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ON THE STRUCTURE OF (BCP)-OPERATORS
AND RELATED ALGEBRAS. II

GREG ROBEL

1. INTRODUCTION

In this paper, we extend the methods and results of Part I [6] to a context
first explored by B. Chevreau, C. Pearcy, and A. Shields in {3]. The results of
Part 1 may be regarded as statements about the ultraweakly closed algebra gene-
rated by a (BCP)-operator (together with the identity operator). Here we study
certain analogous algebras generated by several operators.

This paper proceeds from the general to the particular. In the next section
we show how the techniques from Part I can be adapted to the study of a class
of representations of H*(G),for G a bounded domain in the complex plane. Since
the development proceeds very much as in Part I, most proofs are only sketched,
or omitted. We also prove that the range of such a representation is a refiexive
algebra, by adapting the argument given by H. Bercovici, C. Foias, J. Langsam,
and C. Pearcy in [1] to establish the reflexivity of operators of class (BCP).

In Section 3, we specialize to the case of certain particular domains G which
we call circular domains. For an operator suitably related to such a domain G,
Chevreau, Pearcy, and Shields constructed in [3] an A*®°(G)-functional calculus to
which the analysis of Section 2 applies. Moreover, the range of this functional
calculus is precisely the ultraweakly closed algebra generated by the operator to-
gether with several specific rational functions of it. We point out that two special
cases of this situation are the ultraweakly closed algebras generated by certain
polynomially bounded operators (in which case G is the open unit disc D), and the
ultraweakly closed algebras generated by T and T-! for certain invertible opera-
tors T (in which case G is an annular region contained in D). We give an example
of a weighted bilateral shift operator of the latter type.

In the final Section 4, we return our attention to the class of (BCP)-operators,
and make some concluding remarks which for reasons of space were not included

in Part I.
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2. REPRESENTATIONS OF H®(G)

In general, we continue using the notation of Part I. Thus, # denotes an infi-
nite-dimensional, separable, complex Hilbert space, and #(3#) is the algebra of
all (bounded, linear) operators on #. For any bounded domain G # (J in C, let
H®(G) denote the Banach algebra of all bounded analytic functions on G, under the
supremum norm. A subset A of G is said to be dominating for H®(G) if .f, ==
=)§2/11) 1f(7)] for every fe H™(G). The space H®(G) may be regarded as a subspace

of L*(G), where G is endowed with Lebesgue area measure. The space L®(G) car-
ries a weak* topology as the dual of L*(G), and H*(G) is in fact weak* closed in
L>(G). A sequence in H®(() converges weak™ to zero if and only if it is bounded
and converges pointwise to zero on G. Hence, for each / € G, the point evaluation
S f(4) is weak* continuous on H®(G) (note that H*(G) is the dual of a separable
Banach space). For these facts, we refer to [7].

Throughout this section, let G @ be a fixed bounded domain in C, let f; €
€ H®(G) be the position function f,(%) = 2, and let &: H*(G) — L () be anorm-
-continuous, unit-preserving algebra homomorphism. We set T - &(f;). We make
the following two standing assumptions:

(2.1) 6,,(T)n G is dominating for H®(G), and
(2.2) If asequence f, » 0 weak®in H®(G), then &(f,) — 0 in the strong (equi-
valently, ultrastrong) operator topology.

Set o7 = P[H™(G)]. As shown in [3], & is ultraweakly closed, and ® is a
weak” homeomorphism of H®(G) onto 7. Let Q = (zc)/*«/; then the bilinear
form (A, [K]) = tr(4K) on 7 X allows us to identify &/ as the dual of Q. For
any / e G, the map 4 — [®#-1(4)](/) is a weak* continuous linear functional on .=/,
and hence corresponds to an element of , which we denote by [C,].

Choose, once and for all, a countable dense subset A = {4} of ¢, (T)NG.

Note that A is obviously dominating for H*(G). The following is proved in the same
way as [3, Lemma 3.7].

LeEMMA 2.1. The closed, absolutely convex hull -Z;EO—{[C;.]ZA € A} contains the
closed ball in Q, centered at the origin, of radius ||®||~*.

The following lemma is a combination of Lemmas 3.4 and 3.5 of [3].

LEMMA 2.2. Let /.€ 6,(T) N G, and let {x,} be an orthonormal sequence in
H such that (T — 2)x,l] — 0. Then for any vector y € ¥,

(A) lix, ® ylll, = 0, and

(B) Iy ® xdll, = 0.
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REMARK. In the present situation, as shown in [3], conclusion (B) holds for
an arbitrary orthonormal sequence {x,}. I '

The next result is part of [3, Lemma 3.3].

LeMMA 2.3. Let Jeo,(T)n G and let {x,} be an orthonormal sequence in
H such that (T — Vx| = 0. Then ||[x, ® x,} — [C;.]”Q - 0.

As in Part I, we can construct a family of mutuvally orthogonal ‘“drawers”
D;={e k,n2 1} (L,j=z1)
of orthonormal sets in 3 such that
(21 T — ) et -0 asn—oo
for each i,j,k = 1, and
(22) el ) @ ex "1ll, >0 asn—o0

for each 7, j > 1, whenever k # L.
Again as in Part I, we set 4, = V D;;and S = V.

We now proceed just as in Sectlon 3 of Part I. One difference here is the appear-
ance of the quantity [[@|| in Lemma 2.1. This necessitates very minor modifica-
tions, so that, via the analogues in the present context of Lemmas 3.9 and 3.10
of Part I, we obtain the following.

THEOREM 2.4. Let N > Oand let u;, v;e #,[L;;leQ (L <i,j < N). Let >0
and let

d; = {|[u; ® v;} — [Lij]” -
Then there exist uj, v; € # such that for all i and j ,

[u; ® UJ,] = [Lij] ’

N
lu; —will < |@IF2 Y, diff + ¢,

=1

and

N
lo; — oll < [I@I'2 Y, di® + 5.

i=1

Moreover, we can arrange it so that uj — u; € 4 ; and v; — v, M’ .
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We now can apply the same inductive constructiou as in the proof of Theo-
rem 3.12 of Part 1 to obtain the next result.

THEOREM 2.5. Let [L;;]€Q (i,j > 1) and assume that

Y ”[Lij]ﬁ:/2 < oo foreachi,

a1

and

H[L i1 l"0 < oo foreachj.

118

Let ¢>0. Then there exist u; € A ; and v; e M such that for each i,j > 1, we have

[u;@v;] = [Lij] >

lull < Lol 2 ML+
and
0 O R
lo;ll < ll<1>ll”~i§1 LY + o

As in Part I, we obtain the following.

Tueorem 2.6. Let [L;;1eQ (i,j = 1). Then there exist orthogonal sequences
{x;} and {3;} in A such that [x; ® ;] = [L;;] for all i and j.

We have now obtained analogues of the results of Section 3 of Part I.
Henceforth, we abjure the use made previously of the symbols .#; and .#/. Tke
analogue of the main result of Section 4 of Part 1 goes as follows.

THEOREM 2.7. Let %y, ..., ay be distinct clements of G. Then there exist
invariant subspaces 4 and A for the algebra </, with 4 > A, such that for each
J€ H®(G), the compression D(f)yo, Is similar (via a fixed similarity) to
f) @ ... @ fay) where each f(a) acts on an irfinite-dimensional space.

Proof. Let {1;} be a sequence from {oy, ..., 2y} in which each « occurs infi-
nitely often, and let {x;} and {);} be sequences in # for which [x; ® y;] -= 0lCs ],
where J;; is the Kronecker delta. We set

M= V{Ax; A et i> 0},

My == N{A%y;:Aesd, j> 0},
and
N =t © ..
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The rest of the proof consists of verifications like those in the proof of the anale-

gous earlier result. 7

With one exception, the density theorems in Part], Section 5 carry over
with no additional hypothesis. The exception is that for the analogue of Part I,
Corollary 5.5, we require that 0 € G. For the interpretation of these density results,
we must bear in mind that the members of  carry information about the entire
algebra «, which is likely to be much larger than just the ultraweak closure of the
polynomials in T. For example, we have the following.

ProposiTiON 2.8. The set of vectors x € for which # © [&x]~ is infinite-
-dimensional, is dense in .

Also, the remark made at the end of Section 5, Part 1 concerning counterparts
of the density theorems in which the roles of x and y are interchanged, is of special
relevance here because the present situation (unlike that in Part I) is not symmetri-

cal with respect to passing to adjoints.
The same techniques used in Section 6 of Part 1 yield the following resuit.

THEOREM 2.9. There exist imariant subspaces 4, (i€ Z) for the algebra o,
such that for each i, A;> M,y and alc(TJ,io,‘,,iH) NG is dominating for
H®(G), ({M;:icZ}={0}, and V{Al; i€ ZL}=H.

REMARK. In Part 1 we obtained the analogue of the previous result by using
Proposition 6.2 of that paper to obtain the .#; for i > 0, and we then obtained
the J; for i < G by applying the same proposition to T'*|# © .#,. Since the
present situation is not symmetrical with respect to adjoints, a word of explanation
is required. The passage to 7 | € © .#, was merely a technical device to streamline
the proof of the earlier result. It is a straightforward exercise to translate into the
“language of T’ the conclusion of Proposition 6.2 of Part 1 applied to T'*, and this
assertion can then be proved (in the “language of 7°°) using the same techniques
as in the proof of the proposition. This approach carries over without difficulty
to the present situation.

Notice that if for each i we define

Pf) = P()ao,,, for feH2(G),

then we obtain a representation of H*(G) on each #; © 4 ,,, which has all the
same properties we have assumed of &.

The proof of the following result is closely modelled on the proof [1] that
{BCP)-operators are reflexive.

THEOREM 2.10. The algebra <7 is refiexive.
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Proof. Recall that the assertion that & is reflexive means that Alg(Las «7}) /.
where Alg (Lat (&) is the algebra of all operators on & which leave invariant excia
subspace in the lattice Lat(sZ) of invariant subspaces of the algebra «&7. Let i<
€ Alg(Lat(s7)). As in [1], it suffices to show that whenevern > 0, u;, v; € (1 < ¢,

n n

J<n)and ¥ [u;®v] =0, we have that ¥} (4u;,v;) == 0. Clearly we may
i—=1 i=]1

assume thatn > 1, and it suffices to show that for any ¢ > 0, there exist #} and : in

A (1 < i, j < n) such that {u; — u;ll < e and ;[ v; — v;|l < ¢ for alliand j, and

n
Y. (dui, vi) == 0. By Lemma 2.1, we can approximate each [#; ® t;] arbitrarily vielf
LR

NG, j) , . . .
by a sum of the form )Y ol [Czi’f] , where the af/ € C and the 2§/ € G. We sct
=1 k
NG ] .
{Lij] = Y, %’ [C, ;] for all pairs (7, ) other than i =j-=n, and we set [L,,] ==
k=1 §3

n—1

= — Y [L;]. We then have that }} [L;] =0, and we can ensure that cach
ie=1 i:=1

Hu; ® v;] — [Ly;]lig 1s as small as desired. Therefore, applying Theorem 2.4, we

can obtain u;, vj e # such that [u; ® vj] = [L;;] and "u; — u;ii < ¢, ] — v < ¢

for all 7 and j. To complete the proof, we need to show that ¥ (4w}, v;)=0. Since
i=1

Z ESEARE ¥ [L;;] = 0, we have, in particular, that Y} (q(T)u}, tt) =0 for
i=1 i1 i=1
ali polynomials ¢. Hence it suffices to show that for some polynomial g, we have
(Au}, v}) = (¢(T)u;, v;) for all i and j.

To this end, we set

M= N{Buj:Be L, i=1,...,n},

M, == V{B*vj:Besd,j1,...,n},

and

N =M O .

Clearly, .# and A are in Lat(&/), and .# > 4. If p is the monic polynomial with
simple zeros precisely at the 2/, then a simple computation shows that
MT 404 ) =0. Therefore, by Part I, Proposition 4.1, T, is similar to a
diagonal operator with eigenvalues A% /. It follows easily from this that 77 4e - is
reflexive. We claim now that the algebra

A gour = {ds(f)mow :fe Hw(G)}
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consists of the polynomials in T 4o . This.follows from the fact that if x e /O,
Tyepx = 2Ax (Ae@G),and if fe H®(G), then D(f) gorx = f(1)x. (To see this, write
SO =f(4) + ( — 2)g(l), where ge H®(G), by virtue of [3, Proposition 2.1].
We then have @(f) 45 4% =f(D)x -+ P(@uor(Tyor — A)x =f(7)x.) The proof is
now concluded thusly, as in {1]: since (the algebra of polynomials in) T ,o, is
reflexive, we obtain (since 4 4o € Alg(Lat(sf 45,4))) that 4 45 is a polynomial
in T 4o.r, and from this the result follows. %,

REeMaRK. One may wonder at the lack of symmetry in this section, with respect
to adjoints. It is true (just as in Part I) thatif e o (T) n G and if {x,} is an ortho-
normal sequence in # such that [|[(7% — A)x,[| — 0, then ||[x, ® x,] — [C)lllqg — O.
(The proof of this is, mutatis mutandis, the same as that of Part I, Lemma 3.6(B).)
The difficulty here is to obtain conclusion (A) of Lemma 2.2. However, if we replace
in condition (2.2) the strong operator topology by the strong* topology (in which
adjunction is continuous), then by applying (the remark following) Lemma 2.2(B)
both to @ and to its obvious “conjugate” @,, (defined on H*(G,), G, = {1 : 1€ G},

by ®.(f) = &(f,)* where f, (1) = fﬁ)) we obtain that both of the conclusions of
Lemma 2.2 hold for any orthonormal sequence {x,} in . Therefore, we may
teplace conditions (2.1) and (2.2) by

2.V') ¢.(T)n G is dominating for H*(G),
and

(2.2") If a sequence f, — 0 in H®(G), then &(f,) — 0 in the strong* (equivalentiy,
ultrastrong®) topology,

and we may then develop all of the above theory in this context.

3. AN APPLICATION: THE CASE OF CIRCULAR DOMAINS

By a circular domain, we shall mean either the open unit disc D, or a domain
of the form D\ D;, where Di = {¢eC:|¢& — & | < r;} « D and the Dy are
i=1

pairwise disjoint. Recall that a compact set X < Cis called a K-spectral set for an

operator T'e€ #(#) in case 6{T) = X and for every rational function f with poles

off X, |f(T)|] € K sup|f(4)]. Let G be a circular domain, and let T e L(H#).
rex

Assume that

(3.1) G~ is a K-spectral set for T, for some K > 0,
(3.2) 6,(T)n G is dominating for H*(G),

and

(3.3) The powers of T'and (in case G D) each of r;(T—&;)~* tend strongly to 0.
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Then Chevreau, Pearcy, and Shields constructed in [3] an H*(G) functional cal-
culus @: H®(G) — L(H) for T satisfying the conditions assumed in the previous
section. Hence all of the analysis of that section applies to the algebra &/ = S[H®(G 1.
Moreover, </ is precisely the ultraweakly closed algebra generated by I, T, and the
(T-- &),

In particular, if G = D, then the assumptions are that 7" is a polynomially
bounded operator whose powers tend strongly to 0, and for which ¢, (T)nD is
dominating for H*(D). Thus we obtain, for example, the following result, which was

announced in {1].

THEOREM 3.1. If T is a polynomially bounded operator whose powers tend
strongly to 0, and for which o,(T) 0D is dominating for H®(D), then (the ultra-
weakly closed algebra conraining I generated by) T is reflexive.

Another special case of the present situation occurs in the following way. Let
T e £(H#) be invertible. Recall that the norm annulus N(T) is defined by

N(T) == {Se C:[ T~ < & < T}

if the interior N(4)? is nonempty, then, by [8, Proposition 23], N(T) is a K-spectral
set for 7', for some K > 0. We assume (without loss of generality) that 77} == 1.
Hence, if T is invertible, N(T')°# @, 6,,(T) 01 N(T)? is dominating for H*[N(T)"},
and if the powers of each of T and {jT-1jj-T~! tend strongly to 0, we obtain the
following result, among others.

THEOREM 3.2. Under the foregoing asswmptions, the ultraweakly closed alge-
bra generated by I, T, and T~ is reflexive.

ExaMPLE. We show here that the preceding theorem applies to certain weight-
ed bilateral shifts. Let {e,:#n € Z} be an orthonormal basis for #, and let {w,: n e
€ Z} be a bounded family of scalars. The operator T on # defined by requiring
that Te, = w,e,,, (for all ») is the (weighted) bilateral shift with weight sequence
{w,}. Clearly, || T} = sup)w,|, and such an operator is invertible if and only if the
weights are bounded away from zero, in which case {|T-2|| = supiw, }.

Using the uniform boundedness principle, one readily sees that 7" — 0 strongly
if and only if

E+N
(3.4) II w. >0 as N - oo for each k,
n=k

and

k+N
(3.5) {H w,okeZ, Nz 0} is bounded.

n=k
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Moreover, note thatif w, = w,.; = ... ==w,, y =aforsomeacC, neZ,
and N > 0, and if

n+-N
x=(N+1D"2'Y e,

k=—n

then [|x|| = 1 and ||(T — a)x|| = V2(NV + 1)~1/%a].

Finally, recall that A € 6, (T) (for any T € £ (3#)) if and only if there exists an
orthonormal sequence {x,} in # such that [|(T — A)x,|| - 0.

Let G be, for example, the annulus {£ € C:1/2 < |¢| < 1} and let {a,} be a
dense sequence in G. Let {w,:n > 0} be a sequence in G in which each a, occurs in
arbitrarily long “strings’” (of consecutive w’s). Let w, = 1 for n < 0. Then it is easy
to check, using the remarks above, that N(7) = G~, and that assumptions (3.1)—
-=(3.3) hold for this T and G. (We have that ¢,(T) = G™.) Hence we have con-
structed an example satisfying the hypotheses of Theorem 3.2, and it is clear that
this construction can be varied to obtain many such examples.

REMARK. By the remark at the end of Section 2, and by Theorem 7.2 of [3],
we may replace “o,,”’ by “¢.” in condition (3.2), provided that we also replace the
strong operator topology by the strong® topology in condition (3.3).

4. SOME REMARKS CONCERNING (BCP)-OPERATORS

We conclude by making some observations relating to the following example.
Let & be an infinite-dimensional Hilbert space, let 2 =/%(%) be the space of all
square-summable sequences (indexed by Z*) in &, and let V be the (forward) uni-
lateral shift in #. Since each point of D is an eigenvalue of V'* of infinite multipli-
city, and since V*" — 0 strongly, it follows that ¥ and V * are of class (BCP).

(1) Let ae %, |lall=1, and let y =(a,0,0,0,...)€5# and x,=(0, ...
...,0,a,0,...) e (with a in the n-th position). Then

Iy @ xllle 2 [ (Vy, x,)| = |lal® = 1.

This shows, as remarked after the proof of Part I, Lemma 3.4, that the con-
clusion of that lemma need not hold for an arbitrary orthonormal sequence {x,}.

(2) An infinite-dimensional subspace need not contain an invariant subspace
for V. (Consider the subspace consisting of all vectors in # whose even-numbered
components vanish.)

This observation forecloses one obvious strategy for attempting to produce
two disjoint invariant subspaces for operators of class (BCP). One can also easily
translate this problem into “[x ® y] language”, but that doesn’t seem to be of much
help, ceither.
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One reason for interest in the question of the existence of two disjoint inva-
riant subspaces stems from the following results. Foiag, Pearcy, and Sz.-Nagy, in
[5], showed that the existence of invariant subspaces for a broad class of operators
would follow from an affirmative answer to the question:if T is an invertible (BCP)-
-operator, does there exist an invariant subspace which T maps onto itself? On
the other hand, Bercovici, Foias, and Pearcy showed, in an early version of [2].
that for any such operator 7, either such an invariant subspace exists, or there is a
pair of disjoint invariant subspaces. So one would like to know whether one or
both of these alternatives always hold true.

(3) For a (BCP)-operator T, the lattice Lat(T) of invariant subspaces of T
need not contain a pinch point.

R. Douglas and C. Pearcy, in [4], defined a pinch point of a lattice to be a
member of the lattice which is comparable with every other member. They then
showed that a pinch point of Lat(7') is hyperinvariant for T. Hence the existence of
(nontrivial) pinch points would settle the question raised in the second remark.

However, a pinch point of Lat(T) would be a fortiori a pinch point of the lat-
tice of all hyperinvariant subspaces for 7. Douglas and Pearcy also showed in [4}
that the lattice of all hyperinvariant subspaces of the unilateral shift (of any multi-
plicity) is isomorphic to the lattice of all inner functions in A*°(D). This obviously
has no pinch points.

Even more is true. Using the reflexivity theorem of Bercovici, Foias, Langsam,
and Pearcy [1], one can show that Lat(7') never has a pinch point, for any (BCP)-ope-
rator 7.

Acknowledgement. The auihor wishes to thank again those mentioned in the
acknowledgements of Part 1.
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