choicz, we will have u,fo - i GJ/,-O
and v; — v, el
Next, observe that
ni m
Qi) + 80) — wi || = 21 y,f? = }31 lejd<d<e;,
[ y=

and likewise

W — 2 .
”(Ljo + 1) v,-oll <&

Hence any choice of u',-o and u}o given by (3.1) for some n will satisfy conditions
(D) and (E).
Next we show that we may satisfy condition (A). For any n, we have

(i, -+ 50) @ (0, + )] — [Li j Mo <
< H[“,-D ® UjD] = [Liy; ]+ [s, ® t}llg + lllsn @ v;llle + [iwi, ® tallo =

= lllsn ® ta] — [Klllg -+ llls» ® v, Mo + lIl#i) @ talllg <

m
<l

¥ 44C,] — [K]
p=1

L+
Q

en— ¥ Al +
1‘ 1 it

y=

+ “[sn ® U_,'D]HQ + ”[uio ® ’n]”Q <

< "2' + t‘[(Z vv‘—’z) ® (i‘ ?vef,)] - Z P[Ca ]
3 v—1 =1 p=1

Q

m

+ 3 s ® oMl + 3 Il © exlle <

=1
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< S+ 5l ® e = [Cllet B 1n I @ elle+
‘ y=1

20 vy=1

v1¢v2
+ Y, vllilen ® v, llle + Y Wl [ui, @ enlle-
p=1 v=1

As n - oo, each summand in the second term approaches 0 by Lemma 3.6; each

summand in the third term approaches 0 by condition (D3); and each summand in

the last two terms approaches 0 by the appi'opriate vanishing lemmas. Hence we

may satisfy condition (A) by a choice of u}o, v_;o asin (3.1) for any sufficiently large .
Finally note that

s, 4 52 @ ] — (L4l <

< N, ® o) — [Lillo + 3 .1 I1e) ® o5l
‘ p=1

and
Mu: ® (vj, + 1)) — [Ly)llg <

< ® 03] — Lyl + 3 19,1 ® exlilg-

Hence, by the appropriate vanishing lemmas, we may satisfy céhdifions (B) aﬁd
(C) by choosing # sufficiently large in (3.1). ‘

By N2 successive applications of Lemma 3.9 we immediately obtain the fol-
lowing result.

LEMMA 3.10. Let N > 0, u;, v;e# and [L]eQ (i,j=1,...,N). Assume
that : - '

Ilw; ® v;] — [Li]llg < &5,

and let 0 < 6;; < &;;. Then there exist u;, v; € # such that

(A) lui ® vj] — [Lyllle < &y  for all i, ],
N2
(B) lf — will < Y, Biﬁ' for all i,
j=1
and
’ ad 1/2 i .
©) lo; — vl < Y &;” for all j.
i=1

Moreover we can arrange it so that u] — u; € M ; and v — v; € A’ .

3 - 2086
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THEOREM 3.11. Let N > 0, u;, v;es#, and [Li}eQ (i,j=1,...,N). Let
¢ > 0andlet d;; = ||[u; ® v;] — [L;;lllg- Then there exist u], v; € 3 such that

(A) i ® vj] =[L;;] Jfor alli,
’ N 1/2 .
(B) Nuf — uil < Y dij"+¢ for all i,
=1
and
’ N 1/2 .
©) o —oll < Y, dij"+¢  forallj.
i=1

Moreover we can arrange it so that uj — u; € #; and v — v; € M’.

Proof. Since ¢ > 0 is arbitrary, it clearly suffices to prove the theorem with
(B) and (C) replaced by

N
B) Nu,-’ —ull <Y e’ +¢
i=1
¢ ’ N 1/2
cH lo; —oll < Y & + ¢
i=1

where ¢;; > d;; are arbitrary.
Let u® = u; and vj® = v;. By Lemma 3.10 there exist «{"), v'?” in ¥ such that

2
a W] __ 7. € s

3.2) " & vi1 — [Lijlilg < iy

N e
(3.3) fud — u®| < Y, &b,

j=1
and ’

1) ()] &

(3.4) 05 — o571 < Y] & -

i=1

Moreover we can have u{® — u® e .#,; and v — v\® e.#’.
By induction and Lemma 3.10 we can construct a sequence of families {«{®},
Q 1 1
{0}, {u}, (v}, ..., (W™}, {v{"}, ... such that

(35) H[u,(") ® vﬂ-")] - [L,'_,']HQ < for all n > I,

2t N2

(3.6) [uf — uf=V|| < 58_—1 for all # > 1 and all i,
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and

(3.7) o — vV < -211- for all # > 1 and all j.

Moreover we can have u{® — u{"~V e .#; and v{¥ — v;""V e/,
By (3.3) and (3.6) we have that

Nk}

(m) __ ,,(n=1) N 1/2
(i U; | < Z g5 -+ &
Jj=1

B

n

Hence for each i the sequence {#{™} converges in norm to some u; satisfying (B’)
and such that u{ — u; € .#;. Similarly for each j the sequence {v{”} converges in
norm to some v; satisfying (C’) and such that v; — v; e.#’. Finally, assertion
(A) follows in an obvious way from (3.5). %

RemaRk. Theorem 3.11 is the crucial ingredient in the proof [2] that every
operator of class (BCP) is reflexive.

THEOREM 3.12. Let [L;]€Q (i,j 2 1) and assume that

Y ML < 0o for each i,
j=1
and

’ § “[Lij]“yz < 00 for each j.
i=1

Let € > 0. Then there exist u; € .4, and v; € #, such that

(A) [, ® v} =1{L;;}] foralliandj,

(B) lall < 3 WLGIE + /2= for each i,
3=1

and

(€) ol < S LY + e/2i=3  for each.
i=1

Proof. Let u{® = v{® =0 for all i, j > 0. By Theorem 3.11 (with N=1)
there exist u{¥ € .#; and v{? e #* such that [u{® ® v{’] = [L,,],

full = luf® — w@f <NLE® + /2,

and

ol < (LynllE" -+ /2.
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Fori> landj> I setu® = v{¥ = 0.
Assume that #» > 1 and that sequences {¥{®'}, {v{¥} (0 < k < n) have been
chosen so that

3.8) ut e and VP e/ foralli,j, and k,
3.9) W ® o] = [L;j)
whenever 1 < i, j < &,

uf) = v =0 for i>kandj>k,

(3.1 [u® — ué=D{ < |[Lylllg”® + &/2% for 1 < i<k,

k
[uf — ufe=2[ < Y ([LIG® + &/2%,
j=1
and
(3.12) [0 — o=Vl < LG + &2k for 1 <j <k,

k
o) — o=l < ¥ [{Ladile” + &/2%.
i=1

By Theorem 3.11 (with N =n < 1), we obtain u{"*Ve.Z;, vy Ve /(1 <,
J < n+ 1) such that

(3.13) [ @ et = [L,] for 1 <i,j<n+1,

(3.14)  fudtY — uP|| < |[(Lipaallld +e27t for 1 <i<n+1,
ntl 12
lueeid — ufll <Y [Laas NlIg° + /2741,
Jj=:1

(B1S) g — ol < Lpan IEE 4 627 for 1 <j<n4 1,

and

n+1

ol — o) < Y ML; panlllg” + /2741
i1

Now set u{"*! = p{"*V =0 fori >n 4+ 1 and j > n + 1, and observe that (3.8) —
—(3.12) hold for all | € &k < » +1. Thus by induction, we have constructed
sequences {#®}, {vf¥} such that (3.8) — (3.12) hold for every k > 1.
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Now consider any fixed 7 » 1. Then

) . 1 -1
5 I — = =3, N — )
k=1 k=1

+ fu® — w0+ ‘E flufe — u®-DY <

k=i+1

<O+ Y WL + o2+ % (LR + o2 =

k=i+1
=V LG + /212
j=1

It follows (recall u{® = 0) that the sequence {u{®} converges in norm to some
u, €M, with

il < % ML NG® + /272
j=1

Similarly, for each j > 1 the sequence {v§} converges in norm to some v; €./
which satisfies (C). -

Finally, since for each /,j > 1 we have that [u{ @ v{"]1=[L;;] (provided
that £ > i and k > j) it readily follows that [u; ® v;] = [L;;]. %

LEMMA 3.13. Let a;; 2 0 (i,j = 1). Then there exist b; > 0, c¢; > 0 such that
a;;lbic; < (i) -4

Proof. Choose b,, ¢, so that a;,/b,c; < 1. Having chosen b,, ..., b,, ¢;, ...

. .,Cy, We may clearly choose b,.,, ¢,,, S0 that

e (G BV e A T )

by 416;
and
Guntl i+ D]t (=1, ...,n+1).
bicn+1
The lemma follows by induction. %

THEOREM 3.14. Let [L;1€Q (i,j 2 1). Then there exist orthogonal sequences
{x.;} and {y;} in # such that

[x; ® y1=1[L;;] for all i and j.
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Proof. Let a;; = ||[L;}})llp and choose b,, ¢; as in the preceding lemma.
By Theorem 3.12 there are u; €.4#;, v; .4/ such that

[, ® v;] = (bic;) "1 Ly}

Set x; = bu; and y; = ¢;v;. Then clearly we have that [x; ® y;] =[L;;]. Since
M LA unless § = /', the sequence {x;} is orthogonat and, likewise, so is {y;}.

4. COMPRESSIONS OF (BCP)-OPERATORS

Theorem 3.14 may be used to obtain results about the structure of operators
of class (BCP). Theorem 4.2 below is one such result. For its proof we shall require
Proposition 4.1, which is a generalization of a familiar fact from linear algebra.
(We claim no originality for the proposition, but we include the proof for lack of
a suitable reference.)

Recall that an operator S is said to be algebraic if p(S) = 0 for some nonzero
polynomial p. In this case we can speak of the minimal polynomial of S.

PROPOSITION 4.1. Let S be an algebraic operator on a Hilbert space A
and let p(z) be its minimal polynomial. Assume that p(z) has distinct roots, say
Ay, ..., 0y. Then S is similar to o, ® ... @ oy where each o acts on some nonzero
Hilberr space.

Proof. By the spectral mapping theorem, o(S) < {o, ..., ay}. (In fact,
equality holds, as we shall see.) By relabelling if necessary, we may assume that
a(S)={o, ..., a,} for some M < N.

By the Riesz decomposition theorem [15, Theorem 2.10], by Chapter 13,
Problem C of [5], and by induction, there exist invariant subspaces ', ..., % 4
for S such that # =%, <+ ... + Ay, 6(S|H;) = {a;} for each i, and for which
there exists an invertible linear map of ¢ onto the (external ) direct sum X', @ ...
...® 2, which is the identity on each ;. To complete the proof we will show
that S|#; = a; for each i.

Let / be fixed and let x € ;. The operator S|X; is algebraic, and hence
the cyclic subspace %, = V {S"x :n > 0} generated by x is finite-dimensional.
Hence o(S;.#,) consists of eigenvalues, so that 6(S|.#,) < o(S|#;) = {«;}. Moreover
the minimal polynomial of Sj.Z, has distinct roots since it divides the minimal
polynomial of S. Since o(S'.#,) = {«;} this minimal polynomial must be (z — «;),
which shows that S|.#, = a;. Since x € #"; was arbitrary we obtain that SiX"; = o;.

The fact that each « acts on a nonzero space, and thus also the parenthetical
remark at the beginning of the proof, now follows from the minimality of p(z).

Let T be an operator on . Recall that a semi-invariant subspace for T is
a subspace of the form .# ©.# where # > A are invariant subspaces for T.
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Recall also that for any subspace & of #, the compression Ty is the operator on &
defined by Tox = P,Tx (x€ &). A result of D. Sarason [16] asserts that & is
semi-invariant for Tif and only if p(T,) = p(T), for every polynomial p(z).

THEOREM 4.2. Let T € #(H#) be of class (BCP) andleta,, ..., ay be (distinct)
elements of D. Then there exist invariant subspaces Af, A for T with 4 > N and
such that T 4o is similar to o @ ... @ ay where each o acts on an infinite-
-dimensional space.

REMARK. Thus with respect to the decomposition # = A @ (H# ON) @ M+

we obtain that
*® * *\
T = (0 T.lte./f’ *)
0 0 *

where T, 4 iS, Up to similarity, a, @ ... @ ay.

Proof of Theorem 4.2. Let {1;} be a sequence from {a,, ..., ay} in which
each o occurs infinitely often. By Theorem 3.14 there exist sequences {x;} and
{»;} such that [x; ® y;] = 0,;{C3,], where §;; is the Kronecker delta.

Let

M=\ {T";:i>0,n>0}
My= N {T™y;:j>0, m3>0},

and let /" = A © M 4. Clearly # and A" are invariant for 7 and 4 > A .
We claim that .# © .4 is infinite-dimensional. Let z; = P 4ox;. We will

k
show that {z;} is linearly independent. Suppose that Y ¢;z;=0. Then for each /;,

i=1

k k k
0= 2 iz, yi) = glci(P“"e“”x"’y’o) = gl ci(Xis Puosyi) =
k
= iglci(xisyio) = (because y; €.4#y)
=ci (because [x; ® y,-o] = 5,.,.0[@;])_

N
Now let p(z) = [] (¢ — ;). We claim that p(T 4o 4) = 0. Since M ©A" is semi-
i=1
-invariant for T, we have that p(T 4o4) = p(T) gos Since 4 is spanned by
vectors of the form 77x; and .#, is spanned by vectors of the form T*"y;, to show
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that p(T) 4o, = 0 it suffices to show that (p(T) T"x;, T*™y;) = 0 for each i, j, m
and n. Leti, j, m,and n be fixed and let g(z) = p(z)z™*+".If i # j it is obvious that

(P(T)T7x;, T*™yy) = (p(T)T™*"x;, ;) = 0
because [x; ® y;] = 5ij[Cz,.] = 0. If i =j we have that

(P(DTx;) = (q(T)x;, y2) = q(A;) = 0

since [x; ® y;] =[C;) Now, for each i > 0, 4; = a,(;, for some 1 < k(i) < N.
A simple calculation of the sort carried out above shows that T4 42; = %;y2;
where z; = P 4o 4x;. Hence for each &, ker(T ,o4 — o) is infinite-dimensional.
The theorem now follows easily from Proposition 4.1. N

As a corollary we obtain the following result which was first obtained in an
early version of [3].

COROLLARY 4.3. If T is of class (BCP) then there exists an invariant sub-
space A for T such that M © [T.#]~ is infinite-dimensional.

Proof. Take N =1 and a; = 0 in the previous result. ' %,

REMARK. Theorem 4.2 may be expressed by saying that for any (BCP)-
-operator T and any operator A of the form o, ® ... @ oy («, € D), 4 can be
obtained, up to similarity, as the compression of T to a semi-invariant subspace.
Theorem 3.14 can be used to obtain other results of this sort. For example, the
authors of [4] showed that if T is of class (BCP) and if A4 is any contraction
of class C, [17], then A can be obtained, up to quasi-similarity, as the compression
of T to a semi-invariant subspace. Moreover, they showed that if T is of class
(BCP) and if 4|l < 1, then 4 can be obtained, up to unitary equivalence, as a
compression of 7 to a semi-invariant subspace. We have included the preceding,
much weaker, result as an illustration of the power of Theorem 3.14, and, more
importantly, so that we may refer to its proof in Part II.

5. DENSITY THEOREMS

Throughout this section, let T€.Z(#) be a fixed operator of class (BCP),
and let Q = Q. Let ¢,(s#) denote the Banach space of all null sequences X = (x,)
in 3#, under the norm |x|| = supl|x,|.

THEOREM 5.1. Let [L;;)€Q (i,j = 1) and suppose that

< 1/2 .
Y LG < oo for each j.
i=1
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Then the set of all X € co(3) for which there exists an orthogonal sequence {y;} < 3
such that [x; ® y;] = [L;;] for all i and j, is dense in co(3).

Proof. Let X € co(#£) and let 5 > 0. We will show that there exist X' € ¢o(5¢)
and an orthogonal sequence {y;} = # such that [x{ ® y;} = [L;;] for all i and j
and ||x' — X|| < &. It is clear that we may assume that for some Ny, > 1, x; =0
for i > N,. Moreover, we may replace each “column™ {[L;;]:i > 1} by {¢I[L;;]:
:i > 1} where the ¢; > 0 are arbitrary (since [x; ® y;]= ¢;[L;;] implies that

2
[x/ ® ¢j'y;] = [L;;]). Therefore, we may assume that ||[L;;]|lp < ——223—4{1)- for all i

and j.
We now proceed much as in the proof of Theorem 3.12. We begin by setting
u{-o) - x,' fOl‘ ] S i < NO
u® =0 fori> N,
and
: v/ =0 for all j.
By Theorem 3.11 (with N = N, and ¢ = §/22'1) there exist u", vV (1 < i, j < Nyp)

such that :
[ ® vV] = [L;] for 1 <4, j< Ny,

.”u§1) _ ug())” < Zo ( o2 )1 2 i é .

= 22(i+1> 221

(1) (0) il 1/2 o
lof — vl < EIII[L;-,-]HQ + 1

and vV e 4/ for each j (where .#/ is as in Section 3). We let v = v = 0 for
i> N, and j > N,.

Just as in the proof of Theorem 3.12, we construct, by induction and Theo-
rem 3.11, a sequence of pairs {u'*}, {v/¥} such that, in addition to the conditions
above, for each k > 2,

WP ® vP]=[L,,] for 1 <i, j< Ny-+k—1,

d )
k (k-1 ;
lu) — w1 < S, -+ o for i <k,
kS é
(k) (k—1) L
flug? — u =Pl < 3 5741 ok

ji=1
- S .
[[0f? — o) < |I[LNO+k-1j]”1Q/2 + —2?( for j < k,

No+k—1 ’ S

) — oY) < Y ”[LiNo+k—1]”z/2 +

—_—)
A 2k
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.and
v e’ for all j.

It follows, as in the proof of Theorem 3.12, that for each i/ the sequence
{u{¥} converges in norm to some vector x; such that [|x/ — x,|| < 8, that for each
J the sequence {¢{¥'} converges to some vector yi €4/, and that [x/ ® y;] = [L,}]
for all / and j.

As obvious corollaries, we obtain the following result, part (A) of which
‘was obtained in an early version of [3].

COROLLARY 5.2. (A) {x € : there exists y e #, y # O such that [x ® y] = 0}
is dense in K.

(B) For any [KleQ, {xe#: there exists yes# such that [x ® y] — [K]}
ds dense in .

For xes#, let #, = V {T"x : n = 0} be the cyclic subspace for T generated
by x. Recall that x is said to be noncyclic (for T) in case .4, # #. 1t is easy to
see that Corollary 5.2 (A) is equivalent to saying that the set of vectors which are
noncyclic for T is dense in ». We can sharpzn this result.

COROLLARY 5.3. {x € : 5 © M, is infinite-dimensional} is dense in H#.

Proof. Let ¢ > 0 and let xes. Let x =(x,0,0,0, ...) € c,(#), let [K] be
any nonzero element of (Q, and let

[Li;J=0 fori # 2 and all j,
[Ls;} = [K] for all j.

By Theorem 5.1 there exist X' = (x,) € ¢y(+#’) and an orthogonal sequence {y;} < #
such that
I —xll<e and [x; ® y;J =[L;;] for all i and j.
Since [x{ ® ¥;]= 0 for all j, we have that each y; e # O My, Since {y;} is
orthogonal and each y; # 0 (because [x;: ® y;] = [K] # 0), # ©.# . is infinite-
-dimensional. Since |lx; — x;]| € |IX' — X|| < ¢, the proof is complet'e. Y%

Let 5#~ be the space of all sequences x = (x;) in 2#, under the locally convex
topology determined by the seminorms p,(x) = [|x;|. Since the finitely nonzero
sequences are dense in 3£, the proof of Theorem 5.1 also establishes the following.

THEOREM 5.4. Let [L;;]€Q (i,j > 1) and assume that Z |[LU]|}”“ < o

i=1
for each j. Then the set of all x e #* for which there exists an orthogonal sequence
{¥;} = # such that [x; ® y;}) = [L;;] is dense in H™.

In view of the method of proof of Theorem 4.2, this theorem has various
consequences, of which we are content to mention the following. For X = (x;) e #*

write
Mzg=VN{T"x;:n20,i>1}
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COROLLARY 5.5. The set of X € #* for which 4+ © [T.#z)~ is infinite-dimen-
sional, is dense in H#°.

REMARK. Each of the above density results of course has a counterpart
in which the roles of x and y are interchanged, the proofs of which are, mutatis
mutandis, the same.

6. A DECOMPOSITION THEOREM

The aim of this section is to prove Theorem 6.3, which may be interpreted
as saying that any operator of class (BCP) can be represented, up to unitary equi-
valence, as a lower triangular, two-way infinite operator matrix, in which the diagonal
entries are all of class (BCP). We begin with the following result, which is interesting
in itself, in view of the fact that the restriction of a (BCP)-operator to an (infinite-
-dimensional) invariant subspace need not be of class (BCP).

PROPOSITION 6.1. Let T € L(H) be of class (BCP), and let yeH, ¢ > 0.
Then there exist an invariant subspace 4 for T and a vector yye# such that
Yo L A, llyo— ¥l < &, and such that the restriction T|.4# and the compression
Two.x are both of class (BCP).

REeMARK. Hence, both .# and ## © .# are infinite-dimensional.

Proof. Let A, {ei}, and i+ (k(i),n(i)) be as in the proof of Lemma 3.8.
We consider the sequence {€k{) : i > 1} and for convenience, we give this sequence
two names, {x; :i > 1} and {y; :j > 1}. We set y, =y. Let {¢,: v > 1} be any
sequence of positive numbers which decreases to zero, and let g, = ¢.

Using the vanishing lemmas and Theorem 3.11, we construct by induction
increasing sequences {i, : v > 1} and {j, : v > 0} of positive integers, with j, = 0,
and a pair of orthogonal sequences {x{M: v > 1}, {y™ :v > 0} foreach N > |,
such that for each N we have

En
flxf? — xigll < 7

g
XV — xV-V|| < -2; for 1 € v < N,

[y

&

—_—y: ! N,
.V/NII < 5
&

e =yl < =~

&
Iy — yN-1)| < E’{’— for 0 < v < N,

M = y™ =0 for v> N,
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and

[ ®y(N’] =0 forall vy>1, v, >0.

We will say that at the N-th stage we pay our respects to an element Ae A
in case )”""N’ = /1k(jN, = ) (where k: Z+ — Z+ is as in the first paragraph). In the
inductive construction above, we may and we do, ensure that we pay our respects
to each element of A infinitely often.

It follows, as in previous arguments, that for each v the sequence {x{V}
converges to some x, such that |jx, — x/|| < ¢,.

Likewise each sequence {y{™} converges to some y, with |[y; — y; || <e,.
Moreover we have [xvl ® yvz] =0forall vy > 1and v, 2 0. ’

Let M= V{T™x,:m >0, v>0}. Clearly .# is invariant for I. Also,
Yo L 4 and ||y; — pj] < e. Since we paid our respects to each element of A infi-
nitely often, it follows easily that A < 0 (T4 N6 (Two..)- Hence T|# and Tyo q
satisfy the spectral condition in the definition of the class (BCP). Since compressions
(hence restrictions) of completely nonunitary contractions are again such, the proof
is complete.

PROPOSITION 6.2. Let T e L(H#) be of class (BCP). Then there exists a chain
of invariant subspaces My > My, > ... DA, > ... for T such that Tye “, and
each T4 o.4,,, are of class (BCP), and such that (\ {4, :n > 0} = {0}.

Proof. Let {y,} < # beadensesequence in # in which each term is repeated
infinitely often. Let {e,} be a sequence of positive numbers which decreases to zero.
By inducton and Proposition 6.1 we can construct a sequence of invariant subspaces
Mo DMy > ... DM, > ... and a sequence {y,} < H# such that the operators
Tyo iy T\#,, and T 0.4, ATE all of class (BCP), each y, e .#,_, ©.#4,(we put
S _y=2#)and |y, — PJ,,"_ly,,II < ¢,. It follows easily that (M) {.#, : n>0}={0}. @

THEOREM 6.3. Let T'e £() be of class (BCP). Then there exist invariant
subspaces { M, :necZ} for T such that M, > Mns, and T 0.ty 1S Of class
(BCP) for each n,(\ {4, :neZ}=(0) and V{M, :ncZ} =

Proof. We obtain the .#Z, for n > 0 by the previous result, and then obtain
the .#, for n < 0 by applying the previous result to T*|# © .4,. %

ReMARrk. Corollary 5.3 also follows from this result.
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