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SOME NORM BOUNDS AND QUADRATIC FORM
INEQUALITIES FOR SCHRODINGER OPERATORS. 1I

E. B. DAVIES

1. INTRODUCTION

In this paper we discuss questions such as the boundedness of the operator
V(H, + V)~ when V is a potential on an open region Q < R¥, and H, is minus
the Laplacian with Dirichlet boundary conditions. Because we treat rather singular
potentials V it is necessary to use quadratic form techniques systematically, and
to pay careful attention to domain questions. Although many of the results in [4]
are superceded by the present paper, we draw attention in Appendix 1 to a technical
gap in [4] which makes several proofs here more devious than one might have
thought necessary.

The initial reason for the estimates in this paper was the desire to obtain
a comparison theorem of the form

I(Ho + V)= — (Ho + Vo)~ < eV — Vil

where V,; are both strictly positive potentials, which may have very strong local
singularities. Such a bound is given in Section 4, and will be used in a subsequent
paper to study double well Schrédinger operators. However, in the course of the
work, we discovered a number of quite different applications of Theorem 6 (our
main result), which we decided to include in this paper.

In order to apply Theorem 6 effectively it is necessary to find suitable
potentials X such that 0 < X < H,, where H, is minus the Laplacian in L?(Q)
with Dirichlet boundary conditions. This is actually an entirely independent problem,
which we discuss in Section 5. An immediate consequence of these calculations is
to give a new lower bound to the spectrum of H,in terms of a quantity u which
we call the quasi-inradius of Q because of its similarity to the ordinary inradius,
known to be of relevance to this problem if N = 2. This lower bound is given
and discussed in Section 6.
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We start by assuming that Q is an open region in RV, and impose no
regularity properties on its boundary. We identify L*(Q) with the set of functions
in L*(RY) which vanish aimost everywhere outside . We denote by D; the usual
partial differentiation operators, which are the closures of those operators initially
defined on C°(Q2). We then define H, to be the form closure of the operator - 4
initially defined on CP(R). Equivalently we might define #y by

N
CHES HYf> = Y (Dif. Dify
with

~
Quad(H,) = Dom(H}y?) -= () Dom(D;).

The form of H, is a restriction of the form of minus the Laplacian of the whole
of RY, to a suitable subdomain which is dense in L} Q).

We next define the class ¥~ of potentials ¥ which we will ultimately consider.
We say Ved if Vell.(Q)and the negative part ¥'_ of Vsatisfiesa form bound

V_<aH,+ b

forsome 0 < a < 1and 0 < b < oo. The form sum H, . may then be defined
in two stages by

Hy = Ve=(H,-V.)+V,
with
Quad(H, - V)= Quad(Hy, — V) n Quad ¥, -~

= Quad(H,) n Quad ¥, 2 CX(Q).

We shall use the fact that H, 4 ¥ is a semi-bounded self-adjoint operator,
with the further property that if 2 > b then (H, +V+ 4)~1is positivity preserving.
By this we mean that 0 < fe L*(Q) implies

0SS (Hy+ VY

or equivalently that the integral kernel of the operator is pointwise non-negative.
Moreover if ¥V < ¥’ then the integral kernel of (H, 4+ V + 4)~! dominates that
of (Hy + V' 4+ A)-1 pointwise. These results may all be deduced from the Trotter
product formula.

We denote by CL(R2) the space of continuously differentiable functions f
on © which are bounded together with all their first order partial derivatives. The
following lemma provides reassurance that some expressions in Lemma 2 are
meaningful.
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LEMMA 1. If We CL(Q) then
W(Quad(H,)) = Quad(H,).
Proof. If fe CP(Q) then Wfe Dom(D,) for all i and

Dy(Wf) = Wif + W(Dif)

oW
where W, =: F Thus

i
i

IDLWHIE < 2Wf 1P -+ 2W(DHIF <

~

< 2l IAIR + 20 W% DS
Putting

AT = (If 1P -+ B lID 1)1

we deduce that there exists ¢ < oo such that

WAl < elilfI

for all fe CP(Q). But Quad(H,) is the completion of CX(Q) for the norm !|-|'!, so
W defines a bounded operator of the completion into itself.

LeMMA 2. Suppose V is bounded and

0<c< WeCy(Q).
Then

I(Ho + V)fI 2 2ul| H"WEf|® +

4 <(2y WV — p*w? — MHZWW“)f,f>

for all fe Dom(H,) and all p>0.
Proof. We first note that since V is bounded

1)

N
Dom(H, + V) = Dom(H,) < Quad(H,) = QDom(Di).

Since
0 < ((Hy +V —uW)f, (Hy -V — pW)f) =
= ((Hy + V)f, (Hy + V)f> — u{WS, (Hy + V)f) —
— u(Ho + V)1, Wf> + pXWf, Wf)
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we see that
"(Ho -+ VIIF2 2KV LT — iKWYL + WS, Hof )+ uC Hof, W) =
2)
N
VWSS - WSS+ 3 KDWY, Dif y -+ { DI, D).

Next observe that ;' and W7 lie in Dom(D;) by Lemma 1. Moreover W has a
strictly positive lower bound, and this implies W2 e C}(Q). It follows that

. W, .
(DWE,Dif> = <(2W15 + WWD:‘) WhEf, D.'f> o

W,
= . L W 2 p. =3
<(zw1/2 - D,W )f,W D,f>

e / W,- ' 1/2 1,2 ___H_/,-_ :
“are DWW \f I DW — S ).

Adding this to its conjugate we obtain
D:WY, Dif ) +{Dif, D;Wf) == 2 D;W:f, D,WY*f ) — <2'W'ﬁf> :

The lemma follows by substituting this equality (due to Glimm and Jaffe [5]) into (2).
The following corollary is a technically restricted version of our main theorem.

COROLLARY 3. Suppose that V is bounded and that the potential X on Q
satisfies

(3) 0<X<H,

in the sense of quadratic forms. Suppose that W e CA{(Q) satisfies
(4) O<e<s WK V+X

Jor some ¢, and

(5) |V WIE < 4WHY 4 X)

Jor some 0 < x < 1. Then
(6) (1 = AWV + XY2f)f < I(Hy -+ VSl
Jor all f e Dom(H, 4 V).
Proof. Substituting the bounds (3), (4) and (5) into Lemma 2 yields
iHo + VIR > X WS - (QUIY — W — 20 WV -+ XS [ >

22— pu— 202 WV + X) 1,1
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If 0 < a < 1 then the optimum choice of g is p = 1 — &2, and this yields

l(Hy + VfIP 2 (L= WV 4+ X)f,f>
as stated.

Our remaining task is to weaken the conditions on ¥ and W in the above
corollary.

LEMMA 4. The result of Corollary 3 remains valid if one assumes that Ve ¥
instead of assuming that V is bounded.

Proof. The assumptions on W ensure that there is a finite constant b such
that

| VW< 42> Wb,
0 Wb
Combining this with (4) and (5) we see that if .
—n fV(x)< —n,
Vou =13 V(%) if —n<V(x)<b,
b if V(x) 2 b,
then
O<c<WgV,,+X

I VWI? < 42W3(Vs,, + X).
Applying Corollary 3 we deduce that ‘

(1 — ) |WE Wy, + X)VEf|| < AI(Hy 4 Vi, ) SN
for all fe Dom(H, + V,,,), or equivélently . T
|V + XV (Hy + Voo + D7 < (1 — o)

for all 1 > 0. The operator on the left-hand side has a non-negative integral kernel
and pointwise domination and monotonicity arguments lead successively to

W (V00 + X2 (Hoy 4 Vi + D)7 < (1 — a®) 7,
W2 (V00 4+ X)VE(Hy 4 Vi, 0 + A7 < (1 — a?) 7Y,
(W (Vio + X)3(Hy + V + )7 < (1 —0?)73,
| WV + X) P (Hy + V + )7 < (1 —a®)

This final bound is equivalent to the statement of the lemma.
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We finally define the class % of potentials W in which we are interested. We
first require that W:Q — (0, oo] is continuous and that

S:= {x e Q: W(x) = oo}

is a relatively closed null set. We also require that W is continuously differentiable
on \S and that for all ¢ > 0 there exists C < oo such that

W(x) < C implies ||y W(x)| < e
Equivalently if x, e @\.§ and ||y W(x,)|| = oo then W(x,) — oc. For an even more
general class than ¥ see Appendix 2.
LeMMA 5. Let W, = F (W) where W €% and F,:[0, o0) — [0, o) is defin-
ed by

1)t i 0 < £ < 4n,
Fi(r) = {t(l—;—t,!4n) ifoO<t<4dn

if 4n <t < oo.

Then W, is continuously differentiable and increases monotonically to W as n — oc.
Moreover

) 0< W, <n,
®) 0 < |OWIIW, < il W|IW,
(9) 0< thn” < ¢, < 00,

for some sequence c¢,, at every point of Q.

Proof. A direct computation shows that
(10) 0 < tF(t) < F (1)
for all n and ¢, and that F,(r) increases monotonically to ¢ as» — oo. Since

VWil _ WEW) IV
W, Wy W

we see that (8) follows from (10). The other statements of the lemma arz easy to
check.

The following theorem is the main technical result of the paper. In [4] we
treated only the case W= Vand X = 0, but it turns out that one can get better
bounds in many circumstances by more careful choices of W and X. One suitable
choice of X, depending on the shape of 0, is given in Section 5.
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We remark that a proof of Theorem 6 might also be based upon suitably
strong pointwise bounds on the non-negative integral kernel of (H, -+ ¥)~*. For
related estimates of this type see (11], where, however, strong local singularities of V
are not permitted, because H, is taken to be defined on the whole of RM.

For an even more general version of Theorem 6 see Appendix 2.

THEOREM 6. Let Ve¥", W e % and let the potential X on Q satisfy

0< X< H,
in the sense of quadratic forms. Suppose that

OS W< V+X
and

|V Wi < do2WHV + X)
Jor some 0 < a < 1. Then

(1 — a®) WV + XY < [[(Ho + V) Sl
for all f e Dom(H, + V).
Proof. If 0 < 4 < 1 < oo and
Wn == Fn(W '%— #)
then W, e CP(2) and ’

O<pu< W, <WHusV+2)+X
Also

YWl _ iy W]
W, Wty

by Lemma 5, so

LA W
e < 4 ———— (V- X)) < 4?{(V + A Xj.
e P T ) < 4a*{(V + A) + X}

We deduce from Lemma 4 that
(1 — a®) [[WRB(V + 2 4 XD fIf < I(Hy + V + D S]]
for all f e Dom(H, -+ V). Letting n — oo we deduce that
(3 — a®) WUV + X)'2f]] <

<A =) W+ w2V + 24+ XP2fl < (Ho + V + DS
The result now follows by letting 4 — 0.
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The following simple special case of Theorem 6 is sometimes useful.

COROLLARY 7. Let Ved™, We% and let
0SS X< H,

in the sense of quadratic forms. Suppose that

OSWKV+X
and
LYW < W
for some ¢ = 1. Then
| W(H,y + V+ 1)~ < 2.

Proof. We have
[T(c2W)® < e W2 < W (F + X) <

<

—;—-(c“’W + DV + 1) + X).

Therefore Theerem 6 applies with a* = 1/8, V' replaced by (¥ + 1) and W replaced
by (¢—*W -- 1). We conclude that
LB el W R Y X DS

S cl(Hy + V4 DS
for all f e Dom(H, 4 V), and this implies the stated result.

2. LOCAL SINGULARITIES OF SCHRODINGER OPERATORS

As our first application of Theorem 6, we consider the operator H = H, | V

in L*(R?), where V(x) = £_ for some ¢ >0 and « > 0. In [4] we showed that
XI

(11) IV(H + 1)~} < oo
ife < 3/20ora > 2, and also for a« = 2 if ¢ > 3/2. Simon V[12] subsequently showed
that if o == 2 then (11) holds if and only if ¢ > 3/4, and he proved that the minimum
values of a in the estimate

VAl < allHf},
is @ = ¢[(c — 3/4). His method of proof depended both on the spherical symmetry

of ¥V and on the fact that it is homogeneous of degree — 2. Using Theorem 6,
we are now able to rederive this optimum bound.
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THEOREM 8. If a =2 and N = 3 and ¢ > 3/4 then
IVl < —— |1l
S e —3/4
for all f e Dom(H).

; 1
Proof. We apply Theorem 6 with X = ey and W = (c + 1/4)/x?, so that
X

W=7V + X. We find that
v W =2(c + 1/4)/x*

s0
| v W2 = 42W3(V + X)*

provided
4(c + 1/4)2 = 4da*(c + 1/4)2(c + 1/4)
which simplifies to
o = (c 4 1/4)-L.

Thus the condition 0 < o < | necessitates ¢ > 3/4. Theorem 6 implies that

{1 —(c+ 1) c + 1/4)‘ ;}-fl] < 18]
which in turn implies that
1 c
Wh=e| 57| <~ 1

Theorem 6 is easily able to yield a variety of related results, of which the
following is a sample.

THEOREM 9. [If in the notation of this section we have a« =2 and N =3
and — 1j/4 < ¢ < 3/4 then

QU= A(H + 1)~ < (¢ + 1/4 — 5~

for any B such that 0 < f* < ¢ + 1/4, where Q is the position operator on LE(R?).
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Proof. We put X =1/40% V =1 + ¢/Q* and

W= (c+ 1/4)/0%
so that
0 < W< (c+1/4)(+0) <

Sl (c+1/4)QF=V+X
Also

VW2 = {2B(c + 1/4)|Q|-*-}2 <

<apwygr < —F w4 xy.
¢+ 1/4

If we now put

a® = *)(c + 1/4)

then all the conditions of Theorem 6 are satisfied provided
0< p<c+41/4
The theorem follows once one notes that
WYY + X)2 > (c +1]4) Q]2

NOTE. We conjecture that the power of (@] in this theorem and the upper
bound (¢ + 1/4)? on § are the best possible, but have no similar confidence
in the estimate of the norm.

As yet another application of Theorem 6 we consider the following genera-
lization of Theorem 8.

THEOREM 10. Let Q be an open subset of RN and let V = cd(x)~2, where
¢> 1 and d:2 — (0, 00) is continuously differentiable with ||V d(x)|| £ 1 for all
x € Q. Then

c
c—1

v < l(Ho + VSl
Sfor all e Dom(H,).
Proof. We put X =0 and W = V in Theorem 6. Then

VW < 2cd(x)"®
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80
IVW|F < de2W2V

and Theorem 6 is applicable with a2 = ¢~1,if ¢ > 1.
Note. The choice

d(x) = dist(x, ¢Q) = min{|lx — || : y ¢ Q}

satisfies || Vd(x)|] < 1, provided d is continuously differentiable. According to
Appendix 2 an even more general version of Theorem 6 enables one to cope with
the cases where this function d(x) is not differentiable everywhere. One might
actually take d(x) to be the distance from any closed subset S of R” and in
this case it would be interesting to determine how the optimal constant in the
bound depends on S.

3. CONNECTIONS WITH THE AGMON METRIC

If 1:Q - (0, 00) is a positive continuous function then one may define a
“distance’ d(x, y) between two points x, y € @ by

1
dy(x,y) = igfsz(w))mlly'(z)ndz

where the infimum is over all smooth paths y in Q with y(0) = x and y(I) = y.
It was observed by Agmon [1, 2] and others [3, 13] that many asymptotic properties
of eigenfunctions of H, - ¥ can be expressed in terms of this metric, provided

O0< A< Hy LV

in the sense of quadratic forms.

A close connection between our ideas and the Agmon metric is established
by the following theorem. It would be interesting to obtain a deeper understanding
of this result. The regularity assumptions on A and W can surely be greatly relaxed,
at the cost of a more complicated proof (see Appendix 2).

THEOREM 11. Suppose that 0 < X € Hy and that 2=V 4 X is strictly
positive and continuous. Then a continuously differentiable function W: Q — (0, 00)
satisfies

(12) VW) < 42 W(x)* (V(x) + X(x))
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for all x € Q if and only if
W(y) < W(x) exp[2a d,(x, ¥)]
for all x,y e Q.
Proof. 1t is elementary that

|V log W(x)l| = |V W(x) |l W(x)
so (12) is equivalent to

[V log W(x)[1? < 4a?A(x)
or to

([ log W(x)[| < 2a A(x)Y2.

This in turn is equivalent to

1
flog W(y) — log W(x)| < 2 S AN Ily'(e)li de
0
for all paths from x to y within Q.

4. COMPARISON OF RESOLVENTS

If H, 4 V,; are two Schrédinger operators on L), 2 = RY, then a formal
calculation yields

(13) (Hy 4V, + D)=t — (Hy + Vo + 2)~1 = A*BC
for all suitable A, where
A=W+ D) (Hy+ V1),
B=W +A7 =W+ 47
C=(Vy+ 1) (Hy + Vo + 1)L

This calculation is certainly correct if ¥, and V, are bounded, but in general it
is not obvious that it is correct even if A, B, C are all bounded operators. This
point was missed in [4], so that the proofs of certain theorems there have gaps.
We show in this section that one does have the bound

I(Ho + Vi )=t — (Ho 4 Vo + )72 < (Al 18I ICl
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under conditions on V; and ¥, of the type considered in this paper. Since we are
interested in situations where B is bounded, we assume that ¥, > 0 and V, > 0
throughout this section.

We handle 4 and C by the following special case of Theorem 6.

LEMMA 12. Let 0 < A < V€9 and let the potential X on Q = RV satisfy
the quadratic form bound

0< X< H,.
Suppose that
[V VI]? < 4e2VEHV + X)
for some O < o < 1. Then
IV(Ho V)Y < (1 —a?)~
Proof. Putting ¥V = W in Theorem 6, we obtain

VAl < VYAV + X))l <

< (1 — &) Y(Hy + VSl

for all f'e Dom(H, -+ V). The inclusion of the condition A > 0 in the hypotheses
ensures that H, -+ V has a bounded inverse.

THEOREM 13. Suppose that 0 < A; < V; €9, that 0 < X < Hy and that
IV Vill? < 4a}VHV, + X)
Jor some 0 < a; < 1. Then
(Ho + Vi)™ — (Ho 4 Vo)l (1 — o) M1 — ad) Y/t — V.

Proof. Instead of trying to justify the formula (13) by careful consideration
of domain questions, we prove the result by a truncation procedure.

If F,(t) is defined as in Lemma 5 then a direct computation shows that
0 < B3F,(1): < F,(1)®
for all 0 € 1 < co. If we put

Vi = F, (V)
then
VVin=F(V)VV;
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SO
“VV;‘."}F < V:3V1%n4at2V?(V: + X) = M?VZH(I + X/Va) <

< 4afVE (L + XV, ) = 4aiVE (Vi + X).
We deduce from Lemma 12 that
WVin(Ho + Vi) M < (1 —af) "L

Since V;,, are bounded, the argument at the start of this section leads without
trouble to the estimate

I(Hy + Vi)™ — (Hy + Vo) "M < (1 — af) 11 — o) Vi3 — Viall
Since the operators on the LHS converge strongly as n — oo, and the operators
on the RHS converge in norm as n — oo, the theorem follows.

In the following variant of this theorem, which yields an even stronger bound
if ¥V, and ¥V, only differ where X is very large, we do not require V, and V,
to be positive.

THEOREM 4. Suppose that X is bounded, 0 < X € Hy, and that W; = X -}
4 Ve 9 satisfy 0 < A, € W, and

VW2 < daiW}
where 0 < a; < 1. Then
(Hy + V1)t — (Hy 4 Vo) M (L — ) "1 — ad) I + V)=t — (X Vo) 7.
Proof. This is straightforward if V; are bounded, since

(Hy + V)™t — (Hy + V3) 7' = A*BC

where
A= W\(H,+ V)7,
C= Wy(Hy,+ V),
B= Wil (Vy— V)Ws' = Wit — Wit
and

1Wi(Ho + V)1l < (1 - af)~?

by Theorem 6. The general case follows by putting V; ,= W, ,— X where
W, .= F,(W;), and letting n - co as before.:



INEQUALITIES FOR SCHRODINGER OPERATORS 191

Note. The condition that X is bounded was only imposed so that V; , would
be bounded, and can probably be eliminated with a more complicated argument.

5. BOUNDS ON THE DIRICHLET LAPLACIAN

In order to make Theorem 6 as powerful as possible, it is desirable to obtain
a variety of potential X on R" such that

0< X< H,.
Since

X(x) = - llx — a2

is such a potential for any a € R? and any 2 < R3 we see that there does not
exist a largest such potential, and indeed that the set of such potentials is not
. directed upwards. One might nevertheless look for potentials X which are simple
in form, and useful in appropriate situations. The potential X which we shall obtain
gives quantitative expression to the idea that the Dirichlet boundary conditions
force H, to be “large’” near the boundary of Q. We start with a slight variation
of a classical inequality.

LemMA 5. If f:[a, b] — C is continuously differentiable with f(a) = f(b) =0

then
CifeE
S"“;’Ex—)z’ dx € Slf’(x) [2dx
where

d(x) = min{[x — a[, |x — b|}.

Proof. One applies the standard uncertainty principle estimate [10, p. 169]
to each half-interval separately.

Now let us consider a general open subregion Q of RY. Given u € RY with
lull =1 and x € Q we define

dy(x) = min{[1]: x + tu ¢ Q}.

If e(1), ..., e(N) is a given orthonormal basis of RN we define
: di(x) = dei)(x).
LeMMA 16. If f € C2(Q) then -
S )P
2 :
4d(x)

i=1
Q

dVx < (Hof,f>

where Hy = — A with Dirichlet boundary conditions.
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Proof. We consider only the standard orthonormal basis of R¥. Applying
Lemma 15 to the integration with respect to x; leads to the formula

(L9 g (.9
4d;(x)* 0x; ’

Q Q

The lemma follows by summing over i.

THEOREM 17. Let the function m(x) be dcfined on Q by

1 1

(14 o~ Yoo 50

e =1
where dS is the standard measure on the unit sphere of RY, normalised to have
total area unity. Then we have 0 < X < H,, where

xm=- N
4m(x)*
and H, is minus the Laplacian with Dirichlet boundary conditions.
Proof. Averaging over all orthonormal bases leads from Lemma 16 to the
formula

NP gn
S i & < R

for all f'e CZ(R). The theorem now results from the fact that CF(£) is a quadratic
form core of H,.

The evaluation of X(x) in the above theorem is only a matter of computing
certain integrals, which may in many cases be directly estimated. The followimg
theorem allows a comparison to be made between m(x) and

d(x) = min{|jx — y|:y ¢ Q}.
Since it is obvious that
m(x) = d(x)

for all x € Q and all regions Q, we seek an estimate in the reverse direction.

We say that the boundary 0Q satisfies a 6-cone condition if every x e 082
is the vertex of a circular cone C, of semi-angle @ which lies entirely within RN\ Q
(many similar but weaker conditions can be treated in the same manner). We let
w(a) denote the solid angle subtended at the origin by a ball of radius « <1
whose centre is at a distance 1 from the origin. Explicitly

sin 1y n/2

o(a) = S sin"~2(r) dt ’/ 2Ssin"‘2(t)dt.
' °
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THEOREM 18. If 0Q satisfies a 6-cone condition then

sin 6
d(x) < m(x) < 2d(x) w—1/2(~~~2_ ")
for all x € Q.

Proof. Let x e Q, y € 02 and
lx — yll = d(x).

If u is the unit vector directed along the axis of the exterior cone C,, then the ball
with centre y -+ d(x)u and radius d(x)sin8 lies within C, and therefore entirely

1
outside U. The solid angle subtended by this ball at x is at least w(’z‘ sinﬂ)and

every line from x within the solid angle meets R¥\\Q at a distance at most 2d(x)
from x. These facts enable one to obtain a lower bound on the integral in (14).

6. LOWER BOUNDS ON THE SMALLEST EIGENVALUE

The whole point of Theorem 17 was that it yields a lower bound on H, which
varies from point to point, and becomes very large near the boundary of Q. Neverthe-
less the theorem easily yields a new lower bound on the smallest eigenvalue of H,
as follows.

THEOREM 19. If H, is minus the Laplacian on L*(Q) with Dirichlet boundary
conditions, where Q is any open subset of RY, then

. N
(15) Hy 2 2;?

where the “‘quasi-inradius’ y of Q is defined by
u = sup{m(x) :x € Q}
and m(x) is given by (14).
NoOTE. Defining the ordinary inradius § of Q2 by
6 = sup{d(x) x e Q}

we see that é and p are of the same order of magnitude in the circumstances of
Theorem 18. We emphasise that the bound (15) does not depend upon any topological
assumptions on £, nor on any regularity property of the boundary dQ. Moreover
unlike most other lower bounds on H,, the one given by (15) decreases menoto-

13 — 2086
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nically as the region increases. If the boundary is suitably regular then u may be
related to the ordinary inradius by Theorem 18, or one of its many variants.

There are many different lower bounds on H, in the literature, for example
{6, 7, 8, 9, 14], and almost all are better in some circumstances than any other. This
new bound is no exception. If N > 2 and Q is any region in R¥, then the smallest
eigenvalue of H, is affected very little by removing from Q a large finite number
of balls, provided those balls have a small enough radius. Similarly the quasi-inra-
dius u is little affected by such a procedure, although the ordinary inradius may be
greatly reduced.

We finally mention that in spite of its crucial importance if N = 2 [6, 8, 9], the
ordinary inradius is of much less significance if ¥ > 3. For exmple, if Q is a unit
ball in R¥ then the inradius can be reduced as much as one likes by removing line
segments from Q, without affected H, or its smallest eigenvalue, because Dirichlet
boundary conditions on submanifolds of codimension >2 have no effect. Thus one
cannot get a lower bound on H, in terms of the inradius alone, even for contractible
regions, if ;¥ > 3. On the other hand the bound (13) is useful in all dimensions.

APPENDIX 1

We draw attention to the fact that a result of Glimm and Jaffe (5] was quoted
incorrectly in Proposition 15 of [4]. If H; > 0 and V > 0 then in order to deduce that

(16) Dom(H, + V) = Dom(H,) n Dom (V)
one needs not

(17) 0 < B2 < (Hy + V)2

for some § > 0, but

(18) 0 < a?HZ + B2V < (H, 4+ V)2

for some « > 0 and B > 0. However this error was not serious in [4] because the
quadratic form inequality proved in [4, Lemma 4] could have been written as

0<H§+(1~ g—)Vﬁs(H.,JrV)z.

In the present paper we have indeed only proved (17), and so are not justified
in claiming (16). This explains the rather unusual care we have taken to obtain all
our bounds by limiting procedures from the case of bounded potentials.
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Note that in the subsequent paper of Simon {12], only the bound (17) was dis-
cussed. In his problem one can deduce (16) from (17) since V is only singular at
x =0, and CZP(R3\0) is a form core of H, on L%(R?).

APPENDIX 2

We have, for the sake of simplicity, assumed throughout the paper that W
lies in a certain class ¢ of functions which are continuously differentiable away
from some relatively closed null set S. For the sake of applications it is worth noting
that the continuity of the partial derivatives can be replaced by a requirement that
the weak (distributional) partial derivatives of W are functions which are locally
bounded away from S. In Lemma 1, for example it is sufficient that W be continuous
with weak partial derivatives which all lie in L®(Q). All the main results of the paper
can be modified in an obvious manner, with the occasional necessity of interpreting
inequalities as true almost everywhere in Q\S instead of everywhere.
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