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SIMILARITY OF SMOOTH TOEPLITZ OPERATORS

DERMING WANG

1. INTRODUCTION

Let T denote the unit circle |z| = | in the complex plane C, and dm(z) =
= (1/2n)dt normalized Lebesgue measure on T. Let L2 be the Lebesgue space of
(equivalence classes of) square integrable (with respect to dm(z)) functions on T, and
H* the L%-closure of polynomials. For a bounded dm(z)-measurable function g,
the associated Toeplitz operator T, : H> — H? is defined by T,h = P(gh), where P
is the orthogonal projection of L2 onto H?. The function g is called the symbol of 7.

In this paper we shall be interested in the case when the symbol is smooth and
its negative Fourier coefficients decay exponentially. More precisely, let J®, n > 1,

x .
denote the set of all functions ge C™(T) with Fourier series g(e)~ Y, aqe™

k=—c0
satisfying |a_,] <,‘cr" for k=1,2,3, ..., and positive constants ¢ and r, r < 1.
It is clear that J® < J“ if n > m. We obtain the following:

THEOREM 1. If Fe JY, Fis one-to-one and F' never vanishes on'T, then Tp
does not have an eigenvalue on the boundary of the spectrum o(Ty) of Ty . If in addi-
tion, t — F(e"*) is orientation preserving, then Ty has no eigenvalues.

THEOREM 2. If FeJ®, F is one-to-one, F' never vanishes on T and t — F(e")
is orientation preserving, then Ty is similar to an analytic Toeplitz operator T,, where 1
is a Riemann mapping function of |z| < 1 onto the interior of the curve F(T).

Note that, with proper orientation, every function analytic and one-to-one
in a neighborhood of T satisfies the hypotheses of the above two theorems. The
origin of our similarity theorem (Theorem 2) dates bach to a paper of P. L.
Duren [9]. There Duren obtained Corollary I of Section 4 below under the assump-
tion that F(z) = Bz + y/z, with |B] > [y]. In her dissertation [10] J. H. Morrel
proved Theorem 2 for F a trigonometric. polynomial. Subsequently, D. N. Clark
and J. H. Morrel [5] obtained the same similarity theorem under the assumptions
that Fis rational with poles off T and is one-to-one on some closed annulus 0 < s <
< z < 1. For a further (rational) generalization, see [3] and [4].
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Call a function g, defined on a set B  C, differentiable on B if for every
w € B the limit quotient [g(z) — g(w)]}/(z — w) as z tends to w, z € B, exists. The
limit function is called the derivative of g. We define the higher derivatives of g in a
similar way. A function defined on B is said to be C™ on B in case its n-th deri-
vative is continuous on B. If B is a closed set, our definition of “C%" on B does
not imply analyticity on B, as the latter means C® in some open set containing
B. A function g defined on T is jn J if and only if it can be extended to be C*®
on some closed annulus 0 < ¢ < |z| < 1. Furthermore, g is one-to-one and g’
never vanishes on T if and only if its extension has non-vanishing derivative
on T and is one-to-one on some annulus 0 < ¢t < s < |z| < 1. It is in this context
that we have proved our theorem, patterned after the proof in [3].

Using the fact that every Cauchy kernel C, = 1/(1 — @z), 'o' <1, is an
eigenvector with eigenvalue 7(w) for the adjoint of an analytic Toeplitz operator
T,, it can be shown that the invertible operator L: H? — H? implementing the simi-
larity, (satisfying LT, = T.L), is of the form (Lg)(w) = {g, Iz;(w)>, where w, < 1,
g € H?and h, is an eigenvector for Tj with eigenvalue 2, and { -,- ) is the inner pro-
duct defined on H2 In Section 2 we study eigenvectors of Toeplitz operators with
smooth symbols. In particular we obtain an explicit formula for the eigenvectors.
In Section 3 we introduce two special Toeplitz operators V,; and S, . The introduction
of these operators is the principal novel idea in this paper. They enable us to study
Tg - Aand Ty — A when 4 isnear or on the boundary of ¢(7T;) and o(T}). Theorem 1
is proved here with the aid of ¥;. We also study the null vector k, of S; and obtain a
suitable decomposition for /%,, via a corresponding decomposition for k,, to pave
the way for the proof of Theorem 2. In the earlier work [5], factorization of the ra-
tional function F(z) — A was used to obtain the corresponding results about /z; .
Finally, we prove Theorem 2 and state its consequences in Section 4.

As for notations, the bar in g,z, etc., denotes complex conjugation. The
topological closure and interior of a set B other than a curve are denoted cl B and
int B, respectively. For convenience, we shall write g(T) for the curve t > g(ei).
A point z is in the interior of g(T) if the winding number of g(T) about z is not zero.
For an integrable function g, g or g~ is its (harmonic) conjugate function.

2. EIGENVECTORS OF SMOOTH TOEPLITZ OPERATORS

In this section we study eigenvectors of smooth Toeplitz operators. For the
general theory of Toeplitz operators, the reader is referred to [8] and [12]. In parti-
cular, the following two facts will be used freely throughout this paper:

1) For a Toeplitz operator T,, g#0, either Ker T, = {0} or Ker T == {0}.

2) For g€ C(T), T, is Fredholm if and only if g does not vanish on T and
in this case ind T, is equal to the negative of the winding number of the curve ¢ > g(ei’)
about 0.



SMOOTH TOEPLITZ OPERATORS 321

Thus if fe C™(T), n = 1, and ¢+~ f(ei*) is an orientation reversing simple
closed curve, T,_, is Fredholm of index 1 for every Z in the interior of f(T). Hence
every A in the interior of f(T) is a simple eigenvalue for T, .

First we obtain an explicit formula for the eigenvector /1, for T'; with eigenvalue
4 satisfying /1,(0) = 1. It turns out that A, isin (H®)~* and the function 2 — A, is
an analytic H2-valued function. Here H*is the algebra of bounded analytic function
in the open unit disk D and (H*)-1is the group of invertible elements in H*.

PRrOPOSITION 2.1. Suppose fe C(T), n > 1, 0 ¢ (T) and T; is Fredholm of
index 1. Then every null vector is of the form
M) = b/{y(eff) exp Ve + e}
where
1 . ~
= exp—-[logl/| + i(logl "],

Y is such that

Jet) = [ fle)] expi[y(e") — 1],

and b is a constant. Furthermore, h € C"~V(T) and if h is not the zero vector (h#0),
then he (H®)-'.

Proof. Let y = exp —;[log]f,'] + i(log] f)™]. Clearly yy = | f] and y e (H®)~L

Since loglf| e C*(T), (logif)~ e C-Y(T), [13, page 121]. We have y € C”"~V(T).
Let y(c') be a C*-determination of the argument of ei’/f(e'*). Then

f=1fle e =yl exp ity + i0)]e- e 5=
Since e C"-V(T), exp ~;— i +if)e(H®)-1 and exp ;—i(lp —i))e H® =

- 1. L
= {h|he H®}. Thus f-{]/[y exp -2—1(l// +1t//)]} 1 H2
Since ind7; =1, dimkerT; =1. Therefore if hekerT,, then h=
=b/{y exp—;— iy + il/;)} for some constant 5. The remaining conclusions now

follow since both y and exp —;« i(y + itf) are in C*-2(T), and in (H®)"1.

LEMMA 2.2. Suppose fe C(T) and T; is Fredholm of index 1. If gekerT,
and g # 0, then g(0) # 0.

Proof. Suppose g(0) = 0. Then e~i‘g € H?>and e~i*g # 0. Clearly, T, (e~g) =
== 0. But since the winding number of ¢~ ei’f(ei) about the origin is O,
dimker T, == 0. This is a contradiction. Therefore g(0) # 0.
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If fe C(T) and T, _, is Fredholm of index 1 for every / in the interior of f(T),
then dimker 7,_, = 1. By the above lemma, there is a unique h; e kerT,_; such
that h;.(O) =3 1

PropPoOSITION 2.3. With T; and h; as above, the function 2 v h, is an anaiytic
H2-valued function for /. in the interior of f(T).

Proof. For A in the interior of f(T), T, ;, is Fredholm of index 0. Hence T, ...,
is invertible. If g, == T} ,,1, then g, e ker7;_; and g, #0. Since 7 +— T3}, is
an analytic operator-valued function, 1~ g; is an analytic H2-valued function.
Thus 2 =/, == g,/g,(0) is analytic since g,(0) # 0 by Lemma 2.2.

As the referee has pointed out, Proposition 2.3 also follows from Proposition
1.11 of [6].

3. THE OPERATORS ¥V, AND S,

If FeJ", Fis one-to-one and F’ never vanishes on T, then there is a closed
annulus N = {z|0 < s < |z} < 1} such that F extends to be C™ and one-to-one
on N. We shall denote the extension of F(e") by F(z), ze N. Let 1/D: F(N) - N
be the continuous inverse of F(z). For . € F(N,), where N, = {z |s <s gl g1,
we let V; be the Toeplitz operator with symbol Q(z, 2), defined to be
[F(z) — Y[l — D(A)z} if z % 1/D(4), and Q(z, ) == F'(1/D(2)) if z = 1]D(}).

With F as above, let f(z) = F(1/Z). Then f(z) is C*™ and one-to-one on the
closed annulus M = {z |1 < |z| < 1/s}. For 2 €f(M,), where M; = {z|1 < = <
< 1/s,}, we let S, be the Toeplitz operator with symbol ¢(z, 4), defined to be
(fz) — A1 — d(i)z) if z # 1]d(2), and g(z, 2) =f'(1jd(})) if z = 1]d(7), where
1/d: f(M) — M is the inverse of f(z).

The introduction of ¥, and S, enable us to study T._, (T} ;) even for /. € F{T)
{2 € f(T), respectively). The operators V, and S, turn out to be Fredholm operators.
With the aid of V;, Theorem 1 is proved in this section. As for the operator S,,
we are interested in the case when ¢ — F(e'*) is orientation preserving (and hence
t > f(e'') is orientation reversing). In this case, the index of S, is 1. We shall derive
a suitable decomposition for the null vector k; of S, which in turn will enable us to
obtain a desired decomposition of /1, the unique eigenvector of Th = T satisfying
11,(0) = 1, to pave the way for the proof of Theorem 2.

Throughout this section, we shall denote the following four annuli 0 < s <
Sz, s<syg €z <1, 1<zl <1)s and 1 € |z) < 1/s; by N, N;, M and
M, , respectively.

LEMMA 3.1. Suppose the function g is C"™, n > 1, on N. Let the function
G(z, w) on N X N be defined to be [g(z) — g(w))/(z — w) if z # w, and g'(w) if z = .
Then 0mG[dz™ is continuous on Ny XN, for 0 < m < n — 1.
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Proof. The continuity of 0™G/dz" at every (z,, wy) € Ny X Ny, 2z, # w, is clear.
For each w, € N, , there is a convex set U < N which is open in the relative topology
1

on N such that w, € U. The convexity of U implies G(z, w) = Sg'(tw + (1 —)z)de

0
1

for (z, w)e UXU. Since (0™/0z2™)G(z, ) = Sg""“’(tw + (1 —1)z)(1 — ty"dt and

0
since g®+1 is continuous on N, 8"G/0z™ is continuous at every (w, , w,) € N, X N, .

LeMMA 3.2. Suppose Fis C™, n > 1, and one-to-oneon N. Let 1/D: F(N) » N
be the inverse of F. Let the function Q(z, /) be as above. Then 0™ Q[0z" is continuous
on Nyx FINy) for 0 < m<n— 1.

Proof. Since
[F(z) — /(1 — D(X)z) =

= (=1/DUNLF(2) — FA[DO)Nz — 1/D(2)),
the conclusion follows from Lemma 3.1 and the continuity of 1/D.

PROPOSITION 3.3. With notation and hypothesis as in the above lemma, sup-
pose, in addition, F' never vanishes on T. Let V, be the Toeplitz operator with symbol
QO(z, ), A€ F(N,). Then V; is Fredholm. Furthermore, the index of V, is equal to 0
if t — F(e!) is orientation preserving, and 1 if t > F(ei') is orientation reversing.

Proof. Since Q(z, A) is continuous on N, X F(N,) and F’ never vanishes on T,
Q(-,A) is continuous and never vanishes on T for each e F(¥,). That V, is Fred-
holm for 1e F(N,) now follows. If ¢~ F(ei*) is orientation preserving and if
2 € F(N)\F(T), then the winding number of ¢t — Q(e¥, ) about 0 is the winding
number of F(e'*) — F(1/D(.)) minus that of e’ — 1/D(}), and so is equal to 0.
Therefore ind V', = 0 for 1 € F(N)\F(T). If A € F(T), we may pick 2,€ F(N,)\F(T),
n=1,2,3,. .., such that 2, tends to 4. The uniform continuity of Q(z, 2) on the compact
set T X F(N,) implies Q(-, 2,) tends uniformly to Q(-, 2) on T. Hence V,," tends to
V, in norm and we have ind ¥V, = 0. If ¢ > F(e*) is orientation reversing, then the
winding number of ¢ ~> Q(ei!, 1) about 0 is equal to —1 for 1€ F(N,)\F(T). There-
fore ind ¥, = 1 for every A& F(N,)\F(T). Arguing as above shows ind V; = |
for 2 e F(T). '

Now we can give the

Proofof Theorem 1. We first note that the hypotheses on F here are equivalent
to those of the previous proposition. Also note that the boundary of o(T) in this
case is F(T). Suppose X € F(T) is an eigenvalue for T and suppose g, is a nonzero
cigenvector with eigenvalue A for T . Then (I — D(4)z)g, is clearly a nonzero null
vector for V.
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If ¢t — F(el*) is orientation preserving, then ind ¥, = 0, by the previous pro-
position, and we have a contradiction. On the other hand if 1 — F(ei’) is orientation
reversing, then ind ¥, = 1 and the null vector (1 — D(})z)g, has to be in (H®)-1
and C(T) by Proposition 2.1. Since (1 — D(%)z)g, = 0 at z == 1/D(i), we have a
contradiction again. Therefore T has no boundary eigenvalue. The last statement
of the theorem is now immediate.

It is interesting to note that the degree of smoothness of the symbol of 7
plays an important role in our proof of the nonexistence of boundary eigenvalues for
T . K.F. Clancey [2] has given an example of a continuous F such that T does have
boundary eigenvalues.

The remaining part of this section concerns the operator S and its null vector ;.

By using a construction similar to that of Lemma 3.1, the following lemma
can be proved in a manner similar to Lemma 3.2; we shall, therefore, omit its proof.

LemMa 3.4. Suppose f'is C™, n = 1, and one-to-one on M. Let 1]d: fiM)—M
be the inverse of f. Let the function q(z, 2) on M Xf(M) be defined as above. Then
0"q[0z" is continuous on My Xf(My) for 0 € m < n — 1,

PROPOSITION 3.5. With notation and hypothesis as in the above lemma, suppose
in addition, [’ never vanishes on T and t > f(e¥) is orientation reversing. Let S, be
the Toeplitz operator with symbol q(z, 1), i € f(My). Then S, is Fredholm of index 1.

Proof. The proof is similar to that of Proposition 3.3 and hence is omitted.
Observe that if 7 +— f(e"*) is orientation reversing, then the winding number of
t > g(e"’, 2) about 0 is equal to —1 for A € f{M)\ f(T).

REMARK 3.6. If f is as in the above proposition, then a similar argument
as in Theorem 1| shows 7, has no boundary eigenvalues.

REMARK 3.7. Following the comment after Lemma 2.2, we shall let k; be
the unique nuil vector for S, , 2 € f(M,), satisfying k,(0) = 1. By Proposition 2.1,

1.
-
2
tisfies g(e¥, 1) = lg(e”, 1); exp i[{f,(¢i) — ¢} and b, is a constant.

. 1 e~
k== b;/{y;.eXP-~ [Y,+ i1}, where n=eXp»2-[log lql + i(logig")"], ¥, sa-

LeMMA 3.8. Suppose B is a compact set and the function g defined on T X B
is such that (0%/0t®) g(e', 2) is continuous on T X B. Then g(eV', 1)~ is continuous
on T % B. Here the harmonic conjugate is taken with respect to the variable e'.

Proof. For each /€ B, let g(ei, 1) ~ ¥ a,(X)ei™ be the Fourier series for

n=--00
-1 co
g Then g(ei', )™ ~ i ¥ a, (e —iY a,(2e™. Since
H=-—00 'ED|

a () = —- S g(e, De-in dr,
2n

0
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integrating by parts twice we have

2n
11 2 .
a, (1) =. —\ | — g(e¥, A) | e~ idr.
=] 2n8[at2g( )]

0

The continuity of (8%/0¢®)g(e'’, ) implies a,(4) is continuous in A, for every n, and

0

the series Y, la(A)| is uniformly convergent for AeB. Thus g(e", 1)~ is

n=-00

continuous on T X B.

ProposITION 3.9. Let f and S, be as in Proposition 3.5 with n = 4, and let
k; be as in Remark 3.7. The functions

) (z, ) = ky(2),
and
2) (z, ) = ki(2)

are continuous on clD X f(M,).

Proof. (1) By Proposition 2.1, it is easily seen that k,(2) is the Poisson extension
of k,(e¥). Since fis C® on M, g(e¥*, 1) never vanishes, and (2%/0t%)q is continuous
on TXf(M,) by Lemma 3.4, we have log|g|, ¥, and (8%/0t®)y/, are continuous on
T X f(M;). Lemma 3.8 now implies (loglg))~ and , are continuous on T Xf(M,).

Thus y,exp -—lé— iy, -+ ih,] is continuous on T Xf(M;). A simple application of

Poisson integral would then show that y; exp —;—~ iy, + if,] is continuous on

cID X f(M,). Finally, k,(0) = 1 implies b, is continuous in A € f(M,). We therefore
have that the function (1) is continuous on clD X f(My).
(2) Because k;(e'*) € C*®(T) by Proposition 2.1, it is not difficult to show

kj(z) € A, the disk algebra. In this case, we have d_d— k,;(ei‘) = jeltkj(e™). It is there:
t

fore sufficient to show that —&d— y,(ein), —d~|h(e"‘) and —g-lﬁl(e“) are continuous on
t Cdt t
T X f(M,). 4 s 5
The continuity of d—g// ; follows from that of —a——q. Since —6— (loglg)™ =
t t t

- [—g~log|q|] and ;_J,Z - [di ./,A] for each fixed A, and (6%/6%)loglg| and
t t t .

(d3/de®), are continuous on T X f(M,), ~(E11~y,1 =y, {—;—[% log|q| + i—a% (loglq[)~]}
t

and 5—1/7,1 are continuous on T X FMY).
t

9 — 2294
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LeMMA 3.10. For (z, 2) e cID X fiM,), let B,(z) be defined to be [k;(z)~-

— k(dW)z — d)] if z # d(2), and Kk dQ) if z = d(2). Then,
(1) B,(z) is bounded on clD X f(Ml) and hence B, € H® for every 7 € f(M).

Q) ky(2) = k;(d(2) + [z — d(DIB,(2).

Proof. (1) By Proposition 3.9, B,(z) is continuous on the compact set cID x
X f(M;) and hence bounded. The definition of B, clearly implies B,(z) is analytic
inzforeachfixed /. Thus B, ¢ H*® foreach / € f(M,).

(2) The decomposition follows from the definition of B,(z).

PROPOSITION 3.11. For (z,2)ecIDXf(M,), let Q,(z) = [(z — d(A)I(I -
— d(2)2)]B,(z), where B, is as in Lemma 3.10. Then,

(1) Q,(z) is bounded on cID X f(M,) and hence Q, € H® for every /. €f(i1,).

(2) The function i w— Q, is a continuous H®-valued function for /. € f(M,).

(3) k2l — d(R)z] = kdON1 — d(2)z] + Qu(2), for % € f(MINAT).

Proof. (1) It suffices to show that [z — d(})z]/[l — d(%)z] is bounded on
cID xf(M,). If 2 ef(T), then ld(2)] == 1. In this case d()) = 1/d()). We have
[z — dD)[I — d()z] = —d(%). Since d(%) is continuous on f(M,), [z — d(2))/
[[1 -— d(2)z] is bounded on cID X f(M,). On the other hand if e fiM)\ AT),
then |J(A)l < 1 and z+— [z — 21_(/‘,)]/[1 — d(2)z] is a M&bius transformation sending
cID onto cID. Hence [z — d(4))/[l — d(1)z] is bounded on clD X f(M,).

(2) To show A+ Q; is continuous, we fix A€ f(M;) and pick a sequence
{4} in f(M,) such that 4, — 2, . For eachfixed z € T, z#d(%,), n=0,1,2,..., Q; (2)
tends to an(z)- Since {Q,."}, A=0,1,2,...,is uniformly bounded on T by (1),
Lebesgue’s dominated convergence theorem implies 10,, — anl!z - 0. Hence
A @, is continuous.

(3) The decomposition follows from the corresponding decomposition for
k, in the previous lemma.

For each 2 e f(M)\A(T), let i, be the uniques eigenvector with eigenvaluc
for T, satisfying /1,(0) = 1. By definition of k, (Remark 3.7), 7,(z) = k (2)/[1 ~-
— d(A)z] for 2 e f(M)\f(T), where k, is the unique null vector of S, satisfying
k;(0) == 1. Thus Proposition 3.11 (3) gives a decomposition for # , when
A € f(MY\ f(T). This decomposition will be used in the proof of Theorem 2. .

4. PROOF OF THE SIMILARITY THEOREM
We are now ready to prove Theorem 2. All pertinent notations introduced
in the previous sections will be retained.

Proof of Theorem 2. Note that under the assumption on F(z), the mapping
function 7 extends to be continuous and one-to-one on ¢l D and sends T onto F(T);
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see, for example [11]. Let f(z) = F(1/2). Then T} = T, and f satisfies the hypothesis
of Proposition 3.5. Thus f'is C® and one-to-one on M, f* never vanishes on T and
t = f(e¥) is orientation reversing. If |w| < 1, then t(w) € int 6(T), the interior of
F(T), and #(w) € int 6(T}), the interior of f(T).

Our goal is to find an operator L: H? -» H* which is mvert1ble and satisfies
the intertwining relation LT, = T,L. We shall pattern the proof after that of [5],
breaking it into steps.

Step 1. We first define L from P2 into A2 Here P? is the dense linear mani-
fold of H? consisting of polynomials.

For |w| < 1 and g € P2, define Lg{w) =g, 11;@)), where h; is the eigenvector
for T; corresponding to / € int o(7}) satisfying /,(0) = 1. Clearly L is linear. Since
1, depends analytically in 4 by Proposition 2.3, Lg(w) is analytic in |@w| < 1. The
function 7(w) extends to be one-to-one and continuous from |w| < 1 onto o(Ty)
and maps T onto f(T). Hence there is a positive constant 0 < ¢ < 1 such that 7
maps the annulus ¢ € |o| < 1 one-to-one onto f{M,). By Proposition 3.11 and the
remark following it, we have

Ben(@ = k@I — d(F(@))z} =

=k (w)(b—’(f(w)))/[l — d(@(@))z] + 0,2
for ¢ < jw] < 1. Thus

Lg(w) = <8 K (o (dF@/I = d(F@)2]> + (8> Oz, =
= /?.T_(w)(d(f(w))g(a_(‘f(w)))) +<g; Q;(w)>’

for ¢ < |w] < 1.

Since A — k,(d(})) and A — Q, are continuous on f(M,) by Propositions 3.9
and 3.11, Lg(w) is readily seen to be contmuously extendable to¢ < |w| < 1. There-
fore L maps P? into H2.

Srep 2. L is bounded on P2, so L extends by continuity to a bounded oper-
ator, again denoted "L acting on H2. Furthermore, this extended L intertwines T\
and T, and has closed range and finite dimensional kernel.

Deﬁne L, and L on P? by L g(w) = AI(W)(d(r(a))))g(d(‘r(w))), and Lglw) =
= (g, ( T(w)> |w| = 1'and g e P2. Clearly L, and L_ are linear and map P2 into C(T).

We have only that Lg and ch are in L?, but we know from Step 1, Lg = L g +
+L g is in HZ
Introducting the change of variable @ = 7=%(F(2)), for |z| = 1, we have

IL.gl = S o @@ g @FR@M dm(w) —

el=1

= S ks o (@(F@)) g (2)1® dm(z =3 (F (2)).

|2f=1
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Since, by Proposition 2.1 and 3.9, k, never vanishes on T for 7€ f(My),
llzﬂ:,(c?f f(2)))] is bounded and bounded away from 0 on |z| == I. By Lemma 3.2
of [5], the measures dm(z) and {k;..,(d(f(2))){2dm(x~}(F(z))) are mutually boundedly
absolutely continuous. Thus ¢,|jgll; < l[Lgllz € c:llgil; for some positive constants
c; and ¢,. Clearly then L, extends to be bounded and bounded below (in L* norm)
on H® This extension, again denoted L_, is thus semi-Fredholm with 0 kernel (as
an operator from H? to L?).
For L_, we have

c?

Leg(e") = (g, Oz, = \ 8@)0;(2)dm(z).

1zt_.1

L_ is seen to be an integral operator whose kernel Qt(w)(z) is bounded on TXT,
by Proposition 3.11. Hence L, extends to act on H*? and is a compact operator. Thus
L =L + L_ extends to be bounded as an operator acting on H?2,

Being a compact perturbation of a semi-Fredholm operator with 0 kernel,
L must have closed range in L? (and hence in H?®), and finite dimensional kernel.
The extended L still satisfies Lg(w) = {g,h., > for ge H® and |w| < 1. The

intertwining property follows, since

7(w)

LTFg(w) = <TFg’ h;(w)> <g5 ]}‘]lr<())> = T(w)(g, h?(w)
= I Lg(w), lol <L

Step 3. (The extended) L is onto.

By Step 2, it is sufficient to prove that L has dense range. Since L(1)(@) :=
== b (0) =1, {w| <1, we have L1 = 1, and thus L(T#1) = <", n=0,1,2, ... .

The range of L therefore contains all polynomials in z. By Mergelyan’s Theorem,
there is a sequence of polynomials p, tending uniformly to t-* on o(T;). Hence any
polynomial p is the uniform limit of the sequence p(p,(z)) of polynomials in 7. The
range of L is thus dense.

Step 4. (The extended) L is one-to-one and hence invertible by the open
mapping theorem.

Since LT g = T.Lg for g e H?, the kernel of L, which is finite dimensional
by Step 2, must be invariant under 7. The operator T then must have an eigenvalue.
This contradicts Theorem 1, unless the kernel of L is {0}. The proof of Theorem 2
is now complete.

In conclusion, we state some consequences of our similarity theorem.

COROLLARY 1. The invariant subspace lattice of Ty is isomorphic to the lattice
of inner functions.
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Proof. The lattice of invariant subspaces of 7, and hence of T is the lattice
of invariant subspaces of T, . See [9].

COROLLARY 2. The commutant {Tg}’ of Ty satisfies {T;} = L-Y{T,|g < H®}L,
here L is the operator implementing the similarity between Tp and T, .

Proof. This follows from the fact that 7 is univalent and hence {7}’ = {T.}' =
= {T, | g € H*}. See[1]and [7].

COROLLARY 3. The closed linear span of the eigenvectors of T§ is H®.

Proof. Thisfollows since T has the stated property and T is similar to T .

The paper is based in part on the author’s Ph. D. thesis written under the direction of Professor
Douglas N. Clark at the University of Georgia. The author whishes to express his deepest grati-
tude to Professor Clark for his guidance.
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