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ON SOME COMMUTATORS OF OPERATORS

J. A. ERDOS and S. GIOTOPOULOS

The questions considered in this paper are of the following general form:
what conditions must operators X and Y satisfy so that their commutator XY — YX~
belongs to a given set? Such questions are essentially concerned with derivations.
and have been extensively studied in relation to selfadjoint algebras. Non-selfadjoint
theory has had less attention. However, a significant part of the recent progress in
nest algebra theory consists of solutions to problems of this type (see [2, 4, 11, 13
and 14] and it is in this context that the investigation is continued here.

A set & of orthogonal projections on a Hilbert space H is called a nest
if it is totally ordered. The set Algé of all (bounded, linear) operators leaving:
invariant the range of each member of & is called the nest algebra of &. Nest
algebras were introduced by Ringrose [18] and appear to be the most tractable:
class of non-selfadjoint operator algebras. We use the following notation: for any-
subaigebra o/ of #(H)and any subset .# of £(H) whichis a two-sided «/-module,.

C(A, M) ={Xe P(H):AX — XAec M for all Ae o}

In other words, C(#7, .#) denotes the commutant of &/ modulo .#. In this paper &
will always be either a nest algebra Algd, its diagonal 2 = &’ or its core ¥ = &'”
and .# will always be some ideal of Algé&. It follows easily that C(«Z, #) < Algé’
in these cases. In [7] it is asked whether in general

C(Algé, M) = € + M.

This relation holds in all the cases considered here. Since every derivation of a
nest algebra into #(H) is of the form 4 -+ AX — XA for some X € ¥(H), [2],
the determination of C(Algé&, #) is equivalent to the determination of all derivations
of Algé& into /.

In Section 2 we use a method of Larson [16] to show that C(¥, #) = @ + 5
when £ is any of the “diagonal’’ ideals defined in [18] and [8]. From this, we recover-
Larson’s result [16] that C(%,.#) =2 @ 4 when £ is the (Jacobson) radical
of Algé and show that the same relation holds when £ is any one of the ideals:
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Ry, R, or A which are related to the radical and which were introduced in [8]
(definitions appear below). We also show that C(Z, #) = ¥ + # for all the ideals
mentioned above. Section 3 is mainly devoted to a new proof of the fact that,
if # is the radical of Alg#

C(Algé, 2) = CH&) © £

(C*(%) denotes the smallest C*-algebra containing each member of %.) This result
is due to Lance [15] and is also proved in a special case by Larson [16]. For nest
subalgebras of von Neumann algebras the result is established by Gilfeather and
Larson [13]. All these proofs use some form of functional representation and depend
on the analysis of the resulting functions. The proof here is simpler and more direct
and also establishes results for use in later sections. The remainder of the paper is
concerned with determining C(Alg &, .#) when £ is #,, %, or #;. The proofs for
a continuous nest are very simple and are given in Section 4 and the general case
is dealt with in Section 5.

The theory of nest algebras appears to be an appropriate setting for systems
theory and elements of the radical appear there as the “strictly causal’” operators,
(see [12, 19}). The elements of £, also have a systems theory interpretation [9].
However, for these applications the continuous nest case is by far the most important
and this is further justification for giving separate proofs for this case.

1. PRELIMINARIES

The basic definitions concerning nest algebras may be found in [18, 6, 8].
In general we shall adopt the same conventions and notation as in [8]. Attention
will be confined to separable Hilbert space.

We briefly review the definitions of the ideals which appear in this paper. If
E ,(-)is the spectral measure of a positive invertible operator 4 then {E,[0, a]:a > 0}
is called the spectral nest of A. Given a fixed nest &, let o/, be the set of all
positive invertible operators whose spectral nest has completion equal to &. The
subset of, of &7, consists of operators whose spectral nest is the whole of &.
For each Ae &/,, define

Ry = {XePL(H):|JA"XA"|| - 0}.
The set #, is an ideal of the nest algebra Alg&. The ideals %, and £, are defined by
Ro=(V{Ry: A€y}
'%1 - n {'%A:A € dl}'

The above definitions arise from a circle of ideas initiated by Deddens [5] and
developed in [8].
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Given F, G € & with F < G, the seminorm 4, g on Algé is defined by
4, 6(X) = (G — F) X(G — F)||.
The diagonal ideals S%, £z, Fg and £ of Algé are defined as follows. If E = I,
FE = Algé&; otherwise
Ft={XecAlgé : infdg o(X) = 0}.
G>E '

If E=0, Sz = Algé#; otherwise
Feg={XeAlgé :infd; (X)=0}.
F<E

If E=0, E=1T1or if E£E*, S, = SN Sg; otherwise
Iy = {XeAlgé’: inf Ap o(X) = 0}.
F<E<G ’

Finally, if E=0, E=1 or if E or E is an isolated point of &, £, = SF;

otherwise

Fe={XeAlgé: inf A, X)=0}.
F<E—,E<G ’

The ideals #¢ and S¢ were defined by Ringrose in [18] and £ and #; were
antroduced in [8].

We denote the (Jacobson) radical of Algd& by £ (for the definition of the
radical see, for example [1]). In [18], Ringrose determined the radical in terms of
diagonal ideals and it is shown in [8] that the ideals £, and £, may be described
in a similar way. These characterizations are:

R=M\{FE 0 I5:Eeb)
R, =W Fg:Ecé}
Ry = Fe:Ecé}.

Recall that & is a compact topological space when equipped with its order
topology and that the order topology coincides with the strong topology on &.

2. COMMUTANTS OF THE DIAGONAL AND CORE

Let € be an abelian # *-algebra and denote its commutant €’ by 2. We
briefly review a standard construction of a projection of #(H) onto 2. Take any
invariant mean M(-) on the unitary group of ¥. Write %, for the set of trace
class operators and use the relation (X, f) = tr(Xf) (X € L(H), fe £,) to identify
ZL(H) with (Z,)*. The mean of the function U~ (U*XU,f) will be written as

4 — 2086
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My(U*XU,f). For each X € Z(H), y(X) is defined by

In view of our identification, Y/(X) € #(H) and it can be shown that ¥ is a projection
of #Z(H) onto 2. Also, for all Xe £(H), De 2D, y(XD)= y(X)-D, y(DX) =
= D-y(X). The map y depends on the choice of M. Such a y is called a diagonal
projection. In this paper ¥ and 2 will be the core and diagonal of the nest algebra
under consideration. That is, ¥ = ¢’ and 9 = &' = (Alg&)* n Alg& for some
nest &.

The following lemma is essentially contained in the proof of Theorem 2.1 in
Johnson and Parrott’s paper [14].

LEMMA 1. Let (P,) be a sequence of mutually orthogonal projections of
an abelian W *-algebra € and let  be a diagonal projectiononto @ = €'. If T € £(H)
satisfies Y(T) == 0 and, for each A € €,

lim||P,(AT — TA)P,|| =0
n->00
then

lim||P,TP,| = 0.
Proof. Since Y(T) =0, Yy(P,TP,) = 0 and so for any fe &L,
(P,TP,.f) = My([P,TP, — U*P,TP,U],f)

Thus ||P,TP,|| < sup||P,TP, — U*P,TP,U||. Since P,(UT — TU)P, = U(P,TP, —
U

— U*P,TP,U), it follows that, for each »n, there exists a unitary operator U, of &
such that

1
1 Pa(U, T — TU)P,|| 2 By 1PaTPyll.

As P, are mutually orthogonal projections and || U, || = 1, the series ¥, U, P, converges
strongly to some element 4 of ¥. Then, for each #,

P(AT — TA)P, = P, (U, T — TU)P,
and hence
|PaTP,|| < 2| P (AT — TA)P,|\.

Thus, since lim ||P,(AT — TA)P,|| = 0 we have that

n—-oo

lim ||P,TP,|| = 0.

n—o0

In view of Lemma 1, it is useful to have a description of the diagonal ideals
in terms of sequences of mutually orthogonal projections.
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LEMMA 2. Let & be a complete nest of subspaces of a separable Hilbert
space. If E€ & let F(E) denote the set of all strictly increasing sequences of elements
of & converging to E and let 9(E) denote the set of all strictly decreasing sequences
of elements of & converging to E.

(i) Xe £ if and only if X e Algé, (E— ET)X(E — E") =0 and, for any
(F,) in F(E)

lim ||(F, — F,-)X(F, — F,-)ll = 0.
n->00

(ii) Xe £E if and only if X € Algé&, (E* — E)X(E* — E)=0 and, for
any (G,) in %(E),

lim ”(Gn - Gn+1)X(Gn - Gn+1)“ = 0.

(iii) Xe S if and only if X € FE0 Fg and for any (F,) in F(E) and (G,)
in 9(E),

lim|[(E — E7)X(G, — Gyl = 0

n-—00

lim [|(F, — F,_)X(G, — Gu4) || = 0.

n—oo

(iv) Xe £ifandonly if X € #gand, for any (F,)in F(E™) and (G,) in 9(E),

lim|[(F, — F,_)X(G, — G,.1)|| = 0.
n—oo
Proof. The only if implication is obvious in each case. Suppose now that
X¢ I If E=0or E#£E™ then #F(E) is empty and the result (i) is trivial. If
E = E™ and E # 0 then, for some é > 0, [|[(E — F)X(E — F)|{| > é forall F < E.
Let F, < E be arbitrary. Since, in the strong operator topology

lim (F — F))X(F — Fy) = (E — F)X(E — F,)
FtE

and since the norm is strongly lower semicontinuous, there exists F, > F, such that
|(Fy — Fo)X(F; — Fp)|| > 6. By an obvious induction we choose (F,) € #(E)
such that ||(F, — F,_)X(F, — F,_,))|| > é. Thus (i) follows.

The other parts are proved in a similar way. One merely needs to check that
the cases when the sequential conditions are vacuous corresponds to the definitions
in the right way. For example in (iv), if #(E~) = @ then either E~ is isolated or
E=0o0r E=FE # (E7) and in all these cases Sz = # by definition.

The result below, for the cases .# = £} and £ = S5 is essentially contained
in the proof of Theorem 2.4 of [16]. Recall that, by assumption, our Hilbert space
is separable.

THEOREM 3. Let € be the core and & be the diagonal of the nest algebra
Algé& and let # be an ideal of any one of the following types: $%, 95, Fgor Fi.
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Then
C%, %) =9 + 7.

Proof. Theinclusion @ + # < C(¥, .#) is clear. Suppose now that X e C(%, £ ).
If £# E™ it follows that (E— E)X(E—E )e¥ = 2. Since X —(E— E7).
-X(E—E™) € £ the result is proved for this case. If E = E ™, let { be a diagonal
projection onto 2. Put T = X — y(X) so that y(T)= 0. Since, for any 4 €%,
AT — TA eS¢, we have from Lemma 2 that

lim |(F, — F,—,)(AT — TA)(F, — F,-)||=0
where (F,) is any member of #(E) (notation as in Lemma 2). Hence, from Lemma 1,

lim ||(F, — F,-)T(F, — F,_))[| =0

N 00

and so, from Lemma 2, Te $g. Thus the proof is complete for this case.

The proofs for the other cases are similar. We outline one further instance,
that of # = 4 = ¢, when E~ = E = E* and leave the remainder to the reader.
Suppose X € C(¥, £¢) and put T = X — y(X) as above. From the previous case,
since £ N S 25, it follows that T € £ n FE. Now let (F,) and (G,) be arbitrary
members of #(E) and %(E) and put P, =(G,:, — G,) +- (F, — F,_;). Since
{I—E)P,=G,,,— G, and P.E= F,— F,_, and since for any 4 €%

E(AT — TA) (If— E)= AET(I — E) — ET(I — E)A € S,
Lemmas 1 and 2 show that

lim nPnET(I— E)Pn“ = lim “(Fn - Fn—I)T(Gn+1 - Gn)” =0.

Thus, from Lemma 2, Te€.$; and so X =y (X) + T€D + F¢.

COROLLARY 4. Let & be any intersection of diagonal ideals. Then
C¥ =2 + <.

In particular, the result holds when & is any one of the ideals R, Ry, R, or R,
as defined in Section 1 and, in these cases the sum is a direct sum of vector spaces.

Proof. If Xe C(%, &), X — Y(X) € & as in the proof of the theorem. All
of the ideals &, #,, #, and #Z, are of the required type (for 2, #, and %, see
Section 1, for Z, see Theorem 14 of [8]). The fact that the sum & @ Z is direct,
suppose D€ @ n4. Then D* € @ and, since £ is a quasinilpotent ideal, D*D is
qﬁasinilpotent. Hence D = 0. Since %,, #, and £, are all subsets of £, all the
sums are direct.

. For the case of the radical, the above, in effect, reproduces Larson’s proof
of the same result [16].
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.We are indebted to the referee for pointing out that a result of Christensen
[3] may be used to give a simpler proof of the theorem below. We have retained
our original version to keep the presentation self-contained. A sketch of the alter-
native argument is given at the end of the proof.

THEOREM 5. Let € be the core and & be the diagonal of the nest algebra
Algé& and let S be an ideal of any one of the following types: £, I5, Fgor F5.
Then

C(2,5)=¢ + S

Proof. Cleatly ¢ + S <=C(2, #). If XeC(2, #) then X e (4, 5) and,
if  is a diagonal projeciion, we have from Theorem 3 that X — y(X) € £. We
use standard von Neumann algebra theory (see e.g., [20]). Let z be a separating
vector for € and let Q be the cyclic projection generated by € and z. Then Q¢ @
and, since ¥ | Q admits a cyclic vector, ¥ | Qis maximal abelian ([20], 1II.1.3) and
s0¥4|0=%'1Q0=2|Q. Since zp(X) € 9, there exists Y € ¢ such that QY (X) —

— Y]0=0. Put Z=y(X)—

We now show that, given any sequence (P,) of mutually orthogonal projections

of €, if for each D€ 2,

lim ||P,(DZ — ZD)P,|| = 0

then
lim||P,ZP,|| = 0.
Indeed, if ||P,ZP,|| = ||ZP,|| +> 0, choose unit vectors x, in the range of P, such

that ||Zx,|| +> 0. Let F, be the cyclic projection generated by ¢ and x,,. Since z is
cyclic for 2, the central support of Q is I and (e.g., by V.1.10 of [20]) F, < Q.
Since P, € ¢ = 2', F, = F,P, < QP,. Thus there exist partial isometries U, in 2
such that U, U} = F, and U*U, < QP,. As both (F,) and (QP,) are mutually ortho-
gonal sequences of projections, the series Y} U, converges in the strong operator
topology to an element U of 9. Since QZQ0 =0 and U, = U,0 we have that
UZU} = 0. Thus

P(ZU — UZ)P,Uyx, = P,ZFx, = Zx,

and this shows that ||P,(UZ — ZU)P,||+ O.

Using the result of the above paragraph and choosing the sequence P, appro-
priate to the diagonal ideal .#, it follows from Lemma 2 that Z € .#. Hence X — Y =
=X — Y(X)+ y(X) — Y e # and, since Y € ¥ the theorem is proved.

The following alternative argument is due to the referee. Theorem 2.3 of [3]
states that, if 2,(Z) = ZX — XZ and 2, maps ¥’ into ¥, then subject to certain
conditions on ¢ (which hold in the present case),

inf [ ¥ — X < ||2x]-
Yew!
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Thus, using the notation of the proof above, there exist ¥, € ¥'=2 with P,Y,P,=Y,
such that

1P (X)P, — Y, Il < 2(1Dp x)e |-
Since X — y(X) e &, DY(X) —yY(X)D e # and so

An easy argument shows that H@pnwx,pnn — 0. Writing Y=Y, ¥, we have
that Y(X) — Y e # and the theorem follows.

COROLLARY 6. Let & be any intersection of diagonal ideals. Then
C@2 ¥=¢+ <.
In particular, the result holds when & is any one of the ideals R, Ry, R, or R, as
defined in Section | and, in these cases the sum is a direct sum of vector spaces.

Proof. This follows from the proof of the theorem in the same way as Corol-
lary 4 followed from Theorem 3. One needs to note that the element Y of the core
was chosen independently of the sequence (P,) of projections. In the cases when
the sum is direct the corollary may also be easily deduced from Corollary 4.

COROLLARY 7. Let & be any intersection of diagonal ideals. Then
C(Algé, F) = ¥ + <.
Proof. Obvious, since 9 < Algé.

The corollary above settles for intersections of diagonal ideals the question
mentioned at the beginning of the paper. It also implies that, when considering
commutants of Alg& modulo such ideals we may confine our attention to the core.
Since the core is an abelian “-algebra, this means that only normal operators need
be considered. In fact, if we write 4, for C(Algé&, &) n € we shall see later (Sec-
tion 5) that ¥, is a *-subalgebra of %.

3. COMMUTANTS MODULO THE RADICAL

We first consider commutants of the nest algebra Algé& modulo some of
the diagonal ideals. The presence of atoms introduce certain complications in the
case of ¥ and ¢ ; and we postpone these to Section 5.

THEOREM 8. Let & be a nest of projections on a separable Hilbert space.
Then for each E e &,

C(Algé, $5) = CI+ 55

C(Algé, Jg) = CI + S
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and, if E- = E = E+,
C(Algés, ) = CI + F¢.

Proof. Let Z e C(Algé, #z). Then from Corollary 7, Z = C + Y with
Cc% and Ye Sg. If E # E-, we have that C(E — E”) = A(E — E™) for some
scalar X and so C — Al e S¢.

Now suppose £ = E~ and let £, € #(E) (notation as in Lemma 2). We use
spectral theory and show that, for some scalar 2,

() A o(CI(E — E))={2}.

n=t

Suppose the intersection (which is non-empty by compactness) contains two distinct
points @ and b with (b — al > 2¢ > 0. Let « and § be open discs in C of radii ¢
and centres a and b respectively. Denote the spectral measure of C by G(-). For
each n, G(a)(E — E,) # 0 and so there exists m > n such that G(«)(E,—E,) # 0
(otherwise G(a)(E — E,) = stronglim G(«)(E,, — E,) = 0). The similar fact is

n—»oo
true for G(f). Thus, choosing a subsequence inductively if need be, we may assume
that for each n,

G(a)(Egnsy — Epp) # 0, G(B)(Epasg — Egpia) # 0.

Let x, and y, be arbitrary unit vectors in the ranges of (Ey,.5—FE,,+;)and (Ep, . —

— E,,) respectively. Then x, ® y, € Algé (recall that (x ® y)t = {z,x)y) and
=]

so ¥, x, ® y, converges to some element X of Algé (in the strong operator
n=1

topology). From spectral theory, we have that

”CXn - axn” <eg, ”Cyn - byn” <e.
Thus,

I(Eons s — Epp) [CX — XCl(Eppsy — Ez)ll = ||C(x, ® 1) — (x, ® yo)Cll =
= ”xn ® (C - b)yn - (C* - _d)xn ® Yu +(b - a)(xn ® yn)” > lb_ a’ — 2e.

Thus, using Lemma 2 we see that CX — XC ¢ £ and this establishes (+). Since
WE — E)(C — A (E — E))|| equals the spectral radius of (C — AI)|(E—E,), it
follows that C — Al € #¢. The proof for £ is similar.

For the case of #; when E- = E = E+ we use the same methods. As before,
we need only consider an element C of ¥ nC(Algé, £g). Let (F,) e F(E),
(G,) e 9(E).Since £ n F g 2 Fg,itfollows from above that lim|j(C — A7I) (E —

n-»>oo

— F)|| = lim )(C — A+I) (G, — E)]| = 0 for some scalars 17, A*. Choose unit

vectors x, and y, in the ranges of G, — G,;, and F,,, — F, respectively. Then
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8

n

]

X = X, ®y, € Alg& and
1
(Gn — FNCX — XCNG, — F)Il 2 l(Frs1 — FNCX — XC)(G, — Gpi)ll =
= IC(X, @ ¥a) — (Xa ® 3,)C|| =
= [IXp ®(C — A7)y, — (C* — 1%)x, ® y, + (A* — 27)(x, ® yo)li-
Since CX — XC e #; and the right hand side converges to | A+ — A7 |, it follows

that A+ = A~ = 1 and C — /I € #; completing the proof of the theorem.

The determination of C(Algé, %) is now completed by a simple compactness
argument below. This result is originally due to Lance [15]. The proof by our route
appears to be simpler than the proofs in any of [13, 15, 16]. Recall that, if %
is any set of operators, C*(%) denotes the C*-algebra generated by %.

THEOREM 9. Let & be a nest of projections on a separable Hilbert space
and let & be the Jacobson radical of Algé&. Then

C(Algé, &) = C*&) @ R.

Proof. Since C(Alg&, Z) = C(2, Z) for the inclusion C(Alg&, Z) = C*(8) D R
it suffices to prove that if Ce ¥ nC(Algé,#) then CeC*(&). Let ¢ >0 be
given. From Ringrose’s characterization of # ([18], see Section 1) and Theorem 8§
if Eis not 0 or I, there exist scalars Afand Ag such that

C—Atless, C—ifleSds.

Since E€SfE, C— AgE—Ai(I— E)=C — A§l + (A — 2p)Ec€ FE. Also, as
(I—E)eS5,C—I5E + A} (I—E)= C— 51 —(As—2A5)I—E)e S5 . Thus
C—2A5E—2:(I— E)eftn IE.

Hence, as C € ¥, there exists Py, Qp € & with P < E < Q such that forall P, O

satisfying P < P < Q < QO we have
() Q@ — P)IC— 2 E—2x(I— E)][(@Q — P)|| <e.
The set {(Pg, Qp): E € £\{0, I}} together with the analogous intervals [0, Q,) and

(P;, I1for 0, Iforms an open cover of &. Since & is compact (in the order topology)
there is a finite subcover

[O’ QO)’{(PE‘., QE,-):] <is<n— l},(Plal]

Write E, = 0, E, = I. It is easy to see that by relabelling and, if need be, shrinking
the intervals, one can arrange that {Pg}, {Qr }, and {E;} all increase with i. Choose,.
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for 1 < i< n—1, F,; such that PE'_ £ F; € Q;s‘,_l . Define C; by .

1

n n-1
§)) .C¢'=. Z AE.(Ei — F) + E )~;_(Fi+1 — Ey).
i=1 ! i=0 !
Then C, € C*(&) and, using (*) we have that
IC — C.|l = max||(C — C;) (F; — F;_))|| <&
Thus C e C*(&).
For the reverse inclusion, note that if E € &, and X € Alg& then EX — XE =

= EX(I — E) e and so, taking linear combinations and norm limits, CX —
— XC e Z for any C e C*(&). '

4. COMMUTANTS MODULO £, AND & ,: THE CONTINUQUS CASE

For the formulation of the next result, recall that the nest &€ has a projection:
valued measure E(-) associated with it [6). The measure E(-) satisfies E[0, E] = E.
If f: & - C is a bounded Borel function, the operator T, given by

T, = Sf(E) dE
&

is a member of the core (in fact every member of the core is of this form). An
operator of the form T, where f is continuous on & will be called an &-continuous

operator.
The ideals #,, #, and #, (see Section 1) were introduced in [8]. Note that
Ry = X, when & is continuous (i.e., when E = E~ for each E € &).

THEOREM 10. Let & be a continuous nest. Then

C(AIg8, Ry) =€, D %,
where €, is the algebra of é@-continuous operators.
Proof. Since ||T;|| = || fllw, if F < Ey < G it is easy to see that
T, — fAE)NG — F) = gsssup LA(E) —f(Ey) |

Thus, if f is continuous, T, — f(E)I € 5 ;. Therefore T, € C(Algé, £ ) for each E
and so T; € C(Algé, #,). This shows that
€ ® Ry = C(AIgE, Ry).

For the converse it is sufficient (by Corollary 7) to prove that if Ce € n
n C(Algé, #,) then C € ,. Using Theorem 8 and the characterization of %, from
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[7] mentioned in Section 1, for each Ee &,
C— ME)e S,

for some scalar A(E). As in Theorem 9, given ¢ > 0, we find Py, Qf such that, for
Pr<s P< Q<@

(@ — P)(C— MEY)(Q — P)|| <.
Now, if Fe (Pg, Qp) and (P, Q) € (Pe, Q) N(Pr, Qr) we also have that
Q@ — P)(C —AFD(Q — P)| <e,

which shows that | A(E) — A(F)} < 2¢. Thus A(E) is a continuous function of E.
We now proceed just as in Theorem 9, but here 1} = iy = A(E). The
expresion (1) for C, becomes

Co= Y ME)(Fir; — F)
i=0

where we put Fy = 0 and F,,, = I. This is clearly an approximating sum for the

integral of A(E) and, by choice of the cover we have that

< 2e.

S ME)E — C,

As before, ||C — C.|| < ¢ and, since ¢ is arbitrary C € €, as required.

We now turn to the determination of &, when the spectral nest of A is conti-
nuous. Recall that for a continuous nest, &/, = &, (see Section 4 of [8]).

THEOREM 11. Let A be an invertible positive operator whose spectral nest &
is continuous. Then
CAlgE, R) =C*(A) D R,.
Proof. Theorem 20 of [8] states that, for any X e Algé, AX — XAeR,.
Hence CX — XC € Z, for all C e C*(A) and it follows that

C*(A) ® R, < C(Algé, R.,).

For the opposite inclusion it is sufficient (by Corollary 7) to show that, if
Ce?¢nC(Algéf, #,) then C e C¥(4). Let ¢ < R+ be the spectrum of 4 and write
E, for the spectral projections of A (thatis, E; = E,[0,s]). Then & = {E;:s > 0}.
Recall [8] that E € & is called a jump of A if {s:E, = E} contains an open interval
of R. Theorem 14 of [8] states that

Ry =RN0({F::E¢J(A)}

where J(A) denotes the jumps of A. Now let 7 be any point of ¢ and let t_ =
=inf{s: E, = E,} and t, =sup{s:E, = E}. If t_ =1t, =t then E, ¢ J(4) and
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so #, < Sg. Define A(t) as the scalar such that

C—it)esy.
Such A(z) exists by Theorem 8 and is clearly unique. If 7_ < ¢, then E, € J(4) and,
since (t-,t,)=p(A)eithert =¢_ort=1t, . (Note:if E,= I, t, =coand¢t=1_;
similarly if E, =0, ¢ = ¢,.) Define A(t) by

C—it)est or C— Mt)le sy

according as t =1t, or 7t =1t_. Since #, € # = FE, Theorem 8 shows that A(¢)
is well-defined.

Since the map s — E is order preserving and onto &, for any t € o, givene > 0
there exists ¢ < t < b such that

I(Ey — E)(C — A (E, — E)|| <.
It follows easily (cf. the proof of Theorem 10) that A(¢) is continuous on ¢ and that

C= Sl(t) dE, = A(A4).
Thus C e C*(A4) and
C(Algé, #,) = C*(A) D R,.

Theorems 10 and 11 clearly overlap. For example it can be shown that if
Ap € &y has no jumps then C*(A4,) consists of the &-continuous operators and
Theorem 11 implies that

% 0 C(Algé, B) = M{C*(A): A € £} = C*(4).

However, it seems worthwhile to present the simple proof of Theorem 10 which is
independent of Theorems 14 and 20 of [8].

5. COMMUTANTS MODULO #,, #, AND £ ,: THE GENERAL CASE

There are two facts which complicate the theory when the nest & has atoms
(i.e., elements E with £ = E~). Firstly &/, # «/, so &, # %, and secondly the
commutants of Alg& modulo diagonal ideals are not always trivial. Once appropriate
adjustments have been made to compensate for these facts, natural extensions of
the proofs above hold in the general case. In view of this some details will be omitted.

First we déal with C(Algé, #) when £ is a diagonal ideal. Reference to
the definitions shows that we need only consider £y when E-# E = E* and ¢
when (E~)~ = E~ # E=E* or when E~ = E # E* since all other cases are
covered by intersections of ideals dealt with in Theorem 8. The last case may be
written as # .- when(E~)~ = E- # E.
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LEMMA 12. Let S be a diagonal ideal of Alg& of one of the following
forms: Fp with E- # E= E*, ¢y with (E-)~ =E- # E=E* or F g~ with
(E~)~ = E~ # E. Then, if E— E-~ has infinite-dimensional range,

C(Alg &, %) = CI+ 5
and, if E — E- has finite-dimensional range,

C(Algé&, #) = C*(I,E— E-) + 5.

Proof. First consider #y when (E-)~ == E-#E=FE* Let (F)e % (E"),
(G,) € 9(E) (notation as in Lemma 2). If Ce¥ n C(Algé, #5)since FrcSFin s,
it follows from Theorem 8 that, for some scalars A+, A-,

lim [|(C ~ A-T)(E- — E)l| = 0 = lim [(C — 2*I) (G, — E)|!

Also, since £ < # ¢, for some scalar u, (C — puI) (E — E-) = 0. Now let x, and y,
be unit vectors in the ranges of (G, — G,.,) and (F,,, — F,) respectively and let X =
= Y, x, ® ,. Exactly as in Theorem 8 the fact that XC — CX € ¢ implies that
At = A-. This shows that

C(Algé, fp) € C*(LE—E7) + Fg.

If E — E- has infinite-dimensional range, taking y, (instead of as above) to be
an orthogonal sequence in the range of E — E-, the same calculation proves that
A+ == u. Hence in this case

C(Algés, #g) =CI + .

If E — E- is finite-dimensional then for any X € Algé, since (F, — G,) = E — E~
strongly and X(E — E-) is compact,
lim||(F, — G,) [X(E — E~) — (E — E")XI(F, — G)[|=0.

n—»o0

Thus E — E- € C(Algé, #;) and so the lemma is proved for this case.

The results for the other cases may be proved by identical arguments.

COROLLARY 13. Let & be any intersection of diagonal ideals and let €, =
= C(Alg&, #YNE. Then €4 is a C*-algebra.

Proof. For any diagonal ideal #, since € n £ is clearly self-adjoint, it follows
from Theorem 8 and the lemma that C(Algé&, ) n ¥ is self-adjoint. As €, isan
intersection of such algebras, the result is proved.

For the proofs which follow it is convenient to re-write the characterizations
of #, and Z, to take account of some automatic inclusions between certain diagonal
ideals.
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LEMMA 14. (i) By = (M{F:E not isolated} n (\{S : E isolated).
(i) BZy=N\{F:E=E*}n(\{SE :E # E*}.

Proof. These follow from the characterizations mentioned in Section 1
and trivial observations such as: if E # E*, ff = J;+ and if E* is not iso-
lated, 4 < fs*"

Note that the notation %, as defined below does not conflict with its use
in Theorem 10 since the core of a continuous nest algebra contains no non-
Zero compact operators.

THEOREM 15. Let & be a nest of projections on a separable Hilbert space.
Let €, be the algebra generated by the compact operators of the core and
the &-continuous operators. Let €, be the algebra generated by the compact
operators of the core and the &-continuous operators corresponding to
Sfunctions f such that f(E~) = f(E) = f(E*) whenever neither E nor E- is isolated.
Then

(i) C(AIgé, Ry) =€, @ %o

(ii) C(Algé&, Z)=%,@ &,.

Proof. This is modelled on the proof of Theorem 10. We first consider (ii)
and note that from Corollary 7, C(Algé&, #,) =¥ + %,. Let Cec ¥ n C(Algé, £,).
Using Theorem 8 and Lemmas 12 and 14, we obtain scalars A(E), u(E) such that

C — ME) — y(E)y(E— E")e S, E=E+
C— ME)eSs E+E+

where p(EF) =0 unless (E — E~) has finite, non-zero dimension. Note that u(E)
does not appear for S5 since E— E~ =1 (mod #¢) when E- # E # E+. The
fact that A(E) is continuous is proved as in Theorem 10, (u(E) does not affect this
since continuity from below is automatic when E # E-). We now find a finite cover
as in Theorem 9 and obtain the same approximation to C but with the addition
of a finite linear combination of finite-dimensional projections of the form E — E-.
Specifically, we have, for a given ¢ > 0,

IC—C. — Kl <e
where K. is a compact operator of the core and C, is as in Theorem 10 and satisfies

SA(E) dE—C,| <2e.

g
This shows that C € ¥, and therefore C(Algé, %, = €, © %,.

The fact that C(Alg &, £,) contains the &-continuous operators follows exactly
as in Theorem 10. If K is a compact operator of the core it is normal and its
(finite-dimensional) spectral projections are of the form E — E-. Since £ — E- is
in every diagonal ideal except those contained in £g, it follows from Lemma 12
that Ke C(Algé&, #,). This completes the proof of (ii).
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The proof of (i) is virtually identical to the proof above. The equality A(E~) =
= ME) = A(E*) when, for example (E-)- = E~ # E = E*, arises from the fact
that in this case # .- = # ¢ and the other proofs of the equality come from similar
observations. The details of the proof are left to the reader.

The special case when & is a maximal nest is of interest. It is true in general
that any compact operator K of Alg& can be written as K = K, + K; where
K, 2 and K, € # (for a maximal nest this is essentially in [17} and the general
case is Theorem 4.4 of [10]). [This fact may also be easily proved using Corollary 4
as follows. Let Ce ¥ and let(C,) be a net of elements of C*(&) converging
strongly to C. Since Kis compact C,K — KC, converges in norm to CK — KC and
so Theorem 9 shows that CK — KC € #. Thus K€ 2 @ £ by Corollary 4.] Denote
the compact operators of Alg & by . If &is maximal then E — E- has dimension 1
whenever E # E- and it follows easilythat #’ N2 =4 n¥. Since X NA =4 n
NRy = A n R, ([8], Theorem 10) it follows from above that ¥ + X, =HA nNE¢ &
@ Z; (i=0,1). Thus for a maximal nest, the compact perturbation can be absorb-
ed into the ideal and Theorem 15 (ii) may be re-written as

CAIgE, B)=F. + (% + X)

where €_ is the algebra &-continuous operators. Now for all X, A4 e Algé,
(E—E~)(AX — XA4) (E,— E~) =0 and so it follows easily that C(Algé&, #, + A ') =
= C(Algé&, #,). Thus

C(AlgE, &y +H) =€, + (B + H).
A similar reformulation of (i) holds with %_ replaced by the appopriate smaller
algebra.

We now consider the ideals #,. Let A€ &/, have spectral projections
{E,:s = 0}. For each r € R, define

F(A) = {XeAlgé: inf |(E, — E,) X(E, — E,)|| = 0}.
<y

x<t

Clearly each #,(A4) is a diagonal ideal of Algé&. Also #, # Algé if and only
if 1 € a(A).

LeMMA 16. Let A€ ofy. Then
Ry=M{F(A): 1ea(A)}.
Proof. A trival check shows that this is a paraphrase of Theorem 14 of [8].

THEOREM 17. Let & be a complete nest of projections on a separable Hilbert
space and let A e . Then

CAlg&, R) =%, @R,
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where €, is the algebra generated by A and the compact operators of the core.

Proof. If C e C(Algé&, #,) n ¥ then, from the results above, if each ¢ € 6(4)
there exists scalars A(2), u(t) such that

C — M0 — p() (E, — E;) € F(4)

where u(t) = G unless E, — E; is finite-dimensional. The methods of Theorems 11
and 15 are now used to show that A is continuous on ¢(4) and that C — A(4)
1s a compact operator of ¥. Thus C(Algé&, 2,) < €, ® #,. For the reverse inclusion
note that Theorem 20 of 8] states that 4 € C(Algé&, £,). The fact that C(Algé&, Z,)
contains all compact operators of the core is proved as in Theorem 15. Thus
C(Algé&, #,) = ¥, and the theorem follows.

For the case of a maximal nest &, Theorem 17 may be re-written as
C(Algé, R,) = C*(A) 4- (%4 + ) = C(Alg8, R, + X)

where " denotes the compact operators of Alg &. This is merely an observation
based on the comment following Theorem 15.

The results of Section 2 show that, if & is any intersection of diagonal ideals,
C(Algé8, ¥) =¥, + & where ¥, is a subalgebra of the core. Theorem 8 and
Lemma 12 effectively determine the elements of €, in terms of “local’’ properties;
that is, giving a condition for each projection £ of &. These may be translated
into local properties of functions in some functional representation of the core.
Such ideas appear in [15, 16, 13]. Alternatively these properties may be formulated
in abstract spectral terms as follows. For each C € € and E € &, define

6.(C, E) = M{6.(C|G — E):G > E}
o-(C,E)=\{o(C|E — F):F < E}
0,(C, E) =M{0.(C|G — F):F < E < G}

64(C, E) = (o (C|G — F):F < E~, E < G},

where o, denotes the essential spectrum. Let 6.(A, E) be the diameter of the set
¢ (4, E) and define 6_(4, E), 6,(4, E) and é,(A, E) in the analogous way. Suppose
the ideal & is the intersection of the four sets ({FL:E€&,},n{SFr Ec€_},
MN{Fe:Ecé&} and(M{Fr:Ec&} where & (i= +, —,1,0) are subsets of &
and where it is arranged that E = E+ for all E € &, (otherwise delete E from &,
and adjoin E to both &, and &_) and similarly neither £ nor E- is isolated for
Ee€ &,. Then it is easy to prove from the foregoing that ¥, consists of all elements
of & such that §;,(4, E)=0 when Ee &; (i= 4, —, 1,0). However this really says
little more than Theorem 8 and Lemma 12. The point of the results above when &
is &, Ry, #, or R, is that the elements of ¥, are described in a global way.
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