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SOME REMARKS ON LOCAL SPECTRAL THEORY

E. ALBRECHT and R. D. MEHTA

1. INTRODUCTION

There are several possibilities to obtain a “‘local’” spectral theory for a bound-
ed linear operator T on a (complex) Banach space X. For example, one may con-
sider a suitable unital closed subalgebra of of #(X) (the algebra of all bounded linear
operators on X) or of the Calkin algebra Q(X) := Z(X)/#°(X) such that T resp.
T -+ A (X)is an element of . If o is semi-simple then this algebra &/ can be repre-
sented as an algebra of vector valued functions (in the sense of G. R. Allan [8))
over the compact Hausdorff space M, of all extendable maximal ideals of some
unital central subalgebra Z of &/, where Z is endowed with some norm |-|, such
that (Z,]-],) is a Banach algebra. We refer to [8] for more details. This method,
which gives a local spectral theory for T in the framework of Banach algebra
theory, has been successfully applied to the study of Toeplitz operators, Hankel
operators, and others (see for example [17, 18, 19, 30, 31]).

Another kind of local spectral theory is obtained if one considers the spectral
decomposition properties of T with respect to the underlying Banach space X.
We refer to the monographs [14, 22, 35] for this “spatial’® local spectral theory.
Recall [14, 3] that an operator T e #(X) is decomposable if and only if for each
open covering {U,, U,} of the complex plane C there are closed invariant subspaces
Y, Y, for T with X = Y, 4+ Y, and such that the spectrum sp(T, ¥;) of T/Y; is
contained in U; (j = 1,2). This class of operators is rather large. It contains the
class of spectral operators (in the sense of [22]), the class of Riesz operators and more
generally the class of W-decomposable operators in the sense of 1. Colojoard and
C. Foias [14]. However, there are some important operators of mathematical ana-
lysis such as Toeplitz operators with continuous (or more general with quasicon-
tinuous) symbol which are not decomposable in spite of the fact that they have
rich functional calculi modulo the ideal of compact operators. Therefore, a *“‘spa-
tial”’ local spectral theory modulo #°(X), i.e. for elements of Q(X) seems to be of
some interest. In order to introduce such a theory we have to represent Q(X) as
an algebra of bounded linear operators on some suitable Banach space. A canonical
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construction of such a representation has already successfully been used in the

Fredholm theory (ctf. [13, 23]). Denote by £*°(X) the Banach space (or the normed

space, if X is only normed) of all bounded sequences x == (x,)°, of elements

of X, endowed with the norm |||l given by |Ixl, 1= sug[l,\-,,“ and write T
€

for the operator induced by 7 on /®(X) (defined by T x:=(Tx,)?, for

x == (xX,)2., € (2(X)). The set pc(X) of all precompact sequences of eclements
of X is a closed subspace of /*(X) which is invariant for T,,. We write
X, :=£2(X)/pc(X) and denote by T, the operator induced by T, on X,. The
mapping T — T, is a unital homomorphism from Z£(X) to £(X,) with kernel
A'(X) and induces a norm decreasing monomorphism from Q(X) to £(X,)
(see [13] for details).

Let us remark that for Hilbert spaces H this induced monomorphism is even
an isometry. Indeed, if T is an arbitrary operator in £ (H), then

7% + A (H)bgany || T + A (Hllgusy == | T*T + A (H)'rny =
= r(T*T + A (H)) < r(T*T),) < [(T*T),k <
< (Tl N T < NT* + A (H)lgany - | T

which implies | T+ # (H)ligay < ||T,|l. Here, r denotes the spectral radius.

If X is again an arbitrary Banach space, then an operator 7€ #(X) will be
called essentially decomposable if T, is decomposable. As we shall see, this class
of operators contains the class of decomposable operators, the class of
Toeplitz operators with quasicontinuous symbols and many other operators.

This paper is organized as follows: In the following part we include some
elementary properties of the functor ¢ and some related functors. Especially, we
prove that each decomposable operator is essentially decomposable. In the third
section we prove some decomposability criteria using the above mentioned Banach
algebra localization methods. This has application to matrices of U-decomposable
operators and is related to questions considered in [9, 14, 21, 22]. In the fourth sec-
tion we give some first applications of the *“‘essential’’ local spectral theory, and the
last part contains a characterization of local type operators.

2. SOME BASIC PROPERTIES OF THE FUNCTOR ¢

Let T: X — Y be a continuous linear operator. As before, 7 induces a bounded
linear operator To,:£2(X) —£°(Y) with T, (pc(X)) < pc(Y). Thus, the operator
T,: X, - Y, defined by T (x 4+ pc(X)) := (Tx,)721 + pe(Y) for x == (x,)7° 1 €/°(X)
is a bounded linear operator. Moreover, || T, < | T1.

2.1. LEMMA. For a bounded linear operator T: X — Y are equivalent.
(@) The range R(T) of T is closed.
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(b) For each precompact sequence y = (Tx,)?.4 in R(T) there exists a precom-
pact sequence u = (u,)X.; in X with Tou=7y and we have (x,+ N(T))>., e
€ pe(X/N(T)), where N(T') denotes the kernel of T.

(© N(T,) = (£*°(N(T)) + pe(X))/pc(X).

(d) R(T,) = (¢*°(R(T)) + pe(Y))/pe(Y).

(e) The range of the transposed operator T' € L(Y', X') is closed in X'.

Proof. The equivalence of (a) and (¢) is well known. We shall prove (a) = (b) =
= (c) = (a) and (a) = (d) = (e).

““(a) = (b)” If R(T") is closed then R(T) is topologically isomorphic to X/N(T)
by means of x + N(T)~ Tx for x e X. Since it is well known that precompact
sequences in a quotient space admit a precompact lifting (as they are contained in
the closed convex hull of a null sequence), we obtain (b).

“(b) = (¢)” From the definition of T, we conclude that

(#=(N(T)) + pe(X))/pe(X) = N(T)).

Assume now that (b) holds and fix an arbitrary x = (x,)2%., + pc(X) € N(T,).
Then (Tx,,),, 2.1epc(Y) so that by (b) we find u = (4,)2,€pc(X) such that
T(x, — u,) = 0 for all n e N. Clearly y:= (x, — u,)>, €/®(N(T)) and hence

x =y +u + pe(X) € (/2(N(T)) + pe(X))/pc(X).

This proves (c).

“(c) = (a)” The mapping S: X/N(T) -» Y given by S(x -+ N(T)) :=Tx
for x € X is injective and satisfies R(S) = R(T"). Assume now that (c) holds and
that R(T) is not closed, i.e. that S is not-bounded from below. Then there exists a
sequence (x, -+ N(T)2., in X/N(T) with S(x, + N(T)) = Tx, -0 for n - oo
and |[x, 4+ N(T)|} = 1 (in X/N(T)) for all ne N. As the sequence (x, + N(T))2., is
bounded in X/N(T) we can find a sequence u = (&,)2; € £*°(X) such that Tx, =

: Tu, for all n e N. Because of Tu, — 0 for n — co we have u + pc(X) € N(T).
By (c) we find sequences v = (v,).1 € £°(N(T)) and w = (w,)°., € pc(X) with
2 == v 4+ w. Therefore, Tw, = Tv, + Tw, = Tx, — 0 for n - 0o, w has a conver-
gent subsequence (Wn )ia with limit a € X. Then Ta = limTw, =0 and thus

k- oo

@ € N(T). This shows that w, -+ N(T) - 0 in X/N(T) for k — oo in contradiction
to [{wy, + N(T)|| = |[x4, + N(T)||=1in X/N(T) for all k € N. Hence (c) implies (a).
“(a) = (d)”” Assume that R(7T) is closed. From the definition of 7, we con-
clude that R(T,) = (¢°(R(T)) + pc(Y))/pc(Y). Conversely, if y=(Tx,)21 €((R(T)),
then by the opsn mapping theorem there is a bounded sequence w = (#,),; in X
with Tou = y. Hence, y 4 pc(Y) = T(u + pe(X)) € R(T,) and (d) is proved.
“(d) = (e)” Suppose that (d) holds and assume that R(T") is not closed.
Then there exists a sequence )’ = (¥ in Y’ such that ||y, + N(T)| =
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=dist(y,, N(T")) = 1 for all ne N and such that T'y, — 0 in X’. The sequence
(rn + N(T")2., is bounded in Y’/N(T’) and hence has a bounded lifting so that,
without loss of generality, we may suppose that y' e £°(Y’). Let us now prove
that y' ¢ pc(Y’). Indeed, if 3’ € pc(Y’) then ' would have a convergent sub-
sequence (y,’,j)j?‘;l, y,',j —a' €Y for j »o00. But then 0 =1m7T'y, = T'a’, so

j-+00 J
that @’ e N(T’) in contradiction to dist(y,’,j, N(T')) =1 for all jeN. Now also

n + N(T")P.1 ¢ pe(X'/N(T")), otherwise we could find a precompact lifting and
we just proved that this is impossible. Hence, there exists an ¢ > 0 and a sub-
sequence (y,’,k .1 of ¥ such that

[Yne— v +N(T) > ¢ for all k,m eN with k # m.

Furthermore we have R(T)* == N(T”) and therefore an isometric isomorphism form
R(TY onto Y'/N(T’). Hence there are x; ,, € X with ||Tx, ,|| < 1 such that

’ ’ €
(l) E<ynk — y"m’ Txk_ m>{ Z '"‘2—

(k, me N, k # m). By (d) there exist u, ,€ X, v, ,€ Y fork,meN, k # m, such
that Tx, = Tth p + Ux > SUP{|lth mll; k,meN, k # m} < oo, and such that
the double sequence (v, ,) is precompact. The functions y,’,k are equicontinuous and

uniformly bounded on the compact set K := {v; |k, me N, k # m}, so that by
the Arzela-Ascoli theorem there exists a subsequence (yj,k .1 which is uniformly

convergent on K. Hence there is some N, € N such that

! 7 8
@ Kya, = o B 1 < 3

forallr, p > N, with r # p. On the other hand there exists some N > N, such that
for all r,p > N we have

’ ’ 11 ’ &
(3) I<y"kr - ynkl’, Tukr’ kp>| - I<T (ynkr B ynkp)’ ukr, kp>| < ->6 h

Here we used T 'y,’,k — 0 for r - oo and the fact that the double sequence (uk" kp)

is bounded. From (1), (2), and (3) we now obtain the contradiction % < —;— -+
+ Z— = -g— Hence T’ must have closed range.

Our first corollary of 2.1 may also be proved by means of [23].



LOCAL SPECTRAL THEORY 289

2.2. COROLLARY. Let Y be a closed subspace of the Banach space X. Then
Gx(Y) :=((Y) + pe(X))/pe(X) is a closed subspace of X, which is topologically
isomorphic to Y,. Moreover, if T € £(X) such that Y is invariant for T then gx(Y)
is invariant for T, and sp(T,, qx(Y)) < sp (T, Y).

Proof. Let m: X — XY be the canonical epimorphism. By 2.1 ((a) = (c)) we
obtain N(7,) = (/®(Y) + pc(X))/pe(X) = gx(Y) (because of N(m) = Y). Hence gx(Y)
is closed. Moreover, if Y is invariant for T e £(X), then obviously Y, is invariant
for T,. If z ¢ sp(T, Y) then zI — T|Y and therefore also (z — T),|gx(Y) is sur-
Jective. I (p,)7%.1 + pe(X) € N((z] — T)ylqx(Y)) with (y,) € £2°(Y) then (zI—T)y,);2.. €
epc(X)n £2°(Y) = pe(Y). Hence, because of y,=((zf — T)| Y)~Y(zI — T)y,)
for all n € N and because of the continuity of ((z/ — 7)| Y)~! on Y we conclude
that (y,)32.1 € pc(Y) < pe(X). Therefore (zI — T),lqx(Y) is invertible and 2z ¢
¢ sp(T,, qx(Y)). Finally, the mapping defined by y + pc(¥Y) — y + pc(X) for ye
€{*(Y)is a continuous isomorphism from Y, onto gx(¥) which must be topological
as gx(Y) is closed.

In the last section the following corollary will be needed:

2.3. COROLLARY. Let X and Z be Banach spaces and let 'Y be a closed linear
subspace of Z. Then there is a constant C = C(Y, Z) > 0 such that for all Te (X, Y)
we have || T, || < C-||(jo T),li wherej : Y — Zis the canonical inclusion mapping.

Proof. By Corollary 2.2 there exists a constant C = C(Y, Z) > 0 such that
for all y = ()., €£°(Y) we have

Iy + pe(Nlly, < Cily + pe(D)lz, -
Hence, for all x = (x,)2., €/%(X) and all T e £(X, Y) we have

1T,0x + peCOly, = I(Tx)21 + pe(Dlly, <
< Cl(Tx)E + PoDllz, = (1G> Tylx + pe())llz,
and the result follows.

2.4. CoroLLARY. ([13], Theorem 2). For a bounded linear operator T: X — Y
are equivalent:

(@) Te ¢, (X,Y), i.e. R(T) is closed and dimN(T) < co.

(b) T, is injective.

(c) T, is bounded below.

Proof. 1) 1f T € ¢ (X, Y) then, by 2.1 and 2.2, R(T,) is closed and N(T) =
== (({®(N(T)) + pe(X))/pe(X) is the nullspace, as £2°(N(T)) = pc(N(T)) = pe(X)
because of dim N(T) < co. This proves that T, is injective and bounded below.

2) Obviously (c) implies (b). Suppose now that 7, is injective. Because of
(£=(N(T)) 4+ pe(X))/pe(X) = N(T,) this implies /°(N(T)) < pc(X) and therefore
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dimN(T) < co. Moreover, by 2.1 ((c) = (a)), R(Ty is closed and therefore
Tep,.(X,Y).

2.5. COROLLARY. [24]. For a bounded linear operator T: X — Y are eguivalent:
@) Teop_(X,Y), i.e. R(T) is closed and of finite codimension in Y.
(b) T, is surjective.

Proof. Suppose that T e ¢_(X, Y). Then there exists a finite dimensional sub-
space M of ¥ such that Y == R(T) @ M topologically. We then have
i
(*(Y) = ¢2(R(T)) +£2(M) ={((R(T)) + pe(M) =

< (2(R(T)) + pe(Y) < £2(Y),
as dim M < oo. Hence, by 2.1 ((a) = (d)),
R(T,) = (£*(R(T)) + pe(Y))/pe(Y) = ¥,
Conversely, suppose now that R(T,) = Y,. Then
@) Y, = R(T,) < (£2(R(T)) + pe(Y))/pe(Y) < ¥,

From 2.1 ((d) = (a)) we conclude that R(T) is closed. We still have to prove that
dim Y/R(T) < co. We prove this by showing that /*(Y/R(T)) = pc(Y/R(T)). For
that take an arbitrary bounded sequence (y, + R(T))2., in Y/R(T). This can be
lifted to a bounded sequence in Y, so that we may suppose from the beginning that
¥ = ()P €£€°(Y). Because of (4) there are sequences (Tu,)y.,€¢™(R(T)) and
v = (v,)P.1 €pe(Y) such that y = (Tu,)?, + v, so that (¥, + R(T)P 1 (v, +
-+ R(T)P ., is precompact in Y/R(T).

2.6. COROLLARY. [13]. A bounded linear operator T: X — Y is a Fredholm oper-
ator if and only if T,: X, — Y, Is invertible.

2.7. COROLLARY. Every decomposable operator is essentially decomposable.

Proof. Let T'e £(X) be decomposable. Consider an open covering {U,, L5}
of C. Then by the decomposability of T, there exist invariant subspaces X;, X, of T
such that X == X; + X; and sp(7, X)) « U; (j=1,2). Then /®(X;) (j=1,2) are
closed subspaces of £°(X). By applying the open mapping theorem to the natural
map from X; @ X, — X, we get £2(X) = £2(X,) + /2(X;). Then by 2.2, gx(X))
are closed subspaces of X and sp(7,, gx(X})) = sp(T, X;) « U; (j = 1,2). Also

Xy = £2(X)/pe(X) = (£2(Xy) + £2(Xy))/pe(X) ==

== [(£2(X) + pe(X))/pe(X)] + [(£2(Xy) + pe(X))/pe(X)] = gx(X1) + gx(Xo).

Hence T, is decomposable i.e. T is essentially decomposable.
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iIf Te #(X), then for each open set Q in C, a mapping an(T): H(, X) -
- H(Q, X) (the space of X-valued analytic functions on ) is given by

(@o(T)g) (2) 1= (z — T)e(2)

for g e H(Q, X), z € Q. Recall that T has the single valued extension property (SVEP)

if and only if ao(T) is injective for every open 2 in C. We say that T e £(X) has
the essential SVEP if T, has the SVEP.

2.8. REMarRK. The class of essentially decomposable operators is strictly
larger than the class of decomposable operators. For let 7 be the adjoint of the uni-
lateral shift on H=/*N). Then T is essentially decomposable as T + #'(H) and

hence Tq is #(C)-scalar in the sense of [14]. But 7 does not have the SVEP [14]
and therefore T is not decomposable.

2.9. ReMark. Neither the SVEP implies nor is implied by the essential SVEP.

Proof. That essential SVEP does not imply the SVEP can be seen from the
example in 2.8.

To show that the SVEP does not imply the essential SVEP, consider the operator

o oo
T=@& @,on X = @ C"(the Hilbert space direct sum) as in [14], p. 25, where 0, =

n=2 n.2

= (q;, )} joa With g, ;. =1 fori=1,...,n—1 and q, ; = 0 otherwise. Then
T has the SVEP. Consider the sequence {f;} of analytic X-valued functions defined

on Gi= {z: ]z < 12} by f(@)i= ® f, ,(z) where
n==2

(,z, ...,z W for j=n
n 2)i= (z € G).
Jn. /@) { 0 for j # n )

Then for no z in G, { f(A)} is in pc(X). But (zI — T)fj(2) = (zI; — Q))f; j(2) - Oas
Jj — oo for every zeG. Hence (z[, — T,)f(z) = 0 in X, where f(z) = {f{(2)} +
+ pe(X). But f{z) # 0in X, for ze G. So T, does not have the SVEP or T does
not have the essential SVEP.

For T e #(X), one may also consider the space X, :=£%(X)/c,(X), where ¢,(X)
15 the space of all null sequences in X, and the induced operator 7, on X, .

An operator T € Z(X) is called asymptotically decomposable if T, is decompo-
sable. As in the case of essential decomposability, it can be proved that every decom-
posable operator is asymptotically decomposable. We do not know in general,
whether this class is strictly larger than the class of decomposable operators,
but in the special case when X is reflexive and separable, both these classes coincide.
For the proof of this fact we shall first prove a general result.
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2.10. ProPOSITION. Let T € #(X) be decomposable and Y be a closed invariant
subspace for T. Then T'| Y has the SVEP and the spectral spaces Yr,y (F) (F a closed
subset of C) are closed in Y.

Proof. 1t is obvious that 7| ¥ has the SVEP and for a closed subset F of C,
Y3y(F) € Y n X1(F). Let y be a limit point of Y7, ,(F). Then there exists a sequence
{yn} in Yp,y(F) such that y, — y. Let }, be a point in F’:= C\ F. Choose an open
neighbourhood U;_o of Ay with U’Io n F=@. Now since y, € Yq,y(F), y,=(G—T),(4)
where y,(-) is a Y-valued analytic function defined on pr,,(y,) > U;,o. Also
Y€ X(F) (note that X,(F) is closed as T is decomposable). Hence there exists
an X-valued analytic function y(-) on U such that y=(1— T)(2) (L€ U, ). But
Yoy de (A—TW(2) » (A — T)y4) for 2€U; . Since T is decomposable,
Vu(4) = y(2) uniformly on compact subsets of Us, (3], Proposition 1). But y, () e Y
and Y is closed. Therefore y(A)e Y with y = (A — T)p() (L e U;.o)’ which implies
that iy € pry(¥) or o14(¥) = Fie. ye Yry (F), which completes the proof.

2.11. PROPOSITION. Let T e L(X) be asymptotically decomposable. If X is
reflexive and separable then T is decomposable.

. Proof. Since X is isometrically embedded in X, and T, | X = T, by 2.10 T has
the SVEP and the spaces X(F) are closed in X. So it remains to show that for each
open covering {U,, Uy} of sp(T), each x in X has a decomposition x = x; - x,
with o,(x;) < U; (j= 1,2).

Let {U;:j= 1,2} be an open covering of sp(T). Choose closed subsets
F; of C such that {int F; :j = 1,2} still covers sp(T) and F; < U; (j = 1,2). Let
x € X. Then by the decomposability of T,, there exist sequences {x7}(j = 1,2) in
£2(X) and {c,} in ¢,(X) such that

x=xi+x34+c¢, @eN)
and

O'Ta({xf;} + (X)) cintF; (= 1,2).

(Here we make the usual identification of an element x in X with the coset{x} +
+ ¢,(X) in X, corresponding to the constant sequence {x}.)

Let {f"}nen and {@}}.en be £°(X) and cy(X)-valued analytic functions on
F' = C\\F; such that

xXt=0G =T)f%) +aj(2) (feF)).
Since X is reflexive and separable, its unit ball is compact and metrizable in

the weak topology. Hence {x7} has a weakly convergent subsequence, say {x}*¥}.
Suppose yi:= xJ*¥ - x; weakly. Then x = x, -+ x,. The proof is complete if we
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show that o.(x;) ¢ F; = U;. Let gf:= f7* and define the linear transformations
SF (X (-1 — H(F}) by

(Sh)(@):i= X' (gH(2) (¥ €X', ze F).

Then {S%}ien is a family of continuous linear transformations. Also since {g§} is
an £*°(X)-valued analytic function on F;, it is bounded on compact subsets of F;.
Therefore {S4x'}xenis bounded in H(F;) and hence is relatively compact by Montel’s
theorem, for each x" € X'. So {S}} is equ1contmuous by the Banach-Steinhaus
theorem.

Let {x,,}men be acountable dense set in X’ (X’ is separable as X is separable
and reflexive). Now {S%x,,} being relatively compact, has a convergent subsequence
for each m. By a diagonalization, there exists a convergent sub-subsequence of
{Skx,} which we shall again denote by {Skx,,}. Since {S¥} is equicontinuous and
{xm:} is dense in X", S¥: X' —» H(F}) converges pointwise. Hence, by the Banach-Stein-
haus theorem, there exists a continuous linear map S;: X’ — H(F}) such that Sfx’ —
— 8;x’ for each x' e X". :

For a fixed z¢ F}, let ¢3: X" — C be defined by ¢i(x) = (S;x’) (z). Then
;€ X" = X (because X is reflexive). Let g;(z) = ¢7. Then g; is a X-valued weakly
analytic function on F; and hence is strongly analytic. Also gi(z) — g;(z) weakly for

each z € Fj and hence (2 — T)gk(1) — (2 — T)g;(1) for every / in F;. Consequently,
for x' e X,

X (y) = limx' () =
= lim{x'((4 — T)gH(A) + @**ON] = X' (4 — T)gy(M)

(as @ “(2) — 0) for each X in F}.
So x; == (. — T)g;(A) for each 1 in F; by the Hahn-Banach theorem. There-
fore o4(x;) = F;, which completes the proof.

3. DECOMPOSABILITY CRITERIA VIA
THE LOCALIZATION METHOD OF ALLAN

In this section we use the methods of Allan [8] to obtain the (essential) decom-
posability for matrices of certain (essentially) commuting (essentially) decomposablé:
operators. In fact our results may also be used for wider classes of operators. First
we recall some definitions.

3.1. DEFINITION. Let K be a compact Hausdorff space and let &/ be a subal-
gebra (not necessarily closed) of the algebra C(K) of all continuous complex valued
functions on K.

(a) & is called normal if for each finite open covering {U,, ..., U,} of K there
are fi, ..., fu €« such that f; +...-+ f, = land suppf,cU;forj=1,...,n

7 ~ 2294



294 E. ALBRECHT and R. D. MEHTA

(b) o is called spectrally closed if for each finite system f = (f;, ..., f,)in &/

and each w € C"\\f(K) there are u,, ..., u, €97 such that Y, (w;—f)u;=1lon K.

J=1

3.2. ExaMpPLES. (a) Every unital regular semi-simple commutative Banach
algebra is normal and spectrally closed when considered as an algebra of continuous
functions on its maximal ideal space (cf. [4], Example 4.4 (¢)).

(b) Let Q be a bounded open subset of C", K:= Q and fix a totally discon-
nected compact subset A of Q. Then the algebra &/ of all continuous functions f
on K which are analytic in some neighbourhood U, of A (depending on f) is normal
and spectrally closed in C(K). Notice that there is no complete algebra norm
on & ,.

We shall need:

3.3. THEOREM, Let &: o — B be a unital homomorphism from some normal
spectrally closed algebra sZ on some compact Hausdorff space K to some unital Banach
algebra B. Then the family of all closed subsets F of K such that ® vanishes on
K\F (i.e. such that ®(f) =0 for all fe's/ with supp fnF =@ ) has a unique
minimal element whiclt will be denoted by supp ®. For t € supp @ the closure M, of
{®(a) | ae o, a(t) = 0} is a maximal ideal in M:= &(F). Moreover the mapping
t — M, is a homeomorphism from supp ® onto the maximal ideal space A(R) of R.
If 7: M — C(AR)) denotes the Gelfand transform then ®(a)” (M) = a(t) for all
ac s/, tesupp®.

Proof. We write Z:= (a),e s and @(Z):= (P(a))aecs- As O(s7) is dense in N
there is a natural homeomorphism ¢: 4(R) — ox(P(Z)) from 4(R) onto the joint
spectrum oy(P(2)) of d(Z)in R which is given by p(M):= &(Z) " (M): =(D(a)" (M))ac -+
for M € A(R). Moreover, by [4], Theorem 4.5 in connection with Example 4.4.(d),
supp @ exists and the mapping ¢: supp® — C# given by Y(t):= Z(t):= (a(t))sem
is a homeomorphism from supp® onto ox(®(Z)). Thus, ¢~*cy: supp® —
— A(R) is a homeomorphism with the property that ®(a)” (¢ = (¥(t))) = a(t) for
all tesupp®,ac/. Hence, M, = o~ 1(y(t)) for all tesupp®. Conversely, as
&(sf) = {@(a) | a(t) = 0} + Cl is dense in R, the closed ideal M, is of codimension
1 in R and therefore coincides with ¢ ~X(y(2)).

Suppose now that X is a Banach space and that ¢: &/ — #(X) is a unital
homomorphism, where & is as before. For a closed subset F of K we detine

Xp(F):=n{N(®(a)):ac, suppan F= Q}.

Then X4(F) is a closed subspace of X which is invariant for all ¢(a), a € .
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3.4. LEMMA. For all closed F < K and all a € sf we have sp (9(a), X,(F)) <
< a(F) and hence for the spectral radius:

r(@(a) | Xo(F)) < supla(r)] .
teF

Proof. Ppisd - L(XH(F)) with @ (a):= P(a) | X,(F) is a unital homomor-
phism. Again we may apply Theorem 4.5 and Example 4.4. (d) of [4] and obtain for
the joint Taylor spectrum ([4, 33, 35]) of the system (®.(a)).c, With respect to
X, (F):

sp((P(@))ac > Xp(F)) = sp((Pp(@))ae s> Xo(F)) =
= {(@())aew |t € supp O} = {(a(t)ue st € F},

where the last inclusion follows from the fact that @, vanishes on K\ F by the
definition of X4(F). Becausc of the projection property of the Taylor spectrum
([4) this implies

sp (®(a), Xo(F))<a(F)

forallae .

Let us now consider the following situation. @: o — % is a unital homomor-
phism from a spectrally closed normal algebra on a compact Hausdorff space K to a
unital Banach algebra 4 such that &(.2¢) is contained in the centre 3(4%) of 4. As o

is normal we see from Theorem 3.3 that R = ?I)(‘sa?) is a regular commutative Banach
algebra (not necessarily semi-simple) contained in 3(#). Hence, by [8], Theorem
2.13, each maximal ideal M,, resupp®, is extendable in # (i.e. is contained in
some proper bi-ideal of ). For 1 € supp @, let 3(r) be the closed bi-ideal in & gener-
ated by M,. This is a proper bi-ideal in & (cf. [8], Theorem 2.13) and coincides with

the closure in 4 of the set of all finite sums of the form Y b;9(q;), whereb,,. .., b, %,

j=1
ay, ...,a,€ 5, and q;t) =0 for j=1, ..., m. As in [8] we define the local algebra
A, to be the quotient algebra #/3(¢) endowed with its quotient norm and denote by
n,: B — B|3(t) = B, the canonical epimorphism. If b€ & then we write simply
o(b) for the spectrum of n,(b) in the Banach algebra 4,. Notice that for all a € & we
have n(®P(a)) = a(t)-n(1). We refer to [8] for more details on this localization
method.

3.5. LEMMA. Suppose that X is a Banach space and that ¥: B — £ (X) is a
continuous unital homomorphism.

(a) For all closed F < K the space Xg.o(F) is invariant for all ¥(b), be 2.

(b) If be B, tesupp®, and ze C are such that z ¢ o (b) then there exists
a closed neighbourhood U of t such that z ¢ sp(Y (), Xe.o(U)).
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©) IfbeB andif F, H< K are closed with F < H then sp(¥(b), Xp.o(F)) <
< sp (¥(b), Xy.o(H)).

Proof. (a) is an immediate consequence of the definition of ¥y.o( F) and of
the fact, that the range of & is contained in the centre of 4.

(b) Because of z ¢ o,(b) there exists some ue % such that (z — bju —
— 1 e3(¢) and u(z—b) — 1 € 3(¢). Hence, by the definition of 3(¢) and because of
the continuity of ¥, there are finitely many x,, ..., X, V1, ..., ¥n€ DB, f1s .- s Su»
&> 8mEA Withf(1)=0=gt)forj=1,...,n, i=1,...,msuch that

= YO — 1§ He U =

0
n 1
=¥ — by — 1 — ! : -
et B <
and
) YW @ — ¥y~ 1 - § Y00 ey <5

As the functions f,, ..., f,,, &, - - . »&,, are continuous at t, there exists a closed neigh-
bourhood U of ¢ such that

2) max sup|fi(s){ <& max sup|gis)| <o
1gjgn selU lgicm s€U

where ¢ > 0 and § > 0 are chosen in such a way that

) o % 1PCl<— and 8 3 1% <

==1 P=1

n

We define now f,:= 1 and x,:= (z — bju — 1 — Y}, x;9(f;). With this notation

J=1
we have for all ke N,

n k
@~ voy¥w — ¥ = Yoy 00 =

= Y, [Y&02(un))

uEM(n. k) i=1
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where M(n, k) is the set of all functions from {1, ..., k} to {0,1, ..., n}. As the
range of ¢ is contained in 3(#) we obtain

( — YOV¥@) — = ¥ ( 11 Y’(x,,(.o) I ¥@(fo) =

nEM(n, k)

C)) . :
i Y (II q’(\’u(e)))('f’ E q;)( Hfu(l))

P OﬂEM

where M), is the set of all ue M(n, k) with the property that {i:u(i) = 0} has p
elements (p == 0,1, ..., k). Because of (2) and Lemma 3.4, there exists some con-
stant C = 1 such that forallj =1, ...,nand geN,,

1@ | oo (V)] = (D)) | Xea(V))| < C-67.
‘Now, for peM, (1 <p<k),

k n
(Yo ¢)( I f,,(i)) = (DI ... oS = [ @)

with certain o,, ..., «, €N, having the property that o, + ... + o, =k — p.
Hence,

“(W o d’)(:l:];fum) :

< II 1@ | Xeea(U)I] <

n k
< C" H Suj —_ C"Ek_p - Cn II 8”(,')
i=1

j=1

with gg:== 1 and ¢;:=¢for j=1, ..., n. Thus we obtain from (4) by restricting
this equation to Xw,o(U),

Iz — () | Xwoo(U)) (P @) | Epea(U)) — 14| <

< EAJ hX (Hll‘l’(xpm)ll) Hew = C"( Y ol ¥(x )u)k=

p-:0 /AGM j=0

| : b R 3\
- c"(nwxo)n tef ool ) < o5+ ) =(%)

for all k € N, where we used (1) and (3). This implies

(= (¥ 6) | 2r.a(V)) (P | Era@) — 1) < = <1
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so that (z — (Y(0) | Xweo(U)) (Y(1) | Xp.0(U)) is invertible in £ (Xy.4(U)). Therefore,
z — (Y(b) | Xpo(U)) has a right inverse in £ (Xw.o(U)). In the same way we see
(by means of (1') and the right inequalities in (2) and (3)) that z — (Y (b)|Xy o(U))
also has a left inverse in #(Xy o(U)). This shows that z ¢ sp(¥(b), Xy.o(U)).

(c) Put T:==(¥(®(a)))ec.,- By [4], Theorem 4.5 in connection with Example
4.4 (d) and Corollary 3.5, the system T is decomposable and Xy.o(F) is a spectral
maximal space for T contained in Xy,o(H). Moreover, if z e C\sp(L(b), Xy o(H))
then U:=: (z — L(b) | Xyp.o( H)) ! commutes with L(b)| Xy.o(H). Hence, by [4],
Lemma 3.4, Xy.o(F) is invariant for U. This shows that z ¢ sp(L(b), Xy.o(F)).

3.6. THEOREM. Suppose that X is a Banach space and that ¥: 4 — % (X) is
a continuous unital homomorphism. If b€ # is such that for all t € supp @ the local
spectrum o(b) at t has no interior points then ¥(b) has the single valued extension
property.

Proof. Suppose that f: G — X is an analytic X¥-valued function on some open
subset G of C such that (z — P(6))f(z) = 0 on G. We have to prove that f = 0
on G. Without loss of generality we may assume that G is connected. If t € supp @
then, by the fact that the interior of o (b) is empty, we find some z, € G such that
z, ¢ o(b). Hence, by Lemma 3.5, there is some closed neighbourhood U, of ¢ such
that z, ¢ sp(¥(b), Xy o(U,)). As supp @ is compact, there are finitely many #,,...,1, €

n

€ supp @ such that supp® < {_Jint U,j. We write U;:=: U,J_, X5 Xuo(U)),
1
and z;i== z,j for j==1, ...,n. As & is normal there are a,, q,, ..., q,€ s/ with

n
suppa, Nsupp @ -~ @, suppa;cl; (j=1,...,n), and } g; =1 on K. 1t fol-
j==0

I

lows that 1 - - Y, @a)) = Y] ®(a)) in # and hence
j 0 el

f0) = 3, ¥@(@)fz) for all zeG.

Notice that for all ze G and j == I, ..., n we have

Ji(@) = Y(P(a))f(2) € X,
sc that f; is an analytic function on G with values in X;. Moreover, (z — ¥Y(b))fj(z) =
=¥(P(a)) (z — Y(0))(z) = 0on G, as b commutes with &(a,), ..., P(a,). Now

z; ¢ sp(¥(b), X)), so that in a neighbourhood ¥; of z the operator z — (¥(b) X))
has an inverse (z — (?(b) | X))~ € L(X,). Thus,

Ji@) = (@ — (YO X))z — ¥(b) fi(z) =0
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on V; and hence f; = 0 on all of G by the identity theorem. It follows that ' = f, 4-
-+ ... + f, vanishes identically on G and the proof of the theorem is complete.

We are now able to prove the above mentioned decomposability criterium.

3.7. THEOREM. Let X be a Banach space and suppose that ¥: B — L(X) is a
continuous unital homomorphism. If b is an element of #B such that for all t e
€ supp @ the local spectrum o (b) of b at t is totally disconnected, then Y(b) is decom-
posable.

Proof. Let M:= {x e B :xb = bx} be the commutant algebra of b in A.
L:B - #(#B), x - L(x), is a unital homomorphism, so that, by Theorem 3.6,
L(b) and hence also L(b){ 9 has the single valued extension property. Hence, for
afl x e M the local spectrum t(x): = o(x;L(b), M) of L(b) at x with respect to M is
defined and has the following properties (cf. [14], p. 1):

Vx,yedM VweC:t(xy) c 1(x)n1(y), 1(x -+ ) < z(x) Uz(y), 1(wx) = t(x),
Vel : 1(x) =Q<x =0,
VxeIt Vzégr(x) Ix(z2)eM : (z — b)x(z) = x.

We want to use Theorem 1.4 of [5] and have therefore to prove that (3R, b, 1) is a
spectral triple in the sense of [5], Definition 1.3. The only property which remains
to be proved is

(i) For every finite open covering {U,, ..., U,} of C thereare x;, ..., x,eM
such that 7(x)) c U; (j= 1, ...,n) and x; + ... 4+ x, = 1. In order to prove (i)
let {U,, ..., U,} be an arbitrary finite open covering of C.

(a) First fix an arbitrary r € K. As o,(b) is totally disconnected there exist pair-
wise disjoint closed sets Fy, ..., F, @ C with F,c U; (j=1, ...,#) and g(b) <

CHFj. Then there are open sets G,...,G,< C with F;c G; <G, c

cU;(j=1,...,n) andsuchthatG;n G; =0 fori # j. Weput G:= G, U ... UG,
and D :=={we C:|w| < ||bl]}. If ze D\G then, by Lemma 3.5. (b), there is a
closed neighbourhood W _ of ¢ such that z ¢ sp(L(b), Z..o(W.)). Then {V_:z e D\G},
where V, ;== C\sp (L(b), Br.o(W.)) for z € D\G, is an open covering of the com-
pact set D\G which has a finite subcovering {V: , ..., V: }. Theset W(t):=

n

=M W,j is a closed neightourtood of f. Moreover, by Lemma 3.5. (c),
Jjl

we have

m

sp(L(b), BLo(W (1)) < Q sp(L(b), BroW:)) = GnD = D,
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using the construction of sz and the fact that
sp(L(b), Aro(Ws)) < {we Ciiwl < [{L(b)} BrLoW: )}

and HL(b)[@Lc@(sz)u < |ibll. It follows from the analytic functional calculus that
there exist idempotents Py, ..., P, e L(#BL.o(W(l))) in the bicommutant of
L(b)| Br.o(W()) such that P, + ... + P, =1 and sp(L(b), P{BLo(W())) < G;
for i=1,...,n

(b) Fix now x € BL.o(W(t)) N M. In this step we prove that for i == 1, ..., n,
PxeM and 1(Pix) < G, c U;.

We define R: 4 — .2L(#) by R(u)y:=yu for u, ye B. Then B.o(W(t))is invariant
for R(b). Indeed, if y € BL.o(W(1)) and if a € & such that suppan W(t) = then

L(®(a)) (R(b)y) = P(a)yb = 0

so that R(b)y € B L.o(W(t)) by the definition of Br.o(W(r)). Moreover R(b) | Br.o(W(t))
commutes with L(b). Hence, using the fact that P, is in the bicommutant of
L(b)| Br.o(W(t)) we see that

B(Px) == L(b)P.x = P{L(b)x) = P(bx) ==
= P,(xb) = P(R(b)x) = R(b) (P;x) = (P,x)b, .

i.e, P,xeM. Moreover, P(BL.o(W(1))) is invariant for R(b). For ze C\G; we
define

f@):= (@ — L(b) | P La(W(1)))) " Pix.

As PxeIM and as (z — L) | P(PBLo(W()))~* is in the bicommutant of
L(b) ' P{(Br.o(W(t)))it follows easily that f(z) € M for all z e C\G;. Hence, t1(P;x) ==
= o(P;x; L(b), M) c G, = U,.

(c) By compactness of supp@® there are finitely many t,, ..., t, such that

k
supp @ < ) int W(z;).

je1

As &7 is normal there are a,, aq;,...,a, €% such that suppa,nsupp® =0,
suppa; < intW(t) for j=1,..., k and @y +a;+ ... +a =1 on K Then

1 =d(ay) + (@) + ... + P(a) = Pla) + ... + P(a)

and ®(a;) e Mn Bro(W(t)) for j=1, ...,k By (a), (b) there are x; ;€ M (i =
=1,...,n, j=1,...,k)such that #(¢;) =x, ;+ ... + x, ; and x; ) < Us.

2
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k
Therefore 1 = u; + ... +u,, where u;:= Y x; ;and t(u)<U;fori=1,...,n.
. . FED
This proves that condition (i) is fulfilled. Hence (M, b, 1) is a spectral triple in
the sense of [5] and it follows from Theorem 1.4 in [5] that ¥(b) is decomposable.
This completes the proof of the theorem.

We now want to give some examples of situations where the Theorems 3.6 and
3.7 can be applied. First we apply Theorem 3.6 to a class of pseudo-differential
operators studied in [30, 31]. We shall need some notations. We write PC for the
unital Banach algebra of piecewise continuous functions on R generated by the
characteristic functions of the intervals [z,c0), 1€ R. Forae PC® PCand fe#:=
1= L*R) one defines

(Op (@))(x):= V;; S a(x,») € Ff()dy  (xeR)

where Ffis the Fourier transform of f. The C*-subalgebra of £(#’) generated by
{Op(a) : a€ PC ® PC} is denoted by Y(PC, PC). Let also ¥(C, C) be the C*-sub-
algebra of W(PC, PC) generated by all ae C ® C, where Cis the algebra of
all continuous functions on R possessing equal limits at +~oco0 and —co.
Then XA (#) < P(C,C) and := ¥Y(C,C)/A4(#) is a commutative C*-sub-
algebra of the centre of #:= W(PC, PC)/# (#). & is isometric #-isomorphic to
C(K), where K = R* x R*\R XR. Here R* is the one-point compactification of R.
The local algebras 4,, f € K, of # over o/ have been computed by S. C. Power
[30, 31] who also proved that for all ¢ € X the local spectrum ¢,(Op(a)) of Op(a),
a € PC® PC, at ¢ consists only of a finite number of possibly degenerated parabolic
arcs. Let now ¥: # — £(2¢,) be the monomorphism induced by the homomorphism
T — T, from ¥Y(PC, PC) to #,. Then we obtain from Theorem 3.6:

3.8. COROLLARY. For all ae PC ® PC, the operator Op(a) has the essential
single valued extension property.

Notice that the interior of the essential spectrum of Op (a) may be nonempty.
Recall that a C*-algebra & is called n-homogeneous if all irreducible repre-
sentations of # are n-dimensional (n € N).

3.9. CoROLLARY. Let o be a Hilbert space and suppose that & is a unital n-ho-
mogencous C*-subalgebra of L(#) (resp. of Q(#)). Then each Te & (resp. each
Te L(H) with T+ H(H)ecB) is decomposable (resp. essentially decomposable).

Proof. Let o be the centre of &. It follows from Theorem 5 and the proof of
Theorem 8 in [34] that & is *-isomorphic to the algebra C(Q) of all continuous func-
tions on the structure space  of 4 and that (with this identification) for each 1€ Q
we have a *-isomorphism from %, onto the algebra M, of all complex n X n-ma-
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trices. Hence, if Te & (resp. T € Z(#) such that T + #'(3#) € #) then o(T) (resp.
o (T + A (H))) is finite and thus totally disconnected. Let now ¥: Z — Z(#) be
the canonical inclusion (resp. let ¥: # — £(s#,) be the canonical monomorphism
induced by the homomorphism § — S,) then we see from Theorem 3.7 that T
(resp. T,) is decomposable.

The most trivial type of n-homogeneous unital C*-algebras are C*-algebras
which are =-isomorphic to C(K) ® M, for some compact Hausdorff space K. The
centre of C(K) ® M, is just C(K) ® |, ~ C(K), where 1, is the unit of M,.

3.10. CoroOLLARY. Let T (QC) be the C*-algebra of all Toeplitz operators T,

0

on .= @ HXT) such that the symbol ¢ is in QC® M,. Here QC = H® -+
Jo

+ C(T)n H® ++ C(T) is the commutative unital C*-algebra of quasi-continuous
Junctions on 'T. Then it follows from [19], Corollary 3.3, that T (QC) A (#) =
= QC® M,, so that this algebra is of the above-mentioned type. From Corollary
3.9 we obtain that each T, e T (QC) is essentially decomposable.

Corresponding resuits follow for Toeplitz operators on the boundary of pseu-
do-convex domains with continuous symbols [12, 36]. Sometimes compact ope-
rator valued symbols are also considered [15]. In this case one has an exact sequence

0 - H(H) L B AQH(Hy) ® Cl) - 0

where H, and H, are Hilbert spaces, #'::-- H, QAQ H,, the Hilbert space tensor pro-
duct; &, a C#-subalgebra of L () with X (H) « 4, &/ is a commutative C*-al-
gebra, « is the unique C*-norm on &/ ® (W (H,) @ C!), / is the inclusion mapand ¢
the symbol map.

3.11. COROLLARY. In the above situation all operators in A are essentially
decomposable.

Proof. B[AH(#) is topologically isomorphic to C(I()CQ)“(,%’(HQ) ®ClH=
~ C(K, H'(H,) @ Cl), where K is the maximal ideal space of &/. C(K) ® | is then
contained in the centre of C:=C(K, #'(H,) ® Cl) and for each 7 ¢ K, the local
algebra C, is A (H,) @ C). Hence for each ceC, a,c) is totally disconnected
(notice that m,(c) is of the form z/+ T with compact operator 7 and that the spectrum
of this operator in#"(H,) @ Cl is the same as in £(f,)). Now the result follows
from 3.7with¥: C — B/ A4 (H) — L(#,) being the composition of the natural
homomorphisms.

Recall that a bounded linear operator 7 on a Hilbert space © is called (essen-
tially) n-normal (n e N) if T is unitarily equivalent to an operator matrix of the

n

form (7, ;)i,j.-1,2,...,n ON H for some Hilbert space H, where the operators
joi
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Ty, i, j=12,...,nare mutually (essentially) commuting (essentially) normal
operators.

3.12. COROLLARY. Every (essentially) n-normal operator is (essentially ) decom-
posable.

Proof. Let o be the commutative C*-subalgebta of £(H) (resp. Q(H)) gene-
rated by {7;;; i, j= 1,2, ...,n} (vesp. {T;; + A (H); i,j=12,...,n}) and put
B:= o ® M,. Then # is of the above-mentioned type and T (resp. T -+ A (H))
is an element of a C*-subalgebra of £(9) (resp. Q(9)) which is isomorphic to 4.
Hence it follows from 3.9 that 7 is (essentially) decomposable.

3.13. CoroLLARY. Let T be an algebraically n-normal operator on a Hilbert
space 9, i.e. an operator such that all irreducible x-representations of the C*-algebra
C*(T), generated by T in L(9), are of dimension < n. There T is decomposable.

Proof. It is well-known (cf. {29]) that T is similartoa direct sum of the form
@ T; where T; are j-normal. Now the statement follows from 3.11 and [14], Propo-
j=1

sition 1.8, p. 34.

REMARK. K. R. Davidson introduced in [16] the class of essentially spectral
operators on a Hilbert space $. These are operators T e £($) which are similar
to an operator of the form N -4 Q where N is essentially normal, Q is essentially
quasinilpotent, and NQ—QN is compact. By 3.11, N, is decomposable and Q,
is a quasinilpotent operator on $, commuting with ~,. By [14], Theorem 2.2.1,
T,= N, -+ @, is decomposable. Thus the class of essentially spectral operators
is contained in the class of essentially decomposable operators.

If o/ is a normal, spectrally closed subalgebra of C(K) for some compact
Hausdorff space K and if ¢,: & — £(X) is a unital homomorphism, then for ne N,
we define @, M) = @ M, - L(X") by

Xy d(ay) ... Plag)\ /X
Pla)} - = . .
Xn ¢1(anl.) e (bl(ann) Xy /
for a = (aij)ij. 1,...n€ M () and x,, ..., x,€X. Moreover let &: of — L(X")

be the mapping given by ®(a):= d (a ® 1,), for a € &7, where 1, is the unit of
M, . Then @ is a unital homomorphism and the range of @ is contained in the centre

of B:== di,?M,,(,dD. With these notations we have:
3.14. CoroLLARY. For all ae M (27) the operator ®,(a) e L(X") is decompo-
sable.

Proof. Fix a == (aij)i, j=1....,n € M (). We want to apply Theorem 3.7 to the
element b:=a&,(a) € # and the inclusion mapping ¥: # — #(X"). To this purpose
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we have to prove that for each 7 € supp @ the local spectrum o,(b) of b at ¢ is totally
disconnected. Hence, fix an arbitrary ¢ € supp ®. Then S,:={z € C | det(z— a(t)) ==
== 0} isfinite. Ifz ¢ S,, then det(z — a(s)) # O for all 5 in some closed neigh-
bourhood U of 7. As & is normal, there is some 4 € &/ such that suppk = U and
such that / = 1 in some neighbourhood V of t (V' < U). It follows from Cramer’s
rule that there exists some 2 € M,(s7) such that for all s € U we have

1 ~

(z—a(s))" 1= m a(s)

As o is spectrally closed, the function f: K — C given by

f(s)::{h(s)/det(z —a(s)) forseU
0 for se K\U

belongs to 7. Hence g:=(f® 1,)ae M () and (z —a)g =h ® 1, = g(z — a).
Hence,
(2 — 2,(@)P,(8) — 1 = D, (g) (z — D (a)) — | =

=@(h) — 1 = &(h — 1) e 3(1).

This shows that (z — n,($,(a)))~* exists in %,, i.e. that z ¢ ¢,(9,(a)). It follows
that 6,(®,(@)) = S, is finite and hence totally disconnected. By 3.7 the operator
P, (a) € L(X") is decomposable.

REMARK. Matrix operators of the kind ®,(@), a € M,(«/), have been studi-
ed by several authors [9, 14, 21, 22]. N. Dunford has considered operators of the
form

A= S a(t)E(dr),

2

where FE is a countably additive spectral measure defined on a o-field Z of subsets
of a set Q and with values in £(#), 5 a Hilbert space, and where a € M, (<), <7
being the commutative C*-algebra of all E-essentially bounded complex valued
functions on Q. Especially, & is of the type C(K) and 4 = &,(a) with

B(f):= S f()Edt) forfe .

It has been proved in [14], Theorem 6.4.4, that every operator of the kind ®y(a),
a€ My(sf), is of class CY(C) and its spectral distribution is given by

(%) £ Sf(a(t))E(dt)-

Q
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C. Apostol [9] gave an example with Q = sp(S,#) < C, S a scalar type spectral
operator with spectral measure E and a € My(o/) even being analytic in a neigh-
bourhood of the spectrum of S such that the mapping (*) does not define a spectral
distribution. However, he proved for analytic a € M, (/) that the operator ®,(a)
is always -decomposable for some suitable topologically admissible algebra 2.
In the more general situation of arbitrary operators $,(a), a € o/, Corollary 3.14
(or Corollary 3.9) now gives the (slightly weaker) result that these operators are
decomposable.

4. SOME APPLICATIONS OF ESSENTIAL
LOCAL SPECTRAL THEORY

In this ssction we give some first applications of the essential local
spectral theory.

4.1. PrROPOSITION. Let X be a Banach space and let T e L(X).
@) If Te &=(X) and if T has the essential SVEP then T is Fredholm.

(b) If Te ®*(X) and if T’ (the transposed operator) has the essential SVEP
then T is a Fredholm operator.

Proof. (a) If T € &~(X) then T, is surjective by Corollary 2.5. Since T, also
has the SVEP it follows from [37] that T, must be injective. Hence 7 € &(X) by
Corollary 2.5.

(b) T e &+(X) implies that T' € ®~(X'). As T’ has the essential SVEP we con-
clude from (a) that 7' e @(X’). Hence also T € $(X).

4.2. CorROLLARY. If ae PC ® PC then the operator Op(a) (cf. Section 3) is
Fredholm if and only if it is semi-Fredholm.

Proof. By 3.8 the operator Op(a) has the essential SVEP. Hence, if Op(a) €
€ ¢~ (L*(R)) then Op(a) is Fredholm by Proposition 4.1. Suppose now that Op(a) €
€ ¢+ (L¥R)). An elementary computation shows for the transposed operator that

Op(a) = FOp(a)F~*

where Fe Z(L*R") is the Fourier transform and a(x, y) = a(y, x) for x,y eR.
Hence a € PC ® PC and Op(a) € —(L*R)) as Op(a) € @-(L*R)). By the first
part of the proof this implies Op(a) € $(L3*(R)) and therefore Op (@)’ € (L3(R)),
i.e. Op (@) € P(LA(R)).

4.3. PrROPOSITION. Let X be a Banach space and let T € ¥(X) be an essential
decomposable operator. If T is semi- Fredholm then T is actually a Fredholm operator
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Proof. Suppose first that T e #~(X). As T, is decomposable, 7, has the SVEP.
Hence it follows from Proposition 4.1 that T is Fredholm. If Te &*(X) then T,
is injective with closed range (by Corollary 2.4) and decomposable. Hence the trans-
posed operator (7,) is surjective and by [25] decomposable. Thus (7,)" has the
SVEP. By the above-mentioned result of Vrbova [37] we obtain that (T)" is inver-
tible, i.e. that T, is invertible. By Corollary 2.5, T is a Fredholm operator.

4.4. CorOLLARY. [f T is a Toeplitz operator in 7 ,(QC) (¢f. Corollary 3.10}
then T is Fredholm if and only if T is semi- Fredholm.

This follows immediately from Proposition 4.3 and Corollary 3.10. A corres-
ponding result is true for Toeplitz operators with continuous # X #-matrix symbols
on strongly pseudoconvex domains in C" and for pseudodifferential operators with
continuous # X n-matrix symbols as in [15, 20]. From 4.3 and Corollary 3.11 we
obtain:

4.5. COROLLARY. If an essentially n-normal operator is semi-Fredholm it is
already a Fredholm operator.

For decomposable operators, Proposition 4.3 can be sharpened:

4.6. PROPOSITION. Let T e F(X) be a decomposable operator on a Banach
space X. If z e sp(T, X) is such that z — T is semi-Fredholm, then z is an isolated
point of sp(T, X) and z — T is a Fredholm operator of index 0.

Proof. By Proposition 4.3 and Corollary 2.7, z — T is a Fredholm operator.
Tt is a well known fact (cf. [10, 11]) that then there is an ¢ > 0 and an analytic pro-
jection valued function P:U/z) — £(X) such that N(P(w)) == N(w — T) for
0 < |z — w| < ¢ and such that w — T is Fredholm for all we U/(z). As T has the
SVEP we conclude that 1 — P(w) = 0 on Uy(z), i.e. that w — T is injective for
0 < iz — w] < g Applying the same argument to the transposed w — T’ of w -— T
(notice that T’ is also decomposable by [25], Theorem 2) we see that w -- 7' is
also injective for 0 < |z — w| < & where ¢ > ¢ > 0. Hence, for 0 < iz — wj < ¢’
the operator w — T is invertible, i.e. z is an isolated point of sp (7, X). Moreover
ind(z — T) == 0, as the index of the function w — w — T is constant on U(z).

Proposition 4.6 generalizes corresponding statements for (pre-) spectral
operators as given in [26, 28].

5. A CHARACTERIZATION OF LOCAL TYPE OPERATORS

Local type operators occur in a natural way in the theory of singular inte-
gral operators (see for example [27], p. 400ff.). We shall give the definition in an
abstract situation. We shall constantly use the definitions and results of [4]. Let X~
and Y be two Banach spaces and suppose that T = (T3)ica and S = (Sp)zeq are
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(A, Z = (Z3)se 4, T)- 1€Sp. (B, W = (W})1e 4, 0)-scalar systems in L(X) resp. Z(Y)
with (&7, Z, 1)-spectral representation @: of — #(X) for T and (8, W, o)-spectral
representation ¥: # — Z(Y) (see [4], Definition 4.3). A linear mapping L: X - Y
is called of (T, S)-local type if for all ae o/ and be # with w(a) N o(b) == @ the
operator ¥Y(b)LP(a) € L(X, Y) is compact. It has been shown in [7] that local type
operators are in many cases continuous or have at least some continuity properties.
In the following we shall only consider bounded local type operators. The following
lemma shows that our definition of a (7, S)-local type operator does not depend
on the special choice of the spectral triples (&, Z, 1), (#, W, o) and of the spectral
representations @, ¥.

5.1. LemMA. (a) The systems T,:= (Ts q)rea and Sy;:= (81, 9)1ea are de-
composable on X, resp. Y, with spectral capacities (denoted by &% resp. £%) not
depending on the special choice of (4, Z, 1), (B, W, o), ®, and V.

(b) Le £(X,Y)is of (T, S)-local type if and only if L EHF) = &4(F) holds
for all closed subsets of CA.

Proof. (a) is a consequence of [4], Theorem 4.5 and Corollary 3.3(a). Notice,
that also by [4], Theorem 4.5, the (unique) spectral capacity &% for T, is given by

(%) EWF) =M {N(®(a),) :ac s and ©@)N F=0}

for closed F = C4. The corresponding statement holds for S, and £%.

(b) Let Le #(X,Y) be of (I, S)local type and F < C* be closed. Recall
that §7(F) = 6%(H) where H:= Fnsp(T,, X,) (cf. [4], Corollary 3.3 (b)). Fix now
an arbitrary vector x € §%(F) = &% H) and let b be an element of # with o(b) n
nF=@. As C*is completely regular and H is compact, there are open sets U,
VeC4 such that UuV=C*, Hco U, HNV =@ and a(b)n U =@. By the
definition of an (&, Z, 7)-spectral triple there are a, c € & such that a + ¢ =1,
(@) « U, and 1(c) = V. Because of x € §%(H) and ©(c) N H = we obtain x =
= P(@)x + ®(c),x = P(a),x. Therefore

Y(b),Lyx = Y(b),LP(a)x = (Y (b)LD(a)),x =0

as the operator ¥(b)L®P(a) is compact because of o(b)nt(@) = @. Thus Lxe
eM{NWPFDB)):beB, o(b)N F=@} = EYF). This proves L(EHF)) = £UF)
for all closed F = C4. ,

Conversely, suppose that L (8%(F)) ¢ &% F) holds for all closed F < C%.
Fix ae o/, be# such that 1(a) no(b) =@. Notice, that R(P(a),) = &4(x(a)).
This follows from (*) and the definition of an (&, Z, 1)-spectral triple. Hence, for
each x € X, we have

(P(O)LE(a)) x = P(b),L,B(a)x = O
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because of L,P(a)x € L, 6%(t(a)) « §¥(a)) and a(b) N t(a) =€. This shows
that ¥(b)Ld(a) is a compact operator. Hence, L must be of (T, S)-local
type.

5.2. LEMMA. Let Le #(X, Y) be an operator such that S;L — LT, is a
compact operator for all 2. € A. Then L is of (T, S)-local type.

Proof. For xe X, we denote the local spectrum of 7, at x with respect to
X, by o(x; T,. X,) (cf. [4], p. 86, for the definition). Now, L,T;,, = S;, L, bolds
for all 1€ A. Hence, it follows from the definition of the local spectrum that

o(Lyx; S,, Y)) < o(x;T,, X,) for all x € X,. Because of
E4(F) == Xor (F) = {x € Xl o(x; T,, X,) < F}

and also §4F) < Yquq(F) (by [4], Lemma 3.8) this implies L,&%(F) < &(F)
for all closed F <= C* so that L is of (T, S)-local type by Lemma 5.1.

Recall that a bounded linear operator 4 on a Banach space X is said to be
hermitian-equivalent if sup llei* )l < o0. Ce L(X) is called normal—equzvalent if

C = A -+ iB with commutmg hermitian-equivalent operators A, B € £(X).

5.3. THEOREM. Let T = (T3)ica and S = (Si)ica be (&, Z, 7)-resp. (B, W, 0)-
-scalar systems in L(X) resp. £(Y) and suppose that for all A € A the operators T, ,,
S, q are normal-equivalent in £(X,) resp. #(Y,). For Le $(X, Y) are equivalent:

(a) Lis of (T, S)-local type. :

(b) For ali } € A the operator S,L — LT, € L(X, Y) is compact.

Proof. Because of Lemma 5.2 we have only to prove that (a) implies (b)-
Hence, let L € #(X, Y) be of (T, S)-local type. By Lemma 5.1 the system T, and
S, are decomposable with spectral capacities 6% and &%. By [4], Corollary 3.6, also
the operators T ,, S, , (4 € A) are decomposable and their spectral capacities 67, ;,

&%, are given by &% ,(F)= &Py YF)) for all closed F = C and A€ A. Here,
P,: C* — C is the canonical projection onto the component with index A. Because
of this and Lemma 5.1, we conclude that for all closed F <« C, A € A we have

L,6% ((F) = &5 .(F).

As 67,,(F) = X, s (F) and 8%,,(F) = Y"’Sz q(F) we may apply [14], Theorem 2.3.3,
and obtain for all iea
]lm “ C(Sl.q ’ Tl,q)”Lq“u" = 09

n—->oo

where C(S,,,, T1,p) € L(L(X,, Y,) is defined by C(S,,,Ti)4:= S;,,4 — AT, ,
for 4 € #(X,, Y,). As the operators S,,,, T,,, are normal equivalent this implies
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(by [2], Theorem 1) that
(SiL — LTy)y = Sigly — LT3, =0

i.e. that S;L — LT, is compact for all A € 4.

Before giving some applications of this characterization theorem for the usual
spaces of function occurring in the theory of singular integral operators, we have
to investigate certain multiplication operators on these spaces.

A bounded linear operator 4 on a Banach space X is said to be essentially of
class (C) if there exists a continuous unital homomorphism ¢: C(C) —» #(X,) such
that @(idc) == 4,. Using the fact that supp & = sp(4,, X,) is compact, it is easy to
see that for each real valued f€ C(C) the operator &(f) is hermitian equivalent in
Z(X,). Because of 4, = ®(Re o idc) 4 i®(Im o idc) this implies that 4, is normal-
-equivalent in Z(X)).

5.4. PrROPOSITION. Consider the following situations.
(a) Q is a compact Hausdorff space, & = C(Q), and
(a.1) X:= C(Q), or
(a.2) X is a closed ideal in C(Q), or
(a.3) X:= LP(Q, w), where p is a positive (not necessarily finite) measure
on Q and 1 < p < oo.
(b) (Q, d) is a compact metric space, 0 < ). <1, and o .= X:= HNQ) is
the Banach algebra of Hélder continuous functions

HY Q) = {fe C(Q); |fl,:= sup |&)—-_—'~f—(y—)|; xX,ye, x #yl < oo
d(x, y}
endowed with the norm || - ||, given by ||fll,:= {Ifllp + |f1, for fe HX(Q).
(¢) G is a bounded open subset of R", Q:= G, o/ := C®(G) (the algebra of all
those f € C®(G) with the property that for all « = (a,, ..., a,) € Ny the partial deri-
vatives

oy

X%, .. 0x%s
1 n

DV:za (lal:=0; + ...+ a,)

have continuous extensions to G = Q), and

(c.1) X:= WH¥G) with ke Ny and 1 < p < oo (see [1] for the notations
and theory concerning Sobolev spaces), or

(c.2) X:= C¥*X(G) the completion of the set CZ(G) of all those f € C*(G)
having compact support in G with respect to the norm || - ||;,, given by

1flai= X 1D llgup + 20 1D°1;
laf<k laf=k
withkeNy and 0 < 2 <1 (and |-|; = 0 for 2 =0), or

8 — 2294
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(c.3) G has the cone property and X:= WPXG) (cf. (1] for the definition)
withkeNy, | < p < oo, or

(c4) G is a C**regular domain and X:= C*XG) (cf. [38) for the
definitions) with ke N, and 0 < 2 < 1.

(d) G is an unbounded open subset of R”, Q isthe closure of G in the one-point
compactification RY. = R" U {oo} of R", o is the algebra of restrictions to Q of
all those '€ C(R%) which are C® on R” and constant in a neighbourhood U, of oo,
and

(d.1) X:= CKG) with keN,, or

(d.2) X:=WhKG) with keNy, 1 <p <oo, or

(d.3) Q has the cone property and X:= WPk Q) with1 <p < oo and k € N,.
(e) keN,, Q is a m-dimensional compact C*-manifold, sZ:= C®(Q), und

(e.1) X:=: CKQ), or

(€.2) X:== WPk(Q)with | < p < o0.

In all these situations the natural multiplication operators My(a), a € o7, given
by My(a)x:- ax for ac o, x € X, are essentially of class (C) so that for all ae <7
the operator M x(a), is normal-equivalent in X,,.

Proof. The proof for the situations in (a) is trivial as in these cases already
the operators My(a), e e o = C(Q), are of class (C), so that also My(a),
must be of class (C).

(b) We write D:== {(t,¢) 1€ Q} and C(QxQ\D) for the Banach space
of all bounded continuous functions on 2 X @\ D endowed with the supnorm. For
Je H{Q) let 4; € C,(2 X Q\D) be the function given by

A(s, 1):= ﬂf)_—_f_(f)__ for (s,1) e @ xQ\D.

d(s, 1)

Then the mapping /' = J(f):= (f, 4,) defines an isometric isomorphism J from
X = H{Q) onto a closed linear subspace Y, of Y:= C(Q) ® C,(2X2\D).
Fix now a € & = H¥Q). Then My(a) = J~'T(a)J and hence |Mxy(a),i| == T(a), .
where T(a) € £(Y,) is the restriction to Y, of the operator S(a) € £(Y) given by

S@)(f, g):=(af, @@ ) g+ (1®[)4,) for(f,g)eY.

Here a® 1, 1 ®f e Cy(QXQ\D) are defined by (a ® 1)(s, 1):=a(s), (1 @ F)(s,1):- -
<o f(2) for (s, 1) e 2 X Q\D. Thus S(a) = My(a) + K(a) where My(a)(f, g):: -
= (af, (@ ® 1)g) and K(a) (1, g):==(0, (1 ® f)4,) for (f,g)e Y. Let us show that
K(a)| Y, £(Y,, Y) is a compact operator. We have K(a) | Y, = H(a)L where the
continuous linear operators L : Y, » C(2) and H(a):C(2) — Y are given by
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L(f, 4y):= ffor fe H) and H(a)h:= (0, (1 ® h)4,) for h € C(2). By the Arzela-
-Ascoli theorem, the operator L and hence also K(a@)| Y, is compact. Denote by
J: Yo — Y the inclusion mapping and let C be the constant given by Corollary 2.3.
Then we obtain because of (K(a) | Yy), = 0,

M@l = | T@),]l < Cll(je T(@)ll = Cl(My(a) | Yo), + (K(@)] Yo),ll =
= Cl|(My(a) | Yo) |l < ClIMy(a@)l] < Cllallsy, -

This shows that the unital homomorphism a — My(a), from the dense subalgebra
& = HXRQ) of C(Q) is continuous with respect to the supnorm and hence may be
extended to a continuous unital homomorphism ¢: C(Q) - £L(X,). For ae
we define now ¥,: C(C) - £(X,) by ¥, (f): = &(f-a). Then ¥, is a continuous
unital homomorphism with ¥ (idc) = ®(a) = My(a),. This shows that My(a) is
essentially of class (C).

(c), (d). In these cases we define Jf == (f,)u <k for f'€ X. Then J is an isometric

1somorphism from X onto a closed subspace Y, of Y:= @ X,, where for |} < k,
|a| <k

[ LP(G) in the cases (c. 1), (c.3), (d.2), (d.3)
X, =+ { C(Q) in the cases 2 = 0 of (¢.2) and (c.4) and in the case (d.1)

H*) in the cases 2 > 0 of (¢c.2) and (c.4).
Fix now an arbitrary function a € &/. Then we have Myx(a) = J1T(a)J where (by
the Letbniz rule)

T(@)(D*f Do <k = (ﬁ;@(ﬁ)(Dﬂa)'(D“_ﬂ f ))fat|<k
for ¥ = (Ja)jajcx € Y. We have
S@=My@+ X X Kp,

o< |yi<k 0y
where, for y = (P)uj<k, My(a)y:= (aVdiaj<k and for 0 < <y, 0 < |y] <&k,
Kpyy 1= (ya)lulgk with
¢ _ﬁ{ 0 for a7y
“()(Dfay,., for a=y.
We shall show that the operators Kj, | Yy: Y, = Y are compact. To see this we
consider the following factorisation of Kj,, | Y,:
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Here the space Y, is given as

W5YG) in the cases (c.1) and (d.2)
W?YG) in the cases (c.3) and (d.3)
Y,:= { Ci*XG) in the case (c.2)

C™*4G) in the case (c.4)

CHGY in the case (d.1)

where in the case (d.1), we chose Gy:= G n U for some bounded open U < R”
containing supp Dfa (notice that § > 0 and that a is constant in a neighbourhood
of co). The continuous linear mapping L: X — Y; is defined by Lf:=: D?f in the
cases of (¢) and in the cases of (d) by Lf:= bD?f where be C®(R") has compact
support (contained in U in the case (d.1)) satisfying & = 1 in a neigbourhood of
supp D”a.

The Banach space ¥, and the mapping R: Y, — Y, are defined as follows:

LYG) in the cases (c.1), (c.3)
Y3i={C*%Q) in the cases (c.2), (c.4)
Co(Gy) in the case (d.1)

and in these cases, R: ¥; — Y, is the canonical inclusion mapping which is compact
by [1], Theorem 6.2, resp. by [38], Satz 8 on p. 262. In the remaining (d.2) and (d.3)
let U < R”* be a bounded neighbourhood of suppb, write Gy:=:GnU, Y, =
i LP(G,), and let R: Y; — Y, be the inclusion mapping Y; — L?(G) followed by
the restriction mapping L?(G) — L?(G,). By [I], Theorem 6.2, this operator is
compact in both cases.

Finally, in all the situations of (¢) and (d), let A : Y, — Y be the continuous
mapping defined by Ah:= (y.)'x <& with

e { 0 for a # 7y
) (&)(DPa)-h  for o= 7y.

Here we use the fact that in all cases Y, is in a natural way a closed subspace of X,.

It follows that in all the cases of (c) and (d) the operators K, , | ¥, (0 < [y] < &,
0 < B < y)are compact, so that (S(a) | Y,),=(My(a)| Y;), and hence [|(S(a) | Yy), =
= |[(My(a)| Yo),ll. In the situations of (d), (c.1), and (c.3) and for Z:-0 in
(c.2) and (c.4) we have therefore

1(S@ ] Yo)ll < 1My(a)}; < [|a]lsup -
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In the remaining cases i.e. for 0 < 2 < 1 in (c.2), (c.4), we observe that M,(a) =

= @ M, (a). From this we conclude that (with a constant C; > 1):
<k “a

(My(@)] Yo) Il < [ My(@), ]l < C, Fl}EJ]an(a)qll'

By the proof of (b) we have || M, (a)||q < {lalls,p 50 that also in this case we have

1(S(a@) | Yo),ll € Callallsup. Write C for the constant given by Coro]lary 2.3 for the
inclusion j: ¥y — Y. Then we obtain for all g € &,

| Mx(@),| == IIT(?Z)qH < Clj(Je T(@)gll = ClI(S@ | Yo)yll < CiCllallsup-

As in the proof of (b) we conclude from this that My(a) is essentially of class (C).

(e) We fix a-finite atlas {(U,, &), ..., (U,, h,)} for the m-dimensional com-
pact C*-manifold Q. Then there are b,, ..., b,, d,, ..., d, € C4(Q) with supp b; =
< suppd; < U;, d; =1 in a neighbourhood of supps; (j=1,...,r) and
b+ ... +b. =1, d+ ... +d, =1 on Q. Hence, for a € &7, we have

My(a) = ﬁ My(b;a).

Fixnowje {l, ..., r} and consider the following commutative diagramm of Banach
spaces and bounded linear mappings

Mx(bja)

— X
|
L IR
XO ———— XO
My @yl
o

where
X Ci(hy(U;))  in the case (e.1)
CT Wk (U))  in the case (e.2),

L:X — X, is the operator given by Lf:=(bjch;)-(fohi?) for feX,
and R: Xy — X is defined by Rg:= d;-(g o i) for g € X;. Now we are in the situa-
tion of (c.1) resp. (c.2), as the atlas can be chosen in such a way that 4, (U;) =« R™ is
bounded for i =1, ...,r and conclude that ”Mxo(a°hi_1)q” < Cjlla o hj Yjsup

<
< Cjllallsup, where C; is a constant not depending on a. Hence, ||My(b;a),ll <
< CHlIR, |- llallsup - | Lyll < Cfllallsup for all a € o7 with a constant C] > 0.
We obtain now for alla e &

[Mx@,ll < ¥ 1Mx(b;@ll < Y, Cllalisup-
Jj=1

Jj=1
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As in the proof of (b) one concludes now that My(a) is essentially of class (C) for
all aef.

5.5. COROLLARY. Let Q be a compact Hausdorff space and let u, v be two
positive Borel measures on Q,1 < p,r < co. For a bounded linear operator
L: LYQ, p) — L'(Q, v) are equivalent:

(i) L is of local type, i.e. foralla,b € & = C() such that suppa N supph - O
the operator My(@)LMy(b) is compact where My(a) resp. Mx(b) is the operator of
multiplication with a resp. b on Y:=L"(Q, v) resp. X 1= LP(Q, p).

(i) For all ae 7 - C(Q) the operator My(@)L — LM y(a) is compact.

Proof. Denote by ¢: Q — C# the mapping t — (a(?))sc .- As &7 separates the
points of  this is a homeomorphism from Q onto ¢(Q). For a € o we write t(a) := -
1= supp(a o @ ~'). Moreover we put Z :==(Z,)se » With Z, :== g for ae &/. Then,
by [4], Example 4.4. (d), (&7, Z, 1) is a spectral triple as & is a spectrally closed
normal subalgebra of C(Q) (even of = C(Q)) and T :== (M(a))sc.y resp. S:==
1= (M (@) ae o are (o7, Z, 7)-scalar systems on X resp. Y. Moreover we have for

a, be of:
suppansuppb = @ < (a)n1(b) = B.

1t follows that L is of local type in the sense of (i) if and only if L is of (T, S)-local
type. Because of Proposition 5.4. (a) and Theorem 5.3, this is equivalent to (ii).

5.6. COROLLARY. Let Q be a compact m-dimensional C*-manifold, 1 <p, s < co,
and i,je Ny with i,j < k. Let X be one of the spaces Wri(Q), C'(Q) and let Y be
Wsi(Q) or CH(Q). For L € #(X,Y) are equivalent :

(i) Lisoflocal type,i.e. for all a, b € o := C®(Q), with suppa N suppb :: @,
the operator M (a)LM y(b) is compact.

(i) For all acof =: C™(Q) the operator My(a)L — LMy(a) is compuact.

(iii) For all a € CH(Q) the operator My(a)L — LMy(a) is compact.

Proof. The equivalence of (i) and (ii) follows in the same way asin the proof of
Corollary 5.5. The equivalence of (ii) and (iii) is obvious as C®(Q)is dense in C¥(Q) and
the mapping a » My(a)L — LMy(a) is continuous with respect to the C¥Q)-to-

pology.

5.7. COROLLARY. Let G < R” or G < C"( ~R*) be bounded and open and let
X and Y be two spaces as listed in 5.4. (c). For L€ (X, Y) are equiv&lent:

(1) L is of local type, i.e. for all a, be o = C(G) with suppansupp b =:¢
the operator My(a) LM x(b) is compact.

(ii) For all acof == C*(G) the operator My(a)L — LM(a) is compact.

(i) For j=1,...,n the operator My(n;)L — LMy(n;) is compact. Here,
n;: G — Cis the coordinate function defined by nj(z) := z; for z = (zy, ..., z,) € G.
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Proof. The equivalence of (i) and (ii) is proved in the same way as in the proof
of Corollary 5.5. Write now =« := (n,, ..., n,). Then (&, n, supp) is a spectral
triple (by [4], Example 4.4. (a)) and T := (My(n;))j... and S := (My(n;))}. are
(&, =, supp)-scalar systems on X resp. Y. Obviously, L is of local type in the sense
of (i) if and only if it is of (T, S)-local type. Because of Proposition 5.4. (¢) and
Theorem 5.3 this is equivalent to (ii).

5.8. COROLLARY. Let G =« R" or G = C" ~ R*" be an open and unbounded
set and let X, Y be two Spaces as listed in 5.4. (d). For Te #(X, Y) are equivalent:

() L is of local type, i.e. forall a,besd (o as in 5.4. (d)) with suppan
Nnsupp b = @ the operator My(a)LM y(b) is compact.

(ii) For all a € o the operator My(@)L — LMy(a) is compact.

(iii) For j=0,1,...,n the operator 'My(p))L — LMy(p;) is compact,
where @;: G — C is defined by @o(z) := exp(—|z|%) and ¢(2): = z;4(2) for z =
=(z,...,2,)€QC.

Proof. Again the equivalence of (i) and (ii) is obtained as in the proof of
Corollary 5.5. The functions ¢; may be extended with all their derivatives to the clo-
sure Q of G in R"y {oo} resp. C"U {co} by defining D%p,(c0) = 0 for all a e Nj
and j = 0,1, ..., n. Moreover {¢@q, ¢y, ..., @,} separate the points of Q. For j =
=0,..., n we write Z;: C"*!— C" for the coordinate function defined by Z;(w) :=w; for
w = (w;)] .o € C"*L. Then (C*®(C"*'), Z = (Z;)}..o, supp) is a spectral triple (cf. [4],
Example 4.4. (a)) and T = (Mx(¢;))}-0, S = (My(9;))j-1 are in the natural way
(C=(C"*1), Z, supp)-scalar systems on X resp. Y and it is easy to see that L satisfies
(i) if and only if L is of (T, S)-local type.

Let us now prove that the operators My(¢;),, My(®;),, j=10,1,...,n are
normal equivalent. Indeed, it follows from the proof of (c), (d) and (b) in 5.4 that
the mapping a — Mx(a), from o to £(X,) has an extension to a continuous unital
homomorphism ®: C(Q) — £(X,). As the mapping a — Mx(a) is continuous on
Ay = {ac |a(oo) = 0} with respect to the topology of £ (R") (resp. #(C") =
== #(R™) we conclude that @(p;) = My(p;), for j==0,1, ..., n. Hence it follows
as in the proof of 5.4. (b) that Mx(¢;) is essentially of class (C) and therefore My(p;),
is normal equivalent in £(X,) for j = 0,1, ..., n. In the same way we see that the
operators M y(¢o),, - - .» My(p,), are normal equivalent.

Now we conclude from Theorem 5.3 that (i) must be equivalent to (ii).
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